金属材料力学性能代 含义

合集下载

金属材料的力学性能

金属材料的力学性能
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表达。 如:120HBS 500HBW 600HBS1/30/20 3、优缺陷
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围

金属材料的力学性能

金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC

金属材料力学性能

金属材料力学性能

金属材料力学性能金属材料是工程领域中最常用的材料之一,其力学性能对于材料的应用具有至关重要的作用。

力学性能包括材料的强度、韧性、硬度、塑性等指标,这些指标直接影响着材料在工程中的使用效果。

本文将重点介绍金属材料的力学性能及其影响因素。

首先,我们来谈谈金属材料的强度。

材料的强度是指其抵抗外部力量破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等指标来表示。

金属材料的强度受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构的完整性和晶粒尺寸的大小都会影响金属材料的强度,而添加合金元素则可以改善金属材料的强度和硬度。

其次,韧性是金属材料力学性能中的另一个重要指标。

韧性是材料抵抗断裂的能力,也是材料在受到外力作用时能够发生塑性变形的能力。

金属材料的韧性受到晶粒大小、晶格结构、冷加工程度等因素的影响。

通常情况下,晶粒细小的金属材料具有较好的韧性,而经过适当的热处理和冷加工的材料也可以提高其韧性。

此外,硬度是金属材料力学性能中的另一个重要指标。

硬度是材料抵抗划伤和穿刺的能力,通常用洛氏硬度、巴氏硬度等指标来表示。

金属材料的硬度受到晶粒大小、晶格结构、合金元素等因素的影响。

晶粒细小的金属材料通常具有较高的硬度,而添加合金元素也可以提高金属材料的硬度。

最后,塑性是金属材料力学性能中的重要指标之一。

塑性是材料在受到外力作用时能够发生可逆形变的能力,通常用延伸率、收缩率等指标来表示。

金属材料的塑性受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构完整、晶粒细小的金属材料通常具有较好的塑性,而添加合金元素也可以提高金属材料的塑性。

综上所述,金属材料的力学性能受到多种因素的影响,包括晶格结构、晶粒大小、合金元素等。

了解这些影响因素对于合理选择和应用金属材料具有重要意义,也有助于优化材料的力学性能。

希望本文的介绍能够对读者有所帮助,谢谢阅读!。

金属材料力学性能

金属材料力学性能

低合金钢 奥氏体不锈钢
2.0~2.1 1.9~2.0
几为材料的屈服强度和抗拉强度的比值,即σs/σb。 比值σs/σb对材料成型加工极为重要, 较小的σs/σb值几乎 对所有冲压成型都是有利的,也可以说屈强比小的材料塑性较 高,屈强比高表示材料的抗变形能力较强,不易发生塑性变形。 当然对于可靠性而言, 钢材的屈服强度就应该以接近钢材的拉 伸强度为佳,也就是说 屈强比大的钢材用来做结构零件可靠性 高。
二、金属在冲击载荷下的力学性能
机件在冲击载荷下的失效类型和静 载荷一样,也表现为过量弹性变形、 过量塑性变形和断裂。 在静载荷下,塑性变形比较均匀地 分布在各个晶粒中,而在冲击载荷 下,塑性变形则比较集中在某些局 部区域,这反映了塑性变形是极不 均匀的(图3-1)。
冲击韧性
冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力, 用冲击吸收功Ak表示。反应材料的韧性。
(5)弹性模量E
工程上为材料的刚度,表征金属材料对弹性变形的抗力,其值愈大,则在相同 应力下产生的弹性变形就愈小。当应变为一个单位时,弹性模量即等于弹性 应力,即弹性模量是产生100%弹性变形所需的应力。
金属材料 铁 铜 铝
铁及低碳钢
E/105MPa 2.17 1.25 0.72 2.0
铸铁
1.7~1.9
1.碳素结构钢:用于制造各种工程构件和机械构件; 2.碳素工具钢:用于各种工具。 牌号则是体现其力学性能,Q+数字表示,其中“Q”为屈服点“屈”字的 汉语拼音字首,数字表示屈服点数值,例如Q275表示屈服点为275MPa。若牌号后 面标注字母A、B、C、D,则表示钢材质量等级不同,含S、P的量依次降低,钢材 质量依次提高。若在牌号后面标注字母“F”则为沸腾钢,标注“b”为半镇静钢, 不标注“F,’或“b”者为镇静钢。例如Q235-A·F表示屈服点为235MPa的A级沸 腾钢,Q235-C表示屈服点为235MPa的C级镇静钢。 Q195、Q215、Q235钢碳的质量分数低,焊接性能好,塑性、韧性好,有 一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构和制造普通 铆钉、螺钉、螺母等零件。

金属材料的力学性能及其应用

金属材料的力学性能及其应用

金属材料的力学性能及其应用金属材料是广泛应用于日常生活和工业生产中的一类材料,其力学性能是决定其应用价值的重要因素之一。

力学性能包括材料的强度、韧性、硬度和塑性等等,本文将会就这些方面进行探讨,同时介绍金属材料的应用。

一、强度和韧性强度指的是应力下材料的抵抗破坏的能力,通常使用抗拉强度和屈服强度来衡量。

在材料拉伸测试中,如果材料能够承受的最大载荷为F_max,截面积为A,则抗拉强度(σ)定义为F_max/A。

它是材料在接受拉伸的最大力下断裂前所承受的最大应力。

屈服强度是指材料在受到外力下最开始产生明显塑性变形的应力。

这个时候,即使减小应力的大小,金属材料也不会回到初始状态。

金属材料的这种表现就是塑性变形。

屈服强度越高,材料的塑性范围就越小。

因此,一些需要较高塑性特性的应用,如汽车的形变零件和电子设备应用中的焊线等,需要选择具有相对低抗拉强度和高延伸能力的材料。

韧性指的是在断裂前材料能够吸收的最大能量或在破坏时,材料要做的工作量。

通过强度与韧性之间的平衡,可以选择适合不同应用的材料。

抗拉强度高的材料抗弯曲和弯曲方面的性能较好,但在受力突然增加的情况下,材料会很快破裂。

因此,强度指标并不是衡量材料总体特性的唯一标准。

二、硬度和塑性硬度是金属材料特有的一种力学性能,度量的是材料的耐磨性和抗刮伤能力。

硬度可以用多种方法进行测量,如布氏硬度、洛氏硬度、维氏硬度和划痕硬度等。

硬度一般用于表面硬化材料、塑性材料的选择,金属材料的等硬度加工等领域。

塑性是指材料在受力时能够发生的形变量能达到最大值的性质。

塑性范围越大,材料可以承受更大的变形而不破坏。

塑性将直接影响材料的应用选择。

高塑性材料通常被用于需要抵御冲击和其他非常规性力的应用。

三、应用金属材料广泛应用于制造业,如航空航天、汽车、电子和建筑等。

其中航空航天及汽车应用中,特别是高温区域,需要具有相对高强度的材料,如钛合金、高温合金和铝锂合金。

铝合金在航空器的蒙皮、框架、壳体、发动机结构、发动机支架和输油管道中也有很广泛的应用。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

金属材料力学性能

金属材料力学性能

金属材料力学性能
金属材料是一种具有良好力学性能的材料,其力学性能主要包括力学强度、变形能力、抗疲劳性和韧性等。

首先,金属材料具有较高的力学强度。

力学强度是指金属材料在外力作用下能够承受的最大应力。

金属材料的力学强度高,意味着它具有较高的抗拉、抗压和抗弯能力。

这使得金属材料广泛应用于工程结构中,如建筑、桥梁和航空器等。

其次,金属材料具有良好的变形能力。

变形能力是指金属材料在外力作用下发生塑性变形的能力。

金属材料可通过冷加工、热加工和轧制等工艺方法来实现变形,使其形状得到改变。

这种良好的变形能力使金属材料具有可塑性,适用于制造各种形状的工件。

金属材料还具有较好的抗疲劳性能。

抗疲劳性是指金属材料在频繁循环加载下的抗损伤能力。

由于外界应力的作用,金属材料会发生变形和损伤,如果应力循环次数过多,将导致断裂。

但金属材料通常具有较高的抗疲劳极限,可以承受较大的应力循环次数,从而延长其使用寿命。

最后,金属材料具有良好的韧性。

韧性是指材料在受力下发生断裂前能够发生较大的塑性变形。

金属材料的韧性意味着它在受到外界冲击或载荷时能够吸收能量,防止突然断裂。

这种优良的韧性使得金属材料广泛应用于制造安全保护装备,如安全带和防护网等。

总的来说,金属材料具有较高的力学强度、较好的变形能力、良好的抗疲劳性和韧性。

这些力学性能使得金属材料成为广泛使用的工程材料,并在国民经济各个领域发挥着重要作用。

金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。

金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。

金属材料的力学性能是指在外载荷作用下其抵抗或的能力。

金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(6s):表示屈服强度,指材料在扎搓过程中,材料所受到形变达至某一临界值时,载荷不再减少变形却稳步减少或产生0.2%l。

时形变值,单位用牛顿/毫米
2(n/mm2)则表示。

3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(n/mm2)表示。

如铝锂合金抗拉强度可达.5mpa
4、延伸率(δ):材料在弯曲脱落后,总弯曲与完整标距长度的百分比。

工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把
δ≤5%的`材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。

5、断面收缩率(ψ)材料在弯曲脱落后、断面最小增大面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(hbs、hbw)和洛氏硬度(hra、hrb、hrc)。

7、冲击韧性(ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(j/cm2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料力学性能代号含义
名称代号单位含义
抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力.
抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力
屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服.
屈服时的最小应力称为屈服点和屈服极限.
屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服.
对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度.
弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示.
比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限.
σp与σc两数值很接近,一般常互相通用.
弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.
E=σ/ε ε——试样纵向线应变.
切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.
G=τ/γ γ——试样切应变.
泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值.
μ=|ε/ε'|
ε'= -με, ε'——试样横向线应变.
疲劳极限σ-1MPa 或 N/mm^2材料试样在对称弯曲应力作用下, 经受一定的应力循环数数 N 而仍不发生断裂时所能承受的最大应力.
对钢来说,如应力循环 N 达 10^6-10^7仍不发生断裂时,则可认为随循环次数的增加,将不再发生疲劳断裂,因此常采用 N=(0.5~1)x10^7为基数,确定钢的疲劳极限.
蠕变极限σ(1/10^4),
σ(1/10^5),
σ(0.2/200)...
MPa 或 N/mm^2
在一定温度下(通常在高温下)和恒定载荷作用下,
材料在规定的时间(使用期间)内的蠕变变量或蠕
变速度不超过某一规定值的最大应力.
符号右下角的分数中, 分子表示规定的变形量的
百分数,分母表示产生该变形量所经历的时间(小
时).
σ(1/10^4) 表示在10000小时产生 1% 变形量的
应力,有时在符号的右上角标明试验温度.
DVM蠕变极限DVM MPa 或 N/mm^2
加载后观测25-35小时, 可允许的伸长速度为
10x10^(-14)%/小时的应力.
持久极限σ(b/10^4),
σ(b/10^5),
σ(b/200)
MPa 或 N/mm^2
在一定温度下(通常在高温下), 材料在恒定载荷
作用时, 材料在一定时间(使用期间)内材料破坏
时的应力.
符号右下角的分数中,分母表示时间(小时).有时
在符号的右上角标明试验温度.
伸长率(延伸率)δ,δ5,δ10%
δ 材料试样被拉断后, 标距长度的增加量与
原标距长度之百分比.
δ5 试样的标距等于 5 倍直径时的伸长率.
δ10 试样的标距等于 10 倍直径时的伸长率.
断面收缩率ψ%材料试样在拉断后, 其断裂处横截面积的缩减量与原横截面积的百分比.
收缩率和伸长率均用来表示材料塑料的指标
冲击韧性值αku ,或 αkv J/cm^2金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验, 试验结果以冲断试样上所消耗的功( Aku ,或 Akv)与断口处横截面积(F)之比来衡量.
冲击功Aku ,或 Akv J 金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验. Aku,或Akv是冲断试样所消耗的功.
布氏硬度HB( HBS 或
HBW )
kgf/mm^2(一般不标
注)
硬度是指金属抵抗硬的物体压入其表面的能力.
用淬硬小钢球或硬质合金球压入金属表面, 保持
一定时间待变形稳定后卸载, 以其压痕面积除加
加在钢球上的载荷,所得之商,即为金属的布氏硬
度数值.
洛氏硬度C 级HRC
用1471N 载荷, 将顶角为 120°的圆锥形金刚石
的压头,压入金属表面,取其压痕的深度来计算硬
度的大小,即为金属的HRC硬度.
HRC用来测量HB=230-700的金属材料,主要用于测
定淬火钢、调质钢等较硬的金属材料(GB230-83)
洛氏硬度A 级HRA
用 588.4N 载荷和顶角为 120°的圆锥形金刚石
的压头所测定出来的硬度, 一般用来测定硬度很
高或硬而薄的金属材料, 如碳化物、硬质合金或
表面淬火层,HRA用来测量HB>700金属材料.
洛氏硬度B 级HRB
用980.7N 载荷和直径为 1.59mm(1/16in)的淬硬
钢球所测得的硬度.主要用于测定HB=60-230这一
类较软的金属材料,如软钢、退火钢、正火钢、
铜、钼等有色金属
表面洛氏硬度HRN,HRT
试验原理同前面洛氏硬度, 不同的是试验载荷较
轻,HRN的压头是顶角为 120°金刚石圆锥体,HRT
的压头是直径为1.5875mm 的淬硬钢球.二者的载
荷均为15kgf、30kgf 和 45kgf.二者的标注分别
为HRN15、HRN30、HRN45和HRT15、HRT30、
HRT45.
表面洛氏硬度只适用于钢材表面层硬度, 以及较
薄、较小试件的硬度测定,数值较准确(见GB1818
-79)
HRN=100-100t
HRT=100-100t
t——表示主载荷与初载荷两次加载的压痕深度
的差值,mm.
维氏硬度HV N/mm^2用49.03-980.7N以内的载荷,将顶角为136°的金
刚石四方角锥体压头压入金属的表面, 以其压痕面积除载荷所得之商,即为维氏硬度值.
HV 只适用测定很薄(0.3-0.5mm)的金属材料、金属薄镀层或化学热处理后的表面层硬度(如镀铬、渗碳、氮化、碳氮共渗层等)(见GB4340-84)
HV=2P/d^2.sin(136/2)
=0.1891P/d^2
P——压头上的负荷,N
d——压痕对角线长度,mm
肖氏硬度HS 以一定重量的冲头, 从一定的高度落于被测试样的表面,以其冲头的回跳高度表示硬度的度量.
适用于测定表面光滑的一些精密量具或不易搬动的大型机件.。

相关文档
最新文档