金属材料力学性能代 含义

合集下载

金属材料的力学性能

金属材料的力学性能
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表达。 如:120HBS 500HBW 600HBS1/30/20 3、优缺陷
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围

金属材料的力学性能

金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC

金属材料力学性能

金属材料力学性能

金属材料力学性能金属材料是工程领域中最常用的材料之一,其力学性能对于材料的应用具有至关重要的作用。

力学性能包括材料的强度、韧性、硬度、塑性等指标,这些指标直接影响着材料在工程中的使用效果。

本文将重点介绍金属材料的力学性能及其影响因素。

首先,我们来谈谈金属材料的强度。

材料的强度是指其抵抗外部力量破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等指标来表示。

金属材料的强度受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构的完整性和晶粒尺寸的大小都会影响金属材料的强度,而添加合金元素则可以改善金属材料的强度和硬度。

其次,韧性是金属材料力学性能中的另一个重要指标。

韧性是材料抵抗断裂的能力,也是材料在受到外力作用时能够发生塑性变形的能力。

金属材料的韧性受到晶粒大小、晶格结构、冷加工程度等因素的影响。

通常情况下,晶粒细小的金属材料具有较好的韧性,而经过适当的热处理和冷加工的材料也可以提高其韧性。

此外,硬度是金属材料力学性能中的另一个重要指标。

硬度是材料抵抗划伤和穿刺的能力,通常用洛氏硬度、巴氏硬度等指标来表示。

金属材料的硬度受到晶粒大小、晶格结构、合金元素等因素的影响。

晶粒细小的金属材料通常具有较高的硬度,而添加合金元素也可以提高金属材料的硬度。

最后,塑性是金属材料力学性能中的重要指标之一。

塑性是材料在受到外力作用时能够发生可逆形变的能力,通常用延伸率、收缩率等指标来表示。

金属材料的塑性受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构完整、晶粒细小的金属材料通常具有较好的塑性,而添加合金元素也可以提高金属材料的塑性。

综上所述,金属材料的力学性能受到多种因素的影响,包括晶格结构、晶粒大小、合金元素等。

了解这些影响因素对于合理选择和应用金属材料具有重要意义,也有助于优化材料的力学性能。

希望本文的介绍能够对读者有所帮助,谢谢阅读!。

金属材料力学性能

金属材料力学性能

低合金钢 奥氏体不锈钢
2.0~2.1 1.9~2.0
几为材料的屈服强度和抗拉强度的比值,即σs/σb。 比值σs/σb对材料成型加工极为重要, 较小的σs/σb值几乎 对所有冲压成型都是有利的,也可以说屈强比小的材料塑性较 高,屈强比高表示材料的抗变形能力较强,不易发生塑性变形。 当然对于可靠性而言, 钢材的屈服强度就应该以接近钢材的拉 伸强度为佳,也就是说 屈强比大的钢材用来做结构零件可靠性 高。
二、金属在冲击载荷下的力学性能
机件在冲击载荷下的失效类型和静 载荷一样,也表现为过量弹性变形、 过量塑性变形和断裂。 在静载荷下,塑性变形比较均匀地 分布在各个晶粒中,而在冲击载荷 下,塑性变形则比较集中在某些局 部区域,这反映了塑性变形是极不 均匀的(图3-1)。
冲击韧性
冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力, 用冲击吸收功Ak表示。反应材料的韧性。
(5)弹性模量E
工程上为材料的刚度,表征金属材料对弹性变形的抗力,其值愈大,则在相同 应力下产生的弹性变形就愈小。当应变为一个单位时,弹性模量即等于弹性 应力,即弹性模量是产生100%弹性变形所需的应力。
金属材料 铁 铜 铝
铁及低碳钢
E/105MPa 2.17 1.25 0.72 2.0
铸铁
1.7~1.9
1.碳素结构钢:用于制造各种工程构件和机械构件; 2.碳素工具钢:用于各种工具。 牌号则是体现其力学性能,Q+数字表示,其中“Q”为屈服点“屈”字的 汉语拼音字首,数字表示屈服点数值,例如Q275表示屈服点为275MPa。若牌号后 面标注字母A、B、C、D,则表示钢材质量等级不同,含S、P的量依次降低,钢材 质量依次提高。若在牌号后面标注字母“F”则为沸腾钢,标注“b”为半镇静钢, 不标注“F,’或“b”者为镇静钢。例如Q235-A·F表示屈服点为235MPa的A级沸 腾钢,Q235-C表示屈服点为235MPa的C级镇静钢。 Q195、Q215、Q235钢碳的质量分数低,焊接性能好,塑性、韧性好,有 一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构和制造普通 铆钉、螺钉、螺母等零件。

金属材料的力学性能及其应用

金属材料的力学性能及其应用

金属材料的力学性能及其应用金属材料是广泛应用于日常生活和工业生产中的一类材料,其力学性能是决定其应用价值的重要因素之一。

力学性能包括材料的强度、韧性、硬度和塑性等等,本文将会就这些方面进行探讨,同时介绍金属材料的应用。

一、强度和韧性强度指的是应力下材料的抵抗破坏的能力,通常使用抗拉强度和屈服强度来衡量。

在材料拉伸测试中,如果材料能够承受的最大载荷为F_max,截面积为A,则抗拉强度(σ)定义为F_max/A。

它是材料在接受拉伸的最大力下断裂前所承受的最大应力。

屈服强度是指材料在受到外力下最开始产生明显塑性变形的应力。

这个时候,即使减小应力的大小,金属材料也不会回到初始状态。

金属材料的这种表现就是塑性变形。

屈服强度越高,材料的塑性范围就越小。

因此,一些需要较高塑性特性的应用,如汽车的形变零件和电子设备应用中的焊线等,需要选择具有相对低抗拉强度和高延伸能力的材料。

韧性指的是在断裂前材料能够吸收的最大能量或在破坏时,材料要做的工作量。

通过强度与韧性之间的平衡,可以选择适合不同应用的材料。

抗拉强度高的材料抗弯曲和弯曲方面的性能较好,但在受力突然增加的情况下,材料会很快破裂。

因此,强度指标并不是衡量材料总体特性的唯一标准。

二、硬度和塑性硬度是金属材料特有的一种力学性能,度量的是材料的耐磨性和抗刮伤能力。

硬度可以用多种方法进行测量,如布氏硬度、洛氏硬度、维氏硬度和划痕硬度等。

硬度一般用于表面硬化材料、塑性材料的选择,金属材料的等硬度加工等领域。

塑性是指材料在受力时能够发生的形变量能达到最大值的性质。

塑性范围越大,材料可以承受更大的变形而不破坏。

塑性将直接影响材料的应用选择。

高塑性材料通常被用于需要抵御冲击和其他非常规性力的应用。

三、应用金属材料广泛应用于制造业,如航空航天、汽车、电子和建筑等。

其中航空航天及汽车应用中,特别是高温区域,需要具有相对高强度的材料,如钛合金、高温合金和铝锂合金。

铝合金在航空器的蒙皮、框架、壳体、发动机结构、发动机支架和输油管道中也有很广泛的应用。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

金属材料力学性能

金属材料力学性能

金属材料力学性能
金属材料是一种具有良好力学性能的材料,其力学性能主要包括力学强度、变形能力、抗疲劳性和韧性等。

首先,金属材料具有较高的力学强度。

力学强度是指金属材料在外力作用下能够承受的最大应力。

金属材料的力学强度高,意味着它具有较高的抗拉、抗压和抗弯能力。

这使得金属材料广泛应用于工程结构中,如建筑、桥梁和航空器等。

其次,金属材料具有良好的变形能力。

变形能力是指金属材料在外力作用下发生塑性变形的能力。

金属材料可通过冷加工、热加工和轧制等工艺方法来实现变形,使其形状得到改变。

这种良好的变形能力使金属材料具有可塑性,适用于制造各种形状的工件。

金属材料还具有较好的抗疲劳性能。

抗疲劳性是指金属材料在频繁循环加载下的抗损伤能力。

由于外界应力的作用,金属材料会发生变形和损伤,如果应力循环次数过多,将导致断裂。

但金属材料通常具有较高的抗疲劳极限,可以承受较大的应力循环次数,从而延长其使用寿命。

最后,金属材料具有良好的韧性。

韧性是指材料在受力下发生断裂前能够发生较大的塑性变形。

金属材料的韧性意味着它在受到外界冲击或载荷时能够吸收能量,防止突然断裂。

这种优良的韧性使得金属材料广泛应用于制造安全保护装备,如安全带和防护网等。

总的来说,金属材料具有较高的力学强度、较好的变形能力、良好的抗疲劳性和韧性。

这些力学性能使得金属材料成为广泛使用的工程材料,并在国民经济各个领域发挥着重要作用。

金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。

金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。

金属材料的力学性能是指在外载荷作用下其抵抗或的能力。

金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(6s):表示屈服强度,指材料在扎搓过程中,材料所受到形变达至某一临界值时,载荷不再减少变形却稳步减少或产生0.2%l。

时形变值,单位用牛顿/毫米
2(n/mm2)则表示。

3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(n/mm2)表示。

如铝锂合金抗拉强度可达.5mpa
4、延伸率(δ):材料在弯曲脱落后,总弯曲与完整标距长度的百分比。

工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把
δ≤5%的`材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。

5、断面收缩率(ψ)材料在弯曲脱落后、断面最小增大面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(hbs、hbw)和洛氏硬度(hra、hrb、hrc)。

7、冲击韧性(ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(j/cm2)。

金属材料常用力学性能名称、符号及含义

金属材料常用力学性能名称、符号及含义
冲击吸收能量K
J
使用摆锤冲击试验机冲断试样所需的能量(该能量已经对摩擦损失做了修正),称为冲击吸收能量K。用字母V或U表示缺口几何形状,即KV或KU,用数字2或8以下标形式表示冲击刀刃半径,如KV2、KU8
有N次循环的应力幅值;σN是在N次循环的疲劳强度,σN是一个特定应力比的应力幅值,在此种情况下,试样具有N次循环的寿命。应力比是最小应力与最大应力的代数比值
疲劳极限σD
MPa
疲劳极限σD是一个应力幅的值,在这个值下,试样在给定概率时被希望可以进行无限次的应力循环。国家标准指出,某些材料没有疲劳极限;其他的材料在一定的环境下会显示出疲劳强度
洛氏硬度HRA、HRB、HRC、HRD、HRE、HRF、HRG、HRH、HRK、HRN、HRT
量纲一
采用金刚石圆锥体或一定直径的淬火钢球作为压头,压入金属材料表面,取其压痕深度计算确定硬度的大小,这种方法测量的硬度为洛氏硬度。GB/T230.1-2009《金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)》中规定了
A、B、C、D、E、F、G、H、K、N、T等标尺,以及相应的硬度符号、压头类型、总试验力等。由于压痕较浅,工件表面损伤小,适于批量、成品件及半成品件的硬度检验,对于晶粒粗大且组织不均的零件不宜采用。采用不同压头和试验力,洛氏硬度可以用于较硬或较软的材料,使用范围较广。
维氏硬度HV
维氏硬度试验是用一个相对面夹角为136°的正四棱锥体金刚石压头,以规定的试验力(49.03~980.7N)压入试样表面,经规定时间后卸除试验力,以其压痕表面积除试验力所得的商,即为维氏硬度值维氏硬度试验法适用于测量面积较小、硬度值较高的试样和零件的硬度,各种表面处理后
屈服强度、上屈服强度ReH、下屈服强度ReL

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。

通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。

2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。

常用的评价指标有伸长率、断面收缩率和断裂延伸率。

3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。

常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性:金属材料的韧性是指其抵抗断裂的能力。

韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。

5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。

塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。

6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。

疲劳性能的评价指标包括疲劳寿命和疲劳极限等。

不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。

因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。

材料力学性能符号及含义

材料力学性能符号及含义

材料力学性能符号及含义
材料力学性能符号及意义
1:比例极限σ
P:材料在不偏离应力与应变正比关系(虎克定律)条件下所能承受的最大应力。

2:弹性极限σ
e:材料在受载过程中未产生塑性变形的最大应力。

3:拉伸弹性模量E:拉伸实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。

4:剪切弹性模量G:扭转实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。

5:屈服强度σ0.2:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。

对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度.
6:抗拉强度σb:材料在拉伸断裂前所能够承受的最大拉应力。

7:疲劳极限σ-1:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力叫疲劳极限。

8:疲劳强度σN:在规定的循环应力幅值和大量重复次数下,材料所能承受的最大交变应力
9:伸长率δ5:指金属材料受外力(拉力)作用断裂时,试棒伸长的长度与原来长度的百分比,伸长率按试棒长度的不同分为:短试棒求得的伸长率,代号为δ5,试棒的标距等于5倍直径长试棒求得的伸长率
10:断面收缩率ψ:材料受拉力断裂时断面缩小,断面缩小的面积与原面积之比值叫断面收缩率,以ψ表示。

单位为%。

11:冲击韧度αk:冲击韧度是材料抵抗冲击载荷的能力。

一般用αk表示,单位为J/M。

金属材料的力学性能(一)

金属材料的力学性能(一)

(2)拉伸机
万能材料试验机
a) WE系列液压式 b) WDW系列电子式
(3)拉伸试验
拉伸试验视频1
(a)试样
(b)伸长
(c)产生缩颈
(d)断裂
拉 伸 试 样 的 颈 缩 现 象
拉伸试验视频1回顾
2、低碳钢拉伸曲线
OA' 弹性变形阶段 A'ABC 屈服阶段 CD 强化阶段 DE 缩颈阶段
脆性材料的拉伸曲线(与低碳钢试样相对比)
金属材料的力学性能又称为机械性能,是指金属
在外力作用下所反映出来的性能。 具体的说就是金属材料在受到拉伸、压缩、弯曲、 扭转、冲击、交变应力时,对变形与断裂的抵抗能力。

材料在外力的作用下将发生形状和尺寸变化,称为 变形。


外力去处后能够恢复的变形称为弹性变形。
外力去处后不能恢复的变形称为塑性变形。
Fs s ( MPa) Ao
式中Fs——试样产 生屈服时所承受的最大 载荷,N ; Ao——试样原始截 面积,mm2。

对于高碳淬火钢、铸铁等材料,在拉伸试验中没 有明显的屈服现象,无法确定其屈服强度。 国标GB228-2002规定,一般规定以试样产生 0.2%塑性变形时的应力作为该材料的屈服强度, 称为条件屈服强度,用σr0.2表示。
强度 塑性 硬度 韧性 疲劳强度
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么?
强度是金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。 强度指标主要有屈服极限和强度极限。
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么? 3、设计零件主要依据哪种强度指标?
练一练:举几个日常生活中弹性变形和塑性变形的例子

金属材料力学性能

金属材料力学性能

常见的金属材料力学性能一. 金属材料相关概念任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。

这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。

诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。

1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。

一般用单位面积所承受的作用力表示,符号为σ,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。

抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。

对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。

1.2 刚度刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。

对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。

1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表材料牌号屈服强度σs/MPa 抗拉强度σb/MPa45 350-550 550-700SKD61 490-685 685-985Cr12MoV 450-650 650-970P20350-550 550-860 S45C/S50C 350-560 560-750Unimax 350-580 580-885SKH51 485-680 680-960注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。

二.材料的失效与许用应力通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu表示。

对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。

为了机械零件使用的安全性,对于机械构件要有足够的强度储备。

金属的力学性能

金属的力学性能

金属的力学性能
金属的力学性能是指金属材料在受力下的变形能力和承受能力。

主要包括以下几个方面:
1. 强度:金属的抗拉强度是指材料在拉伸试验中能承受的最大拉应力,抗压强度则是材料在压缩试验中能承受的最大压应力。

强度越高,说明金属材料越能承受拉伸或压缩载荷。

2. 延伸性:金属的延伸性是指材料在受拉力作用下能够发生可逆塑性变形的能力,通常用延伸率来表示。

高延伸性意味着材料能够在受力下进行较大的可逆形变,适用于需要抵抗冲击或振动载荷的应用。

3. 硬度:金属的硬度是指材料抵抗划伤或穿刺的能力,通常用洛氏硬度或布氏硬度来表示。

高硬度的金属能够抵抗划伤或穿刺,适用于需要较高耐磨性的应用。

4. 韧性:金属的韧性是指材料在断裂前能够吸收能量的能力,通常通过断裂韧性、冲击韧性或静态韧性来衡量。

高韧性的金属能够在受力下吸收更多的能量,抵抗断裂或破损。

5. 弹性模量:金属的弹性模量是指材料在受力下能够恢复原状的能力,也叫做弹性刚度。

高弹性模量的金属具有较大的刚度和弹性,适用于需要较好的回弹性能的应用。

以上是金属的一些基本的力学性能指标,不同金属材料具有不同的性能特点,可以根据具体需求选择合适的金属材料。

金属材料的力学性能与应用

金属材料的力学性能与应用

金属材料的力学性能与应用金属材料是工业生产和生活中广泛使用的一类材料。

它们具有许多优良的物理、化学和力学特性,如高强度、韧性、导电性和导热性等,因此受到了广泛的关注和应用。

而金属材料的力学性能也是其应用的重要方面之一。

在本文中,将介绍金属材料的力学性能与应用方面的内容。

一、金属材料的力学性能1. 弹性模量弹性模量是衡量材料抵抗形变的能力的物理量。

对于金属材料来说,弹性模量可以反映其刚度和弹性力量。

与其他材料相比,金属材料通常具有较高的弹性模量,这也是它们具有极高的强度和刚度的原因之一。

2. 屈服强度屈服强度是指材料在受力时出现塑性变形的临界点,即开始改变形状的应力值。

对于金属材料来说,屈服强度是其材料强度的重要指标之一。

一般来说,同一种金属材料的屈服强度会因为制备和温度等因素而有所差异。

3. 延展性和脆性金属材料的延展性和脆性也是其力学性能的重要指标。

延展性是指材料在受力时能够发生塑性变形之前所允许的最大形变量。

而脆性则是指金属材料受到应力时的断裂倾向。

在实际应用中,延展性高、脆性低的金属材料常常被用于材料弯曲和拉伸等需要高度变形的应用中。

4. 硬度硬度是反映金属材料在表面受损之前所能抵抗划痕、压痕和穿刺的程度。

对于需要承受较高应力的金属材料来说,硬度往往是其要求之一。

硬度值可以通过多种方式来确定,如钻头试验、Vickers硬度测试等。

二、金属材料的应用1. 制造业在制造业中,金属材料的应用非常广泛。

例如,汽车制造领域的车体和发动机部件常常采用高强度、高硬度的铝合金和钢材等金属材料。

电子设备的机器外壳、接口和散热器等也需要采用金属材料。

此外,飞机、船舶、火车等交通运输领域中,许多结构件也用金属材料制成。

2. 倍增和火器在军事领域,金属材料的应用也非常广泛。

例如,汽车补给车和坦克等军事车辆,大多数结构件都是金属材料制成的。

同样,步枪、手枪、火箭筒等武器的弹片材料也是金属材料。

3. 城市建设在城市建设中,金属材料也有着重要的应用。

金属材料的基础知识

金属材料的基础知识

抗拉强度: 在拉断前试样所能承受的最大应力 为该试样的抗拉强度,用符号σb 表示,计算公式为。
σb=
Fb So
二、 塑性
➢概念
塑性是指金属材料在外力作用下,产生永久性变形而不断裂的能 力。
➢ 衡量指标
伸长率:试样被拉断后,标距的伸长量与原始标距的百分比 称为伸长率,用符号δ表示。计算公式为:
δ= l1 l0 ×100% l0
δ ψ
性能指标
名称
抗拉强度 屈服点 规定残余伸长应力
伸长率 断面收缩率
硬度 冲击韧性
HBS(HBW) HRC HRB HRA 标尺洛氏硬度值 A标尺洛氏硬度值 维氏硬度值
冲击韧度
疲劳强度 σ-1
疲劳极限
单位 MPa MPa MPa
J/cm2 MPa
含义
试样拉断前所能承受的最大应力 拉伸过程中,力不增加(保持恒定)试 样仍能继续伸长时的应力 规定残余伸长率达0.2%时的应力
部永久性积累损伤经一定循环次数后产生裂纹或突发完全断 裂的过程称为金属疲劳。
五、疲劳强度
➢疲劳破坏可分为微观裂纹、宏 观裂纹和瞬时断裂三 个过程。
五、疲劳强度
➢疲劳曲线 :疲劳曲线是指交变应力σ与循 环次数N的关系曲线,如下图所示。
常用金属材料的力学性能指标及其含义
力学性能
符号
强度 塑性
σb σs σ0.2
0.1
e 0.2
一、强度—拉伸曲线
1.弹性变形阶段 2.屈服阶段 3.强化阶段 4.缩颈阶段
低碳钢的应力-应变曲线
一、强度—衡量指标
屈服点: 用符号σs表示,计算公式为
σs=
Fs So
式中:Fb——试样断裂前所承受的最大拉力, 单位为N;

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料在现代工业生产中广泛应用,原因是因为金属材料的机械性能优异,其力学性能在诸多领域都是重要的参考指标。

一、强度金属材料中最为重要的力学性能莫过于强度。

强度是指材料在受到外力时抵抗变形和破坏的能力。

通俗地说,就是指物质能够承受多大的外部负荷。

强度分为屈服强度、抗拉强度和抗压强度。

其中屈服强度是指材料在受到一定压力后开始变形的压力值,抗拉强度是指材料在被拉伸时承受的最大拉力,抗压强度则是指材料在被挤压时所能承受的最大压力。

三者的单位均为N/mm2(纳牛/平方毫米)。

二、延展性金属材料的延展性代表了其受力后能够发生多大的形变,并且保持强大的耐久性。

在加工过程中,延展性的指标非常重要。

延展性又分为材料的伸长率和冷弯性。

伸长率是指材料在拉伸过程中能够延长的量,通常以百分比表示;冷弯性则是指材料在被弯曲或者压缩后仍然能够恢复成原来的形状,并且该过程不会破坏材料的结构。

三、弹性模量弹性模量是金属材料的另一个重要指标,是指材料在受到外来力量后,变形保持弹性状态的能力。

弹性模量越高,材料的抗弯性和抗扭性就越高,同时在结构加工方面也更加有利。

四、硬度硬度是金属材料的固有属性,它描述了材料的抗划痕和抗磨损能力。

硬度指标通常以维氏硬度(HV)表示,维氏硬度是指在标准试件被标准钢球压铸后,钢球和试件之间的形变深度。

五、疲劳强度金属材料的疲劳强度是个复杂的性质。

它是指材料在受到重复荷载后能够承受的最大荷载。

在使用时,金属材料常常会遭受到来自不同方向上的变化载荷,如果材料的疲劳强度不足,则容易出现疲劳破坏的现象。

总体而言,金属材料的力学性能是不可或缺的,它们的强度、延展性、弹性模量、硬度和疲劳强度可为工程师们提供参考指标,帮助他们更好地设计制造各种结构。

在材料科学和工程的领域中,力学性能是研究和开发新材料的基础,因此它对于推动现代工艺和工程技术的发展至关重要。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能一、概述1、金属材料所受的载荷主要有:静载荷、冲击载荷、交变载荷2、金属材料的变形主要有:弹性变形(可恢复)、塑性变形(永久变形)3、弹性金属材料受外力作用时产生变形,当外力去掉后能回复其原来形状的性能,叫做弹性。

4、弹性变形随着外力消失而消失的变形,叫做弹性变形。

5、塑性金属材料在外力作用下,产生永久变形而不致引起破坏的性能叫做塑性。

6、塑性变形在外力消失后留下来的这部分不可恢复的变形,叫做塑性变形。

7、刚性:金属材料在受力时抵抗弹性变形的能力。

二、力学性能1、强度定义:材料在外力(载荷)作用下抵抗变形和断裂的能力。

材料单位面积所受的载荷成为应力。

屈服强度R el:在拉伸过程中,材料所受应力达到某一临界值时,载荷不在增加而变形却继续增加或产生大应力值。

单位N/mm²(条件屈服强度σ0.2)有些材料在拉伸图中没有明显的水平阶段。

为了衡量这些材料的屈服特性,规定产生永久残余变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2抗拉强度R m:材料在拉断前承受大最大应力值。

2、塑性定义:材料断裂前产生永久变形的能力断后伸长率A断面收缩率Z3、硬度定义:材料抵抗其他硬物压入的能力。

硬度测试方法:A、布式硬度测定法(HBW)HBS——压头为钢球,用于测量<450HBS HBW——压头为硬质合金,用于测量>450HBW(<650HBW)特点:布氏硬度因压痕面积较大,HB值的代表性较全面,而且实验数据的重复性也好。

由于淬火钢球本身的变形问题,不能试验太硬的材料,一般测HB450以下的材料;硬质合金可测HB450以上的材料。

由于压痕较大,不能进行成品检验。

通常用于测定铸铁、有色金属、低合金结构钢等材料的硬度。

B、洛氏硬度测定法(HRA、HRB HRC)特点:洛氏硬度HR可以用于硬度很高的材料,而且压痕很小,几乎不损伤工件表面,故在钢件热处理质量检查中应用最多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料力学性能代号含义
名称代号单位含义
抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力.
抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力
屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服.
屈服时的最小应力称为屈服点和屈服极限.
屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服.
对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度.
弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示.
比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限.
σp与σc两数值很接近,一般常互相通用.
弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.
E=σ/ε ε——试样纵向线应变.
切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.
G=τ/γ γ——试样切应变.
泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值.
μ=|ε/ε'|
ε'= -με, ε'——试样横向线应变.
疲劳极限σ-1MPa 或 N/mm^2材料试样在对称弯曲应力作用下, 经受一定的应力循环数数 N 而仍不发生断裂时所能承受的最大应力.
对钢来说,如应力循环 N 达 10^6-10^7仍不发生断裂时,则可认为随循环次数的增加,将不再发生疲劳断裂,因此常采用 N=(0.5~1)x10^7为基数,确定钢的疲劳极限.
蠕变极限σ(1/10^4),
σ(1/10^5),
σ(0.2/200)...
MPa 或 N/mm^2
在一定温度下(通常在高温下)和恒定载荷作用下,
材料在规定的时间(使用期间)内的蠕变变量或蠕
变速度不超过某一规定值的最大应力.
符号右下角的分数中, 分子表示规定的变形量的
百分数,分母表示产生该变形量所经历的时间(小
时).
σ(1/10^4) 表示在10000小时产生 1% 变形量的
应力,有时在符号的右上角标明试验温度.
DVM蠕变极限DVM MPa 或 N/mm^2
加载后观测25-35小时, 可允许的伸长速度为
10x10^(-14)%/小时的应力.
持久极限σ(b/10^4),
σ(b/10^5),
σ(b/200)
MPa 或 N/mm^2
在一定温度下(通常在高温下), 材料在恒定载荷
作用时, 材料在一定时间(使用期间)内材料破坏
时的应力.
符号右下角的分数中,分母表示时间(小时).有时
在符号的右上角标明试验温度.
伸长率(延伸率)δ,δ5,δ10%
δ 材料试样被拉断后, 标距长度的增加量与
原标距长度之百分比.
δ5 试样的标距等于 5 倍直径时的伸长率.
δ10 试样的标距等于 10 倍直径时的伸长率.
断面收缩率ψ%材料试样在拉断后, 其断裂处横截面积的缩减量与原横截面积的百分比.
收缩率和伸长率均用来表示材料塑料的指标
冲击韧性值αku ,或 αkv J/cm^2金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验, 试验结果以冲断试样上所消耗的功( Aku ,或 Akv)与断口处横截面积(F)之比来衡量.
冲击功Aku ,或 Akv J 金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验. Aku,或Akv是冲断试样所消耗的功.
布氏硬度HB( HBS 或
HBW )
kgf/mm^2(一般不标
注)
硬度是指金属抵抗硬的物体压入其表面的能力.
用淬硬小钢球或硬质合金球压入金属表面, 保持
一定时间待变形稳定后卸载, 以其压痕面积除加
加在钢球上的载荷,所得之商,即为金属的布氏硬
度数值.
洛氏硬度C 级HRC
用1471N 载荷, 将顶角为 120°的圆锥形金刚石
的压头,压入金属表面,取其压痕的深度来计算硬
度的大小,即为金属的HRC硬度.
HRC用来测量HB=230-700的金属材料,主要用于测
定淬火钢、调质钢等较硬的金属材料(GB230-83)
洛氏硬度A 级HRA
用 588.4N 载荷和顶角为 120°的圆锥形金刚石
的压头所测定出来的硬度, 一般用来测定硬度很
高或硬而薄的金属材料, 如碳化物、硬质合金或
表面淬火层,HRA用来测量HB>700金属材料.
洛氏硬度B 级HRB
用980.7N 载荷和直径为 1.59mm(1/16in)的淬硬
钢球所测得的硬度.主要用于测定HB=60-230这一
类较软的金属材料,如软钢、退火钢、正火钢、
铜、钼等有色金属
表面洛氏硬度HRN,HRT
试验原理同前面洛氏硬度, 不同的是试验载荷较
轻,HRN的压头是顶角为 120°金刚石圆锥体,HRT
的压头是直径为1.5875mm 的淬硬钢球.二者的载
荷均为15kgf、30kgf 和 45kgf.二者的标注分别
为HRN15、HRN30、HRN45和HRT15、HRT30、
HRT45.
表面洛氏硬度只适用于钢材表面层硬度, 以及较
薄、较小试件的硬度测定,数值较准确(见GB1818
-79)
HRN=100-100t
HRT=100-100t
t——表示主载荷与初载荷两次加载的压痕深度
的差值,mm.
维氏硬度HV N/mm^2用49.03-980.7N以内的载荷,将顶角为136°的金
刚石四方角锥体压头压入金属的表面, 以其压痕面积除载荷所得之商,即为维氏硬度值.
HV 只适用测定很薄(0.3-0.5mm)的金属材料、金属薄镀层或化学热处理后的表面层硬度(如镀铬、渗碳、氮化、碳氮共渗层等)(见GB4340-84)
HV=2P/d^2.sin(136/2)
=0.1891P/d^2
P——压头上的负荷,N
d——压痕对角线长度,mm
肖氏硬度HS 以一定重量的冲头, 从一定的高度落于被测试样的表面,以其冲头的回跳高度表示硬度的度量.
适用于测定表面光滑的一些精密量具或不易搬动的大型机件.。

相关文档
最新文档