01-土壤重金属污染及生态风险评价

合集下载

土壤重金属污染评价标准

土壤重金属污染评价标准

土壤重金属污染评价标准
土壤重金属污染是指土壤中镉、铬、铜、镍、铅、锌等金属元素超出环境容许值,对土壤生态系统和人类健康造成危害的现象。

为了科学评价土壤重金属污染程度,制定了一系列的评价标准,以便对土壤进行监测、治理和修复。

首先,土壤重金属污染评价标准主要包括土壤重金属背景值、土壤重金属污染
限制值和土壤重金属潜在生态风险评价标准。

土壤重金属背景值是指在没有人为干扰的情况下,土壤中重金属元素的自然含量,通常以地球化学背景值为参考标准。

土壤重金属污染限制值是指土壤中重金属元素的最大容许含量,超过该值则被认定为受到污染。

土壤重金属潜在生态风险评价标准则是对土壤重金属污染对生态环境造成的潜在危害进行评价,包括生态毒性、生物有效性、生态风险等指标。

其次,土壤重金属污染评价标准的制定是基于土壤重金属的来源、迁移转化规律、植物吸收规律、土壤生物地球化学循环等科学原理,并结合土壤环境质量标准、土壤环境保护政策等相关法律法规进行制定的。

评价标准的科学性和准确性对于准确评价土壤重金属污染程度、制定合理的治理措施具有重要意义。

此外,土壤重金属污染评价标准的应用范围包括土壤环境监测、土壤环境质量
评价、土壤环境修复等方面。

评价标准的合理性和实用性对于科学监测土壤重金属污染、保护土壤生态环境具有重要意义。

综上所述,土壤重金属污染评价标准是科学评价土壤重金属污染程度、制定治
理措施的重要依据,其科学性和实用性对于保护土壤生态环境、维护人类健康具有重要意义。

我们应当加强对土壤重金属污染评价标准的研究和应用,为建设美丽中国、健康中国作出积极贡献。

重金属污染生态风险评价的研究方法和模型

重金属污染生态风险评价的研究方法和模型

重金属污染生态风险评价的研究方法和模型随着社会经济的快速发展和工业化进程的加速,各种化学污染物不断释放到环境中,给环境和人类健康带来了严重的危害。

其中,重金属污染是一种重要的环境污染,肆虐于陆地和水生环境中。

重金属污染对生态环境造成的破坏不可逆转,普及重金属污染的生态风险评价是高效、合理地控制重金属污染的基础。

本文将介绍重金属污染生态风险评价的研究方法和模型。

重金属污染的生态风险重金属污染生态风险是指重金属污染物在自然界中对生态系统、生物体健康、生物种群和生态系统功能稳定性的威胁程度。

重金属污染的种类、来源、环境风险、环境质量标准及其评价方法已经被广泛研究。

重金属污染的生态风险评价是应对重金属污染的一种重要手段。

它可以定量的评估重金属污染对生态系统的危害,为制定控制重金属污染的方案和措施提供科学依据。

重金属污染的生态风险评价方法对于重金属污染的生态风险评价,需要开展多个步骤的工作:1.确定评价目标:重金属污染的生态风险评估的首要目标是明确环境中重金属污染特点,评价重金属对生态系统,包括土壤、植物、动物等生态环境的影响及其风险水平。

因此,需要确定评价目标和受体及评价分析的范围。

2.质量测定:质量检测是测定污染物浓度及其空间分布的关键步骤。

对于重金属污染物,采样时需注意区分可湿润和不可湿润区域。

在重金属污染评价中,通常采用直接分析的方法,大多数情况下采用烘干样品后浸出、水平破碎等方法提取样品中的重金属元素。

3.生态学效应的评估:通过调查受影响区域的物种丰度、物种多样性和生物量等生态因素,以及生态障碍的程度、生态学影响的时间长度、受影响区域的生物量等因素来评估受影响区域的生态风险。

4.风险评价: 根据实测值、经验模型计算重金属污染的风险值,对于风险水平过高的区域或点位,需要采取有效的控制措施,实现生态环境的协调发展。

重金属污染生态风险评价模型重金属污染生态风险评价可采用专家判断法、物质平衡法、物质迁移模型、生态毒理学模型等方法进行评价,其中,生态毒理学模型由于其独特的实验和定量分析方法被广泛应用。

土壤重金属的植物毒性及生态风险评价报告

土壤重金属的植物毒性及生态风险评价报告

土壤重金属的植物毒性及生态风险评价报告本报告对土壤重金属的植物毒性及生态风险进行了评价。

通过对相关文献的综合分析,确定了土壤重金属对植物生长发育的毒性效应及其对生态系统的潜在风险。

研究结果表明,土壤重金属可以对植物产生毒害作用,并对生态系统的稳定性和生物多样性产生负面影响。

因此,应采取措施来减轻土壤重金属的毒性效应,并确保生态系统的可持续发展。

1. 引言土壤中的重金属污染已成为全球环境问题之一。

重金属的积累在植物体内可能导致毒害作用,对生态系统稳定性产生不良影响。

本报告旨在评估土壤重金属的植物毒性及其对生态系统的生态风险。

2. 方法与材料本研究采用了文献综合分析的方法,收集了大量相关文献,并对相关数据进行了统计和分析。

3. 结果与讨论研究发现,土壤中的重金属可以通过植物根系吸收,进而积累在植物体内。

过量的重金属积累会干扰植物的生长发育,表现为生理和形态变化。

此外,重金属还会影响植物的光合作用和呼吸作用,导致植物的养分吸收和代谢受到抑制。

4. 生态风险评价土壤重金属的积累不仅对植物本身产生毒害作用,还会对生态系统稳定性和生物多样性产生不良影响。

重金属可能通过植物的食物链传递到高级消费者,导致生物富集,对生态系统形成潜在风险。

5. 潜在解决方案为减轻土壤重金属的毒害作用,我们建议在污染农田中进行植物修复和土壤修复。

植物修复可以利用植物的吸收、转移和固定等功能来减少土壤中重金属的含量。

土壤修复可以采用物理、化学和生物技术来降低土壤重金属的有效性和生物可利用性。

6. 结论本报告评估了土壤重金属对植物和生态系统的毒性效应,揭示了其潜在的生态风险。

为了保护生态系统的稳定性和生物多样性,必须采取措施减轻土壤重金属的毒害作用,并进行植物和土壤的修复。

7. 植物毒性评价土壤重金属对植物的毒性效应是利用植物生长指标、生理特征和生化变化等因素来评估的。

常用的评价指标包括植物生长状况、根系形态、叶片受损情况、叶绿素含量、抗氧化酶活性等。

土壤重金属污染特征、源解析与生态健康风险评价

土壤重金属污染特征、源解析与生态健康风险评价

土壤重金属污染特征、源解析与生态健康风险评价随着人类经济社会的发展,土壤重金属污染问题日益严重,对人类健康和生态环境带来了极大的威胁。

因此,研究土壤重金属污染特征、源解析以及生态健康风险评价具有重要的理论和实践意义。

一、土壤重金属污染特征土壤重金属污染的特性主要包括以下方面:1. 长期积累。

重金属具有不易降解,长时间残留在土壤中的特点,导致污染问题不易解决。

2. 空间分布不均。

土壤重金属污染具有空间分布不均的特点,不同区域的重金属含量存在明显差异。

3. 土壤pH值的影响。

土壤pH值对于重金属的迁移和转化具有重要的影响,不同pH值下重金属的生物有效性也有所不同。

4. 生物累积。

含有重金属的土壤会被植物吸收并进入食物链,从而引起生物累积和增长。

5. 健康风险。

长期暴露于含有重金属的土壤中,会对人类健康产生不良影响。

二、土壤重金属污染源解析土壤重金属污染的主要来源包括自然源和人为源两种类型。

1. 自然源。

包括岩石、土壤本身、化学物质的化学反应和气候变化等因素,这些因素可能导致一定程度的土壤重金属含量升高。

2. 人为源。

包括工业污染、城市生活污染、农业和畜牧业污染等,这些活动会释放大量的重金属进入土壤,从而导致土壤重金属含量明显增加。

三、生态健康风险评价对于评估土壤重金属污染对生态环境和人类健康的风险,主要有三个步骤:1. 确定重金属类型和含量。

通过采样和分析土壤样品中的重金属类型和含量,评估污染程度。

2. 评估生态风险。

确定重金属对生态环境的影响,主要包括植物生长、土壤呼吸、土壤微生物等方面。

3. 评估健康风险。

确定重金属对人类健康的影响,并制定相应的风险阈值,提出风险管理和预防措施。

四、结论土壤重金属污染问题是全球范围内的重要环境问题,必须引起社会各界的高度重视。

科学研究土壤重金属污染是解决此问题的关键,通过对土壤重金属污染的特征、来源和生态健康风险评价的深入研究,有助于为相关工作提供科学依据和技术支持。

土壤重金属污染快速现场检测及环境风险评价系统

土壤重金属污染快速现场检测及环境风险评价系统

土壤重金属污染快速现场检测及环境风险评价系统
(一)技术名称:
土壤重金属污染快速现场检测及环境风险评价系统
(二)功能与用途:
本技术和设备可以提供农田重金属污染的现场分析、风险评估一体化解决方案,有助于决策者在短时间内形成应急方案。

地震、暴雨引起尾矿库垮塌或化学物质泄漏,导致含高浓度重金属的尾砂或废水扩散到周边农田,甚至通过地表径流和地下水途径威胁居民的饮用水安全。

灾区工业园区有毒有害物质泄漏对环境和附近居民健康的影响,也需要相应的快速检测和风险评价技术。

(三)技术特点:
污染土壤快速原位检测技术:在60-180秒内同时原位分析20余种污染元素含量,每天可以检测200〜500个样品,比传统的化学方法的分析方法速度和效率至少提高数百倍。

现场绘制污染分布制图和风险评价:采样GPS和GIS技术,在污染现场完成重金属检测后即刻形成污染分布图,并参考土壤环境质量标准,现场完成风险评价,甄别出高风险区域。

污染风险预警和控制方案:根据污染现状和污染源分布特征,提出污染风险预警和次生环境灾害的应急控制方案。

(四)技术来源:
单位名称:中国科学院地理科学与资源研究所
联系地址:北京市安外大屯路甲∏号
联系人:陈同斌,雷梅电子邮箱:,。

重金属污染物的生态风险评价

重金属污染物的生态风险评价

重金属污染物的生态风险评价随着工业和社会的快速发展,环境污染已经成为我们面临的严重问题之一。

其中,重金属污染的问题尤为突出,因为重金属非常难以降解,长期积累会对生态环境以及人类健康产生极大的危害。

因此,对重金属污染物的生态风险评价具有非常重要的意义。

什么是重金属污染?重金属是指相对原子质量较大的金属元素,包括铅、镉、汞、钡、铬、铜、锌、镍等。

由于其特殊的化学性质,重金属在环境中能够长期积累,从而对环境和生态系统造成长期的危害。

重金属污染的来源非常广泛,主要包括工业污染、农业污染和城市污染等。

工业污染:许多工业生产中的金属加工过程,如钢铁、有色金属、电子、化学、制药、印染等,都会排放大量的重金属废水和废气。

农业污染:农田中的重金属污染主要来自于使用含有重金属的农业化肥和有机废弃物,如畜禽粪便。

城市污染:城市生活污染主要来自于汽车尾气、废弃物及废水等。

生态风险评价的意义生态风险评价是一种评估重金属污染对生态环境的影响程度和风险情况的方法。

根据评价结果,可以采取相应的管理和控制措施,以降低重金属污染对生态环境的危害。

生态风险评价主要包括三个步骤:物质流向评价、生物毒性评价和生态环境风险评价。

物质流向评价:对重金属的来源和物质流向进行评估,包括重金属从源头到达环境中的过程、物质在不同环境介质之间的转移和迁移路径,以及人类通过食物链摄入重金属的可能性。

生物毒性评价:在评估重金属的毒性时,必须考虑到其对不同生物的影响。

要评估到不同重金属污染对环境的生态影响,必须进行各种生物毒性实验。

常用的生物毒性实验包括水生生物毒性实验、土壤毒性实验、细胞毒性实验等。

生态环境风险评价:对于不同形式的重金属污染,包括污染程度和持续时间等因素进行评价,以此确定影响生态系统的风险程度。

重金属污染的生态风险评价方法生态风险评价方法分为定性评价和定量评价两类。

定性评价:在评价时,无需数值化计算和统计分析,仅通过主观评估来认定重金属污染物的风险程度。

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价土壤重金属分布特征主要受土壤类型、地质背景和人类活动影响。

一般而言,重金属的分布具有空间和时间上的变异性。

空间上,土壤重金属分布呈现较强的区域差异。

地质背景不同,重金属含量也不同,如铅在夏季较多分布于黄土区,镉在山地较多。

时间上,土壤重金属分布可因气候、土壤属性和人类活动而改变。

土壤重金属的生态风险评价是对土壤中重金属含量对生态环境造成危害的评估。

常用的评价方法有潜在生态风险评价和实际生态风险评价。

潜在生态风险评价是指通过评估重金属含量与生态风险标准之间的关系,预测重金属对生态系统的潜在风险。

实际生态风险评价是指通过实际采集土壤样品,测定重金属含量,并结合生物有效性评价,评估重金属对生态环境的实际风险。

生态风险评价主要通过生态风险指数(ERI)和潜在生态风险指数(P-ERI)来评估。

生态风险指数是通过将土壤重金属含量与环境质量标准进行比较计算得到,可以对土壤中不同重金属对生态环境的影响程度进行量化评估。

潜在生态风险指数是通过将土壤重金属含量与生态风险标准进行比较计算得到,主要用于预测土壤中潜在的生态风险。

基于生态风险评价结果,应采取合理的措施进行重金属污染防控,以减少其对生态环境的危害。

常用的措施包括土壤修复、环境监测和合理利用土壤资源等。

土壤修复是指通过物理、化学和生物等措施降低土壤中重金属含量,恢复土壤的生态功能。

环境监测是指对土壤中重金属的含量和分布进行定期检测,及时了解土壤重金属污染的状况,并采取相应的措施进行防控。

合理利用土壤资源是指在农业生产和城市建设中科学合理地利用土壤,避免重金属的进一步污染。

总之,土壤重金属的分布特征和生态风险评价是保护生态环境和人类健康的重要内容。

通过对土壤中重金属的含量和分布进行评估和监测,及时采取相应的防控措施,可以有效减少重金属污染对生态环境的危害,实现可持续发展。

云南某区典型农田土壤重金属污染和潜在生态风险评价

云南某区典型农田土壤重金属污染和潜在生态风险评价

云南某区典型农田土壤重金属污染和潜在生态风险评价阮彦楠1,2,吕本春1,王志远1,王应学1,王伟1,陈检锋1,尹梅1,陈华1,付利波1∗(1.云南省农业科学院农业环境资源研究所,云南昆明650205;2.昆明学院,云南昆明650214)摘要㊀[目的]了解云南某区典型农田土壤重金属污染情况㊂[方法]通过对云南某区典型重金属污染农田土壤进行取样调查,分析土壤中重金属Cd ㊁As ㊁Pb ㊁Cu ㊁Zn ㊁Cr 和Hg 含量,并采用主成分分析㊁相关性分析㊁单因子污染指数法㊁内梅罗综合污染指数法和潜在生态危害指数法结合GIS 插值来评价土壤重金属污染情况㊁来源和潜在风险㊂[结果]研究区农田土壤中Cd ㊁As ㊁Cu ㊁Zn 和Hg 含量高于云南省土壤背景值,且Cd ㊁As ㊁Cu 含量在不同深度均高于‘土壤环境质量农用地土壤污染风险管控标准(试行)“(GB 15618 2018)中的风险筛选值,部分表层土壤样品中Cd ㊁As ㊁Cu ㊁Zn 含量超标,重金属超标率顺序为Cu>Cd>As>Zn>Pb =Cr =Hg ㊂Cd ㊁Pb 和Cr 在研究区表层土壤中空间分布相似,其含量分布表现为研究区域从东向西逐渐下降㊂As 与Zn 高值区主要分布在研究区的西南部,Cu 含量空间分布呈西北高㊁东南低,而Hg 在土壤中分布不均匀㊂单因子污染指数法和内梅罗综合污染指数法评价结果表明,农田土壤受到Cd ㊁As ㊁Cu 污染,其中Cu 污染程度最为严重且研究区重金属总体水平处于中度污染程度㊂潜在生态危害指数法评价结果表明,Cd 是主要的生态风险因子,以中等生态风险危害为主,当地土壤重金属污染处于轻度潜在生态危害程度㊂主成分分析和相关性分析表明,Pb 和Cr 主要来自成土母质,Cd 以及部分Pb 与Cr 可能来源于污灌,As 和Zn 可能与工业废气排放有关,Cu 可能来自有机肥料,而Hg 可能是由于重金属粉尘的大气沉降导致的㊂[结论]云南某区典型农田土壤存在重金属污染,Cu 污染程度最为严重,但Cd 危害程度最大㊂关键词㊀农田土壤;重金属;来源;污染;潜在生态风险中图分类号㊀X 825㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2023)21-0065-08doi :10.3969/j.issn.0517-6611.2023.21.016㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):Pollution and Potential Ecological Risk Assessment of Heavy Metal in Typical Farmland Soil in a Certain Area of Yunnan Province RUAN Yan-nan 1,2,LÜBen-chun 1,WANG Zhi-yuan 1et al㊀(1.Institute of Agricultural Environment and Resource,Yunnan Academy of Agricultural Sciences,Kunming,Yunnan 650205;2.Kunming University,Kunming,Yunnan 650214)Abstract ㊀[Objective]To understand the heavy metal pollution of typical farmland soil in a certain area of Yunnan Province.[Method]The contents of heavy metals such as Cd,As,Pb,Cu,Zn,Cr and Hg in typical heavy metal contaminated farmland soils in a certain area of Yunnan Province were investigated;the principal component analysis,correlation analysis,individual pollution index,Nemerow comprehensive pollution index and potential ecological hazard index were used in combination with GIS interpolation to evaluate the status,sources and potential risks of heavy metal pollution in soils.[Result]The contents of Cd,As,Cu,Zn and Hg in the farmland soil of the study area were higher than the soil background values of Yunnan Province,and the contents of Cd,As and Cu at different depths were higher than the risk screening values in the Agricultural Land Pollution Risk Control Standard for Soil Environmental Quality (Trial Implementation)(GB 15618-2018).The contents of Cd,As,Cu and Zn in some surface soil samples exceeded the national standard,and the exceeding rate of heavy metals was in the order of Cu >Cd>As>Zn>Pb =Cr =Hg.The spatial distributions of Cd,Pb and Cr in the surface soil of the study area were similar,and their content distri-butions showed that the contents of these metals gradually decreased from east to west in the study area.The high values of As and Zn were mainly distributed in the southwest of the study area,the spatial distribution of Cu content was high in the northwest and low in the southeast,while Hg was unevenly distributed in the soil.The results of single pollution index and Nemerow comprehensive pollution index showed that farmland soil was polluted by Cd,As and Cu,Cu pollution was the most serious and the overall level of heavy metals in the study area was in the moderate degree.Potential ecological risk assessment indicated that Cd was the main ecological risk factor,with medium ecological risk as the main hazard,and the heavy metal pollution in local soil was at a mild potential ecological hazard degree.The principal component analysis and correlation analysis showed that Pb and Cr were mainly from parent materials.Cd and some Pb and Cr might come from sewage irrigation,As and Zn might be related to industrial waste gas emission,Cu might come from organic fertilizer,and Hg might be caused by atmospheric dep-osition of heavy metal dust.[Conclusion]There existed heavy metal pollution in typical farmland soils in a certain area of Yunnan Province,where Cu was the most seriously polluted,but Cd was the most harmful.Key words ㊀Farmland soil;Heavy metal;Source;Pollution;Potential ecological risk基金项目㊀国家绿肥产业技术体系昆明综合试验站项目(CARS -22-Z -14);国家重点研发计划项目(2021YFD1700205);昆明市农业农村局基金项目 种植制度优化与生物综合调控技术模式攻关研究 ㊂作者简介㊀阮彦楠(1999 ),男,云南昆明人,硕士研究生,研究方向:内生菌及重金属生物修复㊂∗通信作者,研究员,从事绿肥产业体系和农田土壤生态研究㊂收稿日期㊀2022-10-27㊀㊀我国首次土壤污染状况调查结果显示,污染土壤的重金属超标率达到16.1%,Cd㊁Cu㊁Hg㊁As㊁Pb㊁Cr 和Zn 等重金属元素均呈现不同程度超标[1]㊂随着过量的重金属进入土壤中,土壤的生产力和粮食安全也随之下降[2]㊂重金属通过食物链在生物体内富集,将不可避免地对人类和生态系统构成威胁[3]㊂据调查,由于采矿活动造成了150万hm 2受污染的荒地,而这些荒地正在以46700hm 2/a 的速度增加[4]㊂目前,随着可耕地面积越来越少,这些污染的农田不断被用于农业生产,农田土壤作为农业生产中不可或缺的部分,在农业生态系统中发挥物质和能量交换的重要作用,探明其重金属污染情况㊁来源和潜在风险对于云南某区农田土壤重金属污染的防治具有重要意义㊂云南某区矿产资源丰富,目前探明的矿产资源主要有Cu㊁Fe㊁Pb 等[5]㊂矿产在开采过程中会产生了大量的尾矿,其中含有一定量的Cd㊁Pb㊁Cu㊁Ni 和Zn 等重金属,这些重金属往往以氧化物和硫化物等有毒物质的形式存在,然后通过风化过程释放到土壤环境中,对矿区周围农田造成严重污染的同时对附近的居民造成潜在的健康风险[6]㊂许多研究也报告了尾矿泄漏而造成的重金属污染事件,如梁雅雅等[7]通安徽农业科学,J.Anhui Agric.Sci.2023,51(21):65-72㊀㊀㊀过对广东省某铅锌尾矿库周边农田土壤重金属污染状况分析发现,部分土壤样品的重金属含量超过土壤环境质量标准二级标准值;Xiao 等[8]对陕西省潼关矿区周边农田土壤分析发现,谷物和蔬菜中的Hg 和Pb 含量超过了食品安全标准;张浩等[9]对洛阳市西南部某铅锌尾矿库山林区㊁生活区㊁农田区表层土壤和农田区8种重金属含量分析发现,农田区Pb㊁Zn㊁Cr㊁Cd 和As 平均含量均高于土壤风险筛选值㊂但目前来说,对于几年前云南某区矿区废水排放进入小江流域对沿岸农田土壤重金属污染的研究还鲜有报道㊂因此,有必要对云南省某区典型农田土壤的重金属污染程度进行评价㊂该研究以云南某区典型农田土壤为研究对象,采用主成分分析㊁相关性分析㊁单因子污染指数法㊁内梅罗综合污染指数法和潜在生态危害指数法结合GIS 插值来评价土壤重金属Cd㊁As㊁Pb㊁Cu㊁Zn㊁Cr 和Hg 污染情况㊁来源和潜在风险,以期为研究区重金属污染农田的安全利用和整治提供科学参考㊂1㊀材料与方法1.1㊀研究区概况㊀研究区位于云南省东北部某区,地处云贵高原边缘,川滇经向构造带与华夏东北构造带结合过渡部位,属于亚热带高原季风气候,年平均气温为14.9ħ,年降水量1000.5mm,降雨主要集中在5 9月㊂目前,当地主要农作物为水稻㊂1.2㊀样品采集㊀为了解农田土壤重金属垂直分布,于2020年6月采集剖面土壤样品,在研究区域内随机选取18个采样点,每个采样点从地面向下垂直挖60cm,并分别从0~20㊁20~40㊁40~60cm 进行采集,共54个土壤样品,采集土壤样品时,为了减少不均匀性和不确定性,对每个采样点采用10m ˑ10m 内 梅花形 布设5个子样点,每个子样点在不同层次采集土壤样品,充分混合后利用四分法选取约1kg 土壤样品,并挑去土壤样品中的石子和植物残体等异物后,装入洁净自封塑料袋内㊂采样点分布见图1㊂图1㊀研究区采样点分布Fig.1㊀Distribution of sampling points in the study area1.3㊀样品处理与分析㊀土壤样品置于阴凉处自然风干后研磨,过20目㊁100目尼龙筛㊂土壤pH 测定时将水㊁土以体积比为2.5ʒ1混合后用pHS -3C 型酸度计测定[8]㊂重金属Cd㊁Pb㊁Cu㊁Zn 和Cr 采用HCl -HNO 3-HClO 4-HF 混合酸消解,消解后样品采用原子吸收分光光度计(AA -6880F /AAC)测定㊂重金属As㊁Hg 采用HCl -HNO 3混合酸消解,使用原子荧光分光光度计(AFS -2100)测定㊂消解的样品每10个土样做一个平行并加入空白样和国家标准样品(GBW07456)进行质量分析控制,质控样测定均值和偏差都在规定要求范围内,平行样测定含量相对偏差均在10%以内[10]㊂为保证精度,试验中所有玻璃器皿均利用10%硝酸浸泡一夜,然后用去离子水清洗干净㊂试验中所用试剂均为优级纯㊂1.4㊀耕地土壤重金属污染评价方法1.4.1㊀单因子污染指数法和内梅罗综合污染指数法㊂单因子污染指数法是以污染物的环境质量标准为基准的一种评价方法,该方法针对单一重金属污染因子进行评价,不能反映多个污染因子导致的整体污染水平[11],表达式如下:P i =C i /S i(1)式中:P i 为i 重金属元素的污染指数;C i 为重金属含量实测值(mg /kg);S i 为污染物i 的评价标准(国家风险筛选标准值),mg /kg㊂P i ɤ1.0时表示样品未受污染,P i >1.0时表示样品受到污染,其P i 值越大说明样品受污染的程度越高㊂当土壤同时被多种重金属污染时,需要将单因子污染指数按一定方法综合运用进行评价㊂内梅罗综合污染指数法就是将单因子污染指数的平均值和最大值归纳到一起进行综合污染评价的方法[12-13],表达式如下:P N =P 2i ave +P 2i max2(2)式中:P N 为综合污染指数;P i max 为土壤重金属元素中污染指数P i 的最大值;P i ave 为土壤重金属元素中污染指数P i 的平均值㊂P N ɤ0.7时土壤样品为清洁,0.7<P N ɤ1.0时土壤样品尚为清洁,1.0<P N ɤ2.0时为轻度污染,2.0<P N ɤ3.0时为中度污染,P N >3.0时为重度污染㊂1.4.2㊀潜在生态危害指数法㊂潜在生态危害指数法是1980年瑞典科学家Hakanson 提出,评价重金属污染程度和潜在生态危害的一种方法[14]㊂这种方法除了考虑重金属的含量之外,还考虑了污染物的类型㊁浓度㊁毒性水平和环境响应[15]㊂采用具有可比的㊁等价指数分级法进行评价,表达式如下:RI = E i = (T i ˑP i )(3)式中:RI 是研究区多种重金属综合潜在生态危害指数;E i 是单一金属元素i 的潜在生态危害系数;T i 是金属元素i 的毒性系数,瑞典科学家Hakanson 制定的标准化重金属毒性系数从小到大依次为Zn(1)<Cr(2)<Cu(5)=Ni(5)=Pb(5)<As(10)<Cd(30)<Hg(40)[14];P i 是金属元素i 的单因子污染指数㊂潜在生态危害指数可分为5个等级,见表1㊂1.4.3㊀评价标准㊂研究区土壤重金属评价标准参考‘土壤环境质量农用地土壤污染风险管控标准(试行)“(GB15618 2018)[16]与云南省土壤背景值[17]㊂1.5㊀数据分析处理㊀利用Microsoft Excel 2010和SPSS 10.0软件对试验数据进行统计分析,采用GIS 插值方法分析重金属污染状况和空间分布定位,同时使用ArcGIS 10.1完成空66㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年间插值图㊂表1㊀重金属潜在生态风险分级标准Table1㊀Classification criteria for potential ecological risk of heavy metals级别Grade E i 污染程度Pollutiondegree RI污染程度Pollutiondegree1E i<40轻度RI<150轻度240ɤE i<80中等150ɤRI<300中等380ɤE i<160较强300ɤRI<600较强4160ɤE i<320很强RIȡ600很强5E iȡ320极强2㊀结果与分析2.1㊀剖面土壤2.1.1㊀剖面土壤重金属含量分析㊂由表2可知,研究区土壤pH随着土壤深度的增加而增加,整体属于碱性土壤㊂重金属Cd㊁As㊁Cu含量在土壤不同深度均高于‘土壤环境质量农用地土壤污染风险管控标准(试行)“(GB15618 2018)中的风险筛选值㊂相比之下,Pb㊁Zn㊁Cr和Hg含量则均未超过风险筛选值,表明重金属Pb㊁Zn㊁Cr和Hg在土壤中不会对食品安全构成威胁㊂而重金属Cd㊁As㊁Cu㊁Zn和Hg含量在不同深度均显著高于云南省土壤背景值㊂在0~20cm的表层土壤中,Cd㊁As㊁Cu㊁Zn和Hg含量分别是土壤背景值的6.09㊁1.71㊁7.79㊁1.89㊁5.78倍;20~40cm的中层土壤中,Cd㊁As㊁Cu㊁Zn和Hg含量分别是土壤背景值的4.82㊁1.62㊁8.12㊁1.76㊁3.55倍;40~60cm的底层土壤中,Cd㊁As㊁Cu㊁Zn和Hg 含量分别是土壤背景值的7.00㊁1.44㊁8.90㊁1.68㊁5.40倍㊂而只有重金属Pb和Cr含量在不同深度均未超过土壤背景值㊂说明重金属Cd㊁As㊁Cu㊁Zn㊁Hg是研究区土壤的主要污染物,而Pb和Cr在不同深度土壤中累积含量较低㊂表2㊀各深度土壤重金属含量Table2㊀Contents of heavy metals in different depths of soil土层深度Soil depthʊcm pH Cd mg/kg As mg/kg Pb mg/kg Cu mg/kg Zn mg/kg Cr mg/kg Hg mg/kg 0~208.22 1.3431.5221.96360.61187.0059.150.347 20~408.31 1.0629.8219.27375.89173.5653.160.213 40~608.35 1.5426.4919.58412.17165.8953.850.324 GB15618 2018筛选值GB15618 2018screening value>7.50.820240100300350 1.0云南省背景值Backgroundvalue of Yunnan Province 0.2218.440.646.398.765.20.062.1.2㊀剖面土壤重金属垂直迁移分布特征㊂由表2可知,除As㊁Zn含量随土壤深度增加而降低,Cu含量随土壤深度的增加而增加,其余重金属Cd㊁Pb㊁Cr和Hg含量随土壤深度增加先降低后升高,说明研究区重金属大部分不仅来源于底层土壤母质,还在表层土壤中富集㊂这与史锐等[18]的研究结果一致,可能是由于中层土壤通透性较好,而深层土壤密度大㊁保水性好的情况下,重金属的垂直分布会出现先降低后升高的趋势㊂但与窦韦强等[19]㊁郑影怡等[20]㊁Mapanda 等[21]通过土壤垂直分布迁移发现Cd㊁Pb㊁Cu等重金属大部分在表层土壤富集的结论不一致,这可能是由于土壤母质和土壤理化性质共同作用下,使得底层土壤重金属含量高㊂研究区重金属As主要富集在土壤表层且随土壤深度增加而降低,在土壤中表现出高迁移能力㊂一般而言,重金属在土壤中表现出高迁移率,其迁移率和到达的深度取决于其总含量和土壤理化性质,如土壤pH㊁黏土含量和土壤有机质含量等[8]㊂而该研究区域中As高迁移能力可能就是由于土壤pH较高的原因㊂2.2㊀表层土壤2.2.1㊀表层土壤重金属含量分析㊂由表3可知,研究区表层土壤重金属含量存在较大差异㊂Cd㊁As㊁Pb㊁Cu㊁Zn㊁Cr和Hg含量分别为0.58~2.90㊁17.10~55.90㊁2.09~55.80㊁117.00~ 851.00㊁136.00~410.00㊁32.50~90.70㊁0.07~0.75mg/kg,其平均值分别为1.34㊁31.52㊁21.96㊁360.61㊁187.00㊁59.15㊁0.35mg/kg㊂部分表层土壤样品中Cd㊁As㊁Cu㊁Zn含量高于风险筛选值,重金属超标率顺序为Cu(100.00%)>Cd(83.33%)> As(66.67%)>Zn(5.56%)>Pb(0.00%)=Cr(0.00%)=Hg (0.00%),表明研究区域的表层土壤存在不同程度Cd㊁As㊁Cu㊁Zn超标现象㊂而与云南省土壤背景值相比,表层土壤重金属超标率顺序为Cu(100.00%)=Cd(100.00%)=Zn (100.00%)=Hg(100.00%)>As(83.33%)>Cr(33.33%)> Pb(11.11%),表明人类活动已经导致研究区农田土壤中重金属Cu㊁Cd㊁Zn㊁Hg㊁As㊁Cr和Pb的含量升高㊂表3显示,Cd㊁As㊁Pb㊁Cu㊁Zn㊁Cr和Hg变异系数(CV)分别为46.27%㊁49.11%㊁74.45%㊁57.81%㊁31.55%㊁32.76%㊁62.86%,根据变异系数分类,Zn㊁Cr具有中度变异(15%<CV< 36%),而Cd㊁As㊁Pb㊁Cu和Hg具有高度变异(CV>36%)[22]㊂这种空间异质性是人类活动(如采矿和冶炼活动以及与之相关的废物排放)的典型指标[23]㊂有研究表明,受自然来源影响的重金属变异系数相对较低,而受人为来源影响的重金属变异系数相对较高[24]㊂可以看出,Zn和Cr变异系数低于其他重金属,表明不同的采样点Zn和Cr含量变化差异较小㊂说明重金属Cr更多与自然来源有关㊂2.2.2㊀表层土壤重金属空间分布特征㊂通过利用ArcGIS 10.1中的反距离权重法(IDW)对表层土壤中不同重金属含量空间分布进行研究,IDW是一种地理空间插值技术,可以预测样本点周围位置的变量值㊂由图2可知,重金属Cd㊁Pb 和Cr在研究区表层土壤中分布相似,其含量空间分布均表现为研究区域从东向西逐渐下降㊂这与位于研究区域东部7651卷21期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀阮彦楠等㊀云南某区典型农田土壤重金属污染和潜在生态风险评价小江流域有关,由于河流在流经研究区域周围时,水流会从沿岸慢慢向四周土壤渗透㊂在渗透的过程中,水中可溶性重金属通过与土壤基质的吸附-解吸反应迁移到土壤中㊂此外,含有重金属的矿石也会以颗粒或悬浮物的形式直接随着水流进入土壤[25],使得水流所携带的重金属等污染物会在土壤中不断沉积,因此靠近河流的采样点重金属元素含量偏高,其中Pb 和Cr 均未超过国家标准㊂As㊁Zn 高值区主要分布在研究区的西南部,而低值区则处于东北部;这与当地主导风向为西南风有关,由于B 村工厂中工业废气的无组织排放,随着大气扩散在农田土壤中沉降,从而增加土壤中重金属含量,随着距离越远,土壤中重金属含量越低,因此靠近B村的采样点As㊁Zn 含量较高㊂参照于国家土壤环境质量二级标准,研究区中Cu 含量整体较高,所有区域采样点Cu 含量均处于受污染状态,且部分区域污染状态较为严重,Cu 含量空间分布呈西北高㊁东南低;这是由于A 村中养殖场中养殖废水大多被用于污水灌溉,动物粪便被用于有机肥施入农田[26],因此靠近A 村的采样点Cu 含量较高㊂而Hg 在土壤中分布不均匀,与其他重金属分布不相同,呈明显的点状分布;这与位于研究区域中心高速路段有关,由于该高速路段南北横贯研究区,研究区域采样点容易受到汽车尾气和粉尘所携带的重金属污染,且所有采样点与高速路段的距离相近,因此采样点中重金属Hg 呈不均匀的点状分布㊂表3㊀表层土壤重金属含量统计描述Table 3㊀Descriptive statistics of heavy metal content in the soil项目ItempH Cd mg /kg As mg /kg Pb mg /kgCu mg /kgZn mg /kg Cr mg /kg Hg mg /kg 最小值Minimum 8.390.5817.10 2.09117.00136.0032.500.07最大值Maximum 7.99 2.9055.9055.80851.00410.0090.700.75均值Mean 8.22 1.3431.5221.96360.61187.0059.150.35中位值Median 8.26 1.1523.8521.95337.50174.0052.250.28标准偏差SD0.120.6215.4816.35208.4658.9919.380.22背景值Background valueʊmg /kg0.2218.440.646.398.765.20.06超标率Exceeding standard rateʊ% 100.0083.3311.11100.00100.0033.33100筛选值Screening valueʊmg /kg>7.50.8202401003003501.0超标率Exceeding standard rateʊ%83.3366.670.00100.00 5.560.000.00变异系数CVʊ%1.4646.2749.1174.4557.8131.5532.7662.86图2㊀研究区重金属空间分布Fig.2㊀Spatial distribution of heavy metals in the study area86㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年2.3㊀表层土壤重金属污染评价㊀由图3可知,从7种重金属单因子污染指数(P i )来看,Cd㊁As 和Cu 污染指数P i 范围较大,而Pb㊁Zn㊁Cr 和Hg 污染指数P i 范围相对较小㊂7种重金属P i 平均值从大到小依次为Cu(3.61)>Cd(1.67)>As(1.58)>Zn(0.62)>Hg(0.35)>Cr(0.17)>Pb(0.09),其中Cu㊁Cd㊁As 的P i 均大于1.00,其他4种重金属P i 均小于1.00,且土壤中Cu 的P i 超过3.00,表明研究区的土壤在受到Cd 和As 不同程度污染的同时也受到Cu 的严重污染㊂从综合污染指数(P N )结果来看,P N 为1.85~6.14,平均值为2.95,达到重度污染(P N >3.0)的比例占38.89%;表明研究区污染较为严重,总体污染水平处于中度污染等级㊂从7种重金属潜在生态危害系数(E i )平均值来看,从大到小依次为Cd (50.15)>Cu (18.03)>As (15.76)>Hg(13.88)>Zn (0.62)>Pb(0.46)>Cr(0.34),且Cd 潜在生态风险程度轻度㊁中等㊁较强分别占总样品数的16.66%㊁55.56%㊁27.78%,以中等生态风险危害为主,故Cd 是最主要的生态风险因子㊂这一方面与Cd 的毒性系数较大有关,另一方面因为所调查的土壤样品中Cd 的浓度普遍较高㊂其次是Cu,其潜在生态风险程度轻度㊁中等占总样品数的94.44%㊁5.56%,以轻度生态风险危害为主㊂而As㊁Pb㊁Zn㊁Cr㊁Hg 皆以轻度生态风险危害为主,且均占总样品数的100.00%㊂由表2可知,As 的各土壤深度含量(26.49~31.52mg /kg)已经超过GB 15618 2018受污染的临界值,但其生态危害程度较轻(E i =15.76),其原因可能是由于有些重金属元素虽然在表层土壤富集程度较高,但由于其具有亲颗粒性,容易被其他颗粒物迁移进入土壤中矿化埋藏使他们对生物的毒性降低[27]㊂从潜在生态风险指数(RI)来看,RI 平均值为99.2,属于轻度生态风险污染㊂总体来说,研究区土壤生态危害程度虽然较轻,但单一重金属的污染仍需引起重视㊂从图4可以看出,Cd 和Cu 的生态危害分布与研究区表层土壤重金属空间分布特征相似,RI 的生态危害分布与Cd 生态危害分布相似㊂说明重金属在空间上分布特征直接影响了其生态危害分布,而Cd 的生态危害直接影响RI 的生态危害分布㊂证实上文中Cd 是最主要的生态风险因子,其潜在生态危害系数E i 平均值最大(E i =50.15)㊂综上所述,重金属Cu 污染程度最为严重(P i =3.61),且Cd 危害程度最大(E i =50.15)㊂图3㊀研究区土壤重金属单因子污染指数(P i )㊁综合污染指数(P N )和潜在生态危害指数(RI )评价结果箱式图Fig.3㊀Box plots of single pollution index (P i ),Nemerow synthesis pollution index (P N ),and potential ecological hazard index (RI )for heav-y metals of soil in the studyarea图4㊀土壤重金属污染的潜在生态危害分布Fig.4㊀Potential ecological hazard distribution of heavy metal pollution in soil2.4㊀表层土壤重金属元素相关性和主成分分析㊀相关性分析常用于识别多个变量之间的关系,从而有助于理解影响因素以及化学成分的来源[28],该研究利用Pearson 相关分析得出7种重金属相关系数㊂由表4可知,Cd 与Pb㊁Cd 与Cr㊁Pb 与Cr㊁As 与Zn 含量之间均呈显著正相关(P <0.05)㊂Zhao 等[29]研究表明,土壤中重金属之间的强正相关可能反映了9651卷21期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀阮彦楠等㊀云南某区典型农田土壤重金属污染和潜在生态风险评价这些重金属具有相似的污染水平和相似的污染源㊂所以Cd 与Pb㊁Cr之间可能来自同一污染源,As与Zn来自另一相同的污染源㊂而Hg与Cd㊁As㊁Pb㊁Cu㊁Zn㊁Cr无显著相关性,说明Hg可能有与其他重金属不同的污染源㊂这与Cai等[30]和Liu等[31]的试验结果相似,因为与其他重金属不同,土壤表面积累的Hg可以释放到空气中,并在土壤和空气之间广泛交换,远距离迁移[32]㊂因此,表层土壤中Hg的来源可能会不同于研究区的其他元素㊂表4㊀表层土壤重金属的相关性分析Table4㊀Correlation analysis of heavy metals in topsoil元素Element Cd As Pb Cu Zn Cr Hg Cd1㊀As-0.3071㊀Pb0.559∗-0.1291㊀Cu0.127-0.744∗∗0.0081㊀Zn-0.0490.541∗-0.191-0.3651㊀Cr0.475∗-0.530∗0.490∗0.292-0.2951㊀Hg-0.4380.457-0.284-0.4570.230-0.4321㊀注:∗∗表示在0.01水平上显著;∗表示在0.05水平上显著㊂㊀Note:∗∗indicates significant at0.01;∗indicates significant at0.05level.㊀㊀主成分分析作为最有效的多元分析方法之一,被广泛用于减少数据和提取少量独立因素(主成分)来分析变量之间的关系㊂它的结果很容易解释为最终得分和加载图,以便进行目视检查[33-34]㊂有研究发现,同一主成分上负荷较高的金属可能具有相同的来源[35]㊂从表5~6可以看出,7种重金属主成分分析发现前2个主成分(PC1㊁PC2)的累计方差贡献率达66.670%㊂PC1的主要成分载荷包括As㊁Zn和Hg,累计方差贡献率为45.294%;As(0.895)㊁Zn(0.672)在PC1有较高的载荷,而Hg(0.515)在PC1有中等载荷㊂PC2的主要成分载荷包括Cd㊁Pb㊁Cr,累计方差贡献率为21.376%;Cd (0.847)㊁Pb(0.848)和Cr(0.688)均在PC2有较高的载荷㊂表5㊀重金属主成分分析的总方差解释Table5㊀Interpretation of total variance for principal component analysis of heavy metals成分Component初始Initial特征值Eigenvalue方差Variance%累计方差Cumulativevarianceʊ%提取载荷平方和Extract the sum of squared loads特征值Eigenvalue方差Variance%累计方差Cumulativevarianceʊ%旋转载荷平方和Rotating load sum of squares特征值Eigenvalue方差Variance%累计方差Cumulativevarianceʊ%1 3.17145.29445.294 3.17145.29445.294 2.45535.06535.0652 1.49621.37666.670 1.49621.37666.670 2.21231.60566.670 30.82311.75378.42340.5247.48385.90650.447 6.38692.29260.382 5.46197.75370.157 2.247100.00表6㊀重金属主成分分析的成分矩阵Table6㊀Composition matrix for principal component analysis of heavy metals元素Element初始InitialPC1PC2旋转后RotatingPC1PC2 Cd0.6140.589-0.0790.847 As-0.8210.4180.895-0.221 Pb0.5240.6680.0400.848 Cu0.666-0.562-0.8710.010 Zn-0.5560.3850.672-0.072 Cr0.7610.251-0.4110.688 Hg-0.716-0.0410.515-0.499㊀㊀基于相关性分析㊁主成分分析的结果,可以将重金属元素的来源分为4组㊂第一组重金属元素包括As和Zn,两者之间呈显著正相关(表4),且皆在PC1上有较高的载荷(表6),在表层土壤中空间分布相似(图3),同时As与Zn在土壤中均值含量高于土壤背景值(表3)㊂分析重金属在表层土壤中空间分布发现土壤中As和Zn受到工业废气无组织排放沉降的影响,如Xiao等[36]根据PC1中重金属的分组可以推断As与Zn富集主要是由于工业废气排放导致㊂因此有理由推断出As和Zn为人为来源,可能与工业废气排放有关㊂第二组重金属元素包括Cd㊁Pb和Cr,三者之间具有显著正相关(表4),在PC2上有较高的载荷(表6),表层土壤中空间分布相似(图2)㊂Pb和Cr在土壤中均值含量均低于土壤背景值,且Cr变异系数较低(表3)㊂大多数研究表明,Cr 主要来源于成土母质,如岩石风化和土壤侵蚀[15,33]㊂Cai等[30]根据相关系数分析发现Cr与部分的Pb主要为自然来源㊂也有研究表明,重金属如Cd和Pb可能是通过风化过程从尾矿中释放出来的[37-38]㊂Li等[39]提出在自然界中Cd和Pb是共生的,特别是在原生矿床中,Cd作为Zn精炼的副产07㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年品被释放出来㊂考虑到研究区域土壤在历史上受到矿区废水排放的河流灌溉导致重金属在农田土壤表面积累㊂因此可以得出重金属Pb和Cr为自然来源和人为来源的混合来源,Pb和Cr为自然来源,主要来自成土母质;而Cd以及部分Pb和Cr为人为来源,可能来源于污灌㊂第三组㊁四组重金属元素分别为Hg和Cu,虽然Hg在PC1有中等载荷(表6),但Hg在相关性分析中与其他重金属无显著相关性(表4),Cu与其他大部分重金属无显著相关系,仅存在Cu和As呈显著负相关(表4),但Cu在PC2中的载荷较低(表6),综合两者皆为相对孤立的元素㊂Cu和Hg 在土壤中均值含量均高于土壤背景值(表3)㊂前人的研究发现,土壤中Hg富集最有可能是由于Hg挥发后通过干湿沉降进入农田土壤中[40]㊂Li等[41]研究发现表层土壤中Hg主要来源于人为输入㊂该研究通过重金属在表层土壤中空间分布发现土壤Cu的累积受到养殖场废水排放和动物粪便的影响㊂据报道,我国市售猪饲料Cu含量平均达到200~ 300mg/kg[42],动物在食用这些饲料的过程中产生的有机肥料含有高浓度的重金属,如果将这些有机肥料反复施用到土地的限值区域,从长远来看,会导致重金属在土壤中大量累积㊂因此可说明Cu和Hg皆为人为来源,Cu可能来自有机肥料,而Hg可能是由于重金属粉尘的大气干湿沉降导致的㊂综上所述,Pb和Cr主要来自成土母质,Cd以及部分Pb 和Cr可能来源于污灌,As和Zn可能与工业废气排放有关, Cu可能来自有机肥料,而Hg可能是由于重金属粉尘的大气沉降导致的㊂3㊀讨论此次对云南省某区典型农田土壤调查结果显示,在剖面土壤重金属含量的分析发现,重金属Cd㊁As㊁Cu是研究区剖面土壤的主要污染物,在不同深度土壤中累积含量均超过‘土壤环境质量农用地土壤污染风险管控标准(试行)“(GB 15618 2018)中的风险筛选值,达到污染水平,且在不同土壤深度呈现出不同的垂直迁移分布特征㊂表层土壤重金属含量分析发现,土壤重金属含量存在较大差异,与云南省土壤背景值相比,表层土壤重金属超标率从大到小依次为Cu (100.00%)=Cd(100.00%)=Zn(100.00%)=Hg(100.00%)> As(83.33%)>Cr(33.33%)>Pb(11.11%)㊂表层土壤垂直迁移分布特征分析发现,重金属Cd㊁Pb和Cr在研究区表层土壤中分布相似,其含量空间分布均表现为研究区域从东向西逐渐下降,而且当地表层土壤重金属的分布还受工业废气的沉降㊁养殖废水及动物粪便施入农田和高速路段汽车尾气和粉尘的影响㊂无论是剖面土壤还是表层土壤,其重金属Cd㊁As㊁Cu都是主要污染物,对于农田生态系统而言,土壤中元素含量快速变化,主要是由各种人为活动引起,表明人类活动已经导致研究区农田土壤中重金属Cu㊁Cd㊁Zn㊁Hg㊁As㊁Cr和Pb的含量升高㊂Cd㊁As㊁Cu会严重危害人体健康,能引起急性中毒㊁代谢综合征和器官损伤等疾病[43-45]㊂从表层土壤重金属单因子污染指数(P i)来看,Cd㊁As和Cu污染指数P i范围较大,而Pb㊁Zn㊁Cr和Hg污染指数P i范围相对较小,表明研究区的土壤受到Cd㊁As和Cu的污染较为突出㊂综合污染指数P N结果来看,总体污染水平处于中度污染等级㊂潜在生态风险指数考虑了重金属的生物毒性水平,对人类健康生活更具指导意义[46]㊂从7种重金属潜在生态危害系数(E i)和潜在生态危害指数(RI)来看,Cd是最主要的生态风险因子,危害程度最大,这可能与Cd的毒性系数较大和所调查的土壤样品中Cd的浓度普遍较高有关㊂而Cu以轻度生态风险危害为主,且Cu污染程度最为严重㊂综合潜在生态危害指数(RI)平均值为99.2,说明研究区土壤属于轻度生态风险污染,土壤环境整体较为清洁,但单一重金属(Cd和Cu)的污染仍需引起重视㊂表层土壤重金属元素相关性和主成分分析得出,7种重金属元素中,因子1中As与Zn元素富集主要是由于工业废气排放导致[36],王越等[47]研究发现As与Zn元素主要受铅锌矿选冶和有色金属冶炼等工业活动影响;因子2中重金属Pb和Cr为自然来源和人为来源的混合来源,Pb和Cr为自然来源,主要来自成土母质,而Cd以及部分Pb和Cr为人为来源,可能来源于污灌[15,39];因子3中Cu和Hg元素皆为人为来源,Cu可能来自有机肥料,而Hg可能是由于重金属粉尘的大气干湿沉降导致[40-42]㊂4㊀结论(1)从剖面土壤重金属含量分析来看,重金属Cd㊁As㊁Cu㊁Zn和Hg含量在不同深度平均值均显著高于云南省土壤背景值,且Cd㊁As㊁Cu均高于风险筛选值㊂从重金属垂直分布来看,除As㊁Zn含量随土壤深度增加而降低,Cu随土壤深度的增加而增加,其余重金属Cd㊁Pb㊁Cr㊁Hg含量随土壤深度增加先降低后升高㊂(2)从表层土壤重金属含量分析来看,研究区域除Pb和Cr,其他重金属超背景值率均在80%以上㊂部分表层土壤样品中重金属Cd㊁As㊁Cu㊁Zn平均含量高于风险筛选值,重金属超标率顺序为Cu>Cd>As>Zn>Pb=Cr=Hg㊂从重金属的空间分布上看,重金属Cd㊁Pb和Cr在研究区表层土壤中分布相似,其含量空间分布均表现为在研究区域从东向西逐渐下降;As与Zn高值区主要分布在研究区的西南部,Cu含量空间分布呈西北高㊁东南低㊁Hg在土壤中分布不均匀㊂(3)单因子污染指数法和内梅罗综合污染指数法评价结果表明,重金属Cu㊁Cd㊁As单因子污染指数(P i)均大于1.00,且采样点土壤中Cu的P i超过3.00,综合所有采样点,研究区域重金属总体水平处于中度污染等级㊂潜在生态危害指数法评价结果表明,Cd是最主要的生态风险因子,以中等生态风险危害为主,研究区污染程度为轻度生态风险污染㊂总体来说,云南省某区周围农田土壤潜在生态危害状况不是很严重,但单一重金属的污染仍需引起重视㊂(4)相关性分析和主成分分析结果表明,Pb和Cr主要来自成土母质,Cd以及部分Pb和Cr可能来源于污灌,As和Zn可能与工业废气排放有关,Cu可能来自有机肥料,而Hg 可能是由于重金属粉尘的大气沉降导致的㊂1751卷21期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀阮彦楠等㊀云南某区典型农田土壤重金属污染和潜在生态风险评价。

城市土壤重金属污染现状及其生态风险评价

城市土壤重金属污染现状及其生态风险评价

城市土壤重金属污染现状及其生态风险评价随着经济的快速发展和城市化进程的不断加速,城市面积不断扩大,城市化水平不断提高,城市土地利用的强度也越来越大。

城市建设过程中,土地资源的不断推进和利用,也导致了城市土壤重金属污染。

城市土壤重金属污染的影响面广泛,不仅对人类的健康和生命安全产生了一定的威胁,而且还会对城市营造生态环境产生重要的影响。

一、城市土壤重金属污染现状城市土壤重金属是指重金属元素在城市土壤中的积累量超过了浅表土壤中该类元素的含量,这种元素还会有生物、化学、地理学和物理等方面的毒性。

目前,我国城市土壤重金属污染的状况比较严重。

城市土地的使用不规范,工业、交通、垃圾处理等各种行业的产生的废物都是导致城市土壤污染的重要原因。

调查显示,我国大部分城市土壤重金属污染程度都比较严重,表现出污染程度以沿海及工业密集区为重,而内陆城市也逐渐受到污染的影响。

二、生态风险评价城市土壤重金属污染大大降低人类的健康水平,这也需要对其进行生态风险评价。

生态风险评价是指一种量化评价技术,利用有限的数据评价毒物的危险程度和生态风险水平,确保工业受到控制,保护人们的健康。

评价城市土壤的生态风险,需要采取一系列的评价指标、评价标准以及相应的评价方法。

评价指标涉及到土壤级别、土壤环境、土壤重金属含量等方面。

评价标准就是根据土壤重金属特性和污染程度,参考国家和地方政策法规,制定生态风险标准。

评价方法包括物理、化学、数学和地理等多个方面,这些方法可以帮助人们了解土壤污染的程度和对人类健康和生态环境的影响。

通过生态风险评价,可以对城市土壤重金属进行有效的防治。

三、防治城市土壤重金属污染城市土壤重金属污染治理需要深入评估污染情况,制定系列的污染防治手段。

首先,需要增强立法力度,完善相应的法律法规,加强对城市土壤重金属污染的监督和控制。

其次,需要从源头上进行防治措施,加强工业污染防治,加大废弃物的收集和处理力度,减少垃圾的堆放量,以减少城市土壤的污染。

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价重金属是指相对密度大于5g/cm3的金属元素,如铅(Pb)、铬(Cr)、镉(Cd)、汞(Hg)等。

在自然界中,重金属广泛存在于土壤中,其分布特征与土壤类型、地质特征、人类活动等因素密切相关。

土壤重金属分布特征主要表现为以下几个方面:1.地域差异:不同地区的土壤中重金属含量存在显著差异,主要受地质背景和气候条件的影响。

一般来说,地壳中重金属含量高的地区,土壤中重金属含量也较高。

2.土壤类型差异:不同土壤类型对重金属的吸附和释放能力不同,从而导致土壤中重金属含量的差异。

粘土矿物对重金属有较强的吸附能力,可以减少重金属的迁移和扩散;而砂土和砾石土则对重金属的吸附能力较弱,容易导致重金属的富集。

3.人类活动影响:人类活动(如农业、工业、交通等)是重金属在土壤中的重要来源。

大量利用化肥、农药等化学物质,以及工业废水、废气的排放,会使得土壤中重金属含量增加。

交通流量大的地区,道路上机动车尾气中的重金属会沉积在土壤中。

土壤中重金属的生态风险评价是评估土壤重金属对生态环境和人体健康的潜在风险。

常用的评价指标包括重金属含量、生物有效性、迁移性和毒性等。

通过对土壤中重金属含量的分析,可以了解土壤重金属的污染程度。

通常以国家土壤质量标准为参考,对土壤中重金属含量进行比较和评价,判断是否超过了安全标准。

生物有效性是评价土壤中重金属对生物(包括植物和动物)的毒性的重要指标。

通过测定土壤中重金属的易交换态和可溶态含量,可以评估其对植物的吸收和转移能力,以及生物累积的潜力。

重金属的迁移性是评价其对地下水和地表水的潜在影响的指标。

迁移性较高的重金属可以随降水和地下水流动而迁移至水体中,从而对水生生物产生毒害。

重金属的毒性评价通常通过生物监测和毒性试验来进行。

通过对生态系统中的生物样本(如植物、动物)进行采样和分析,可以评估重金属对生物的生长、发育和繁殖的影响。

土壤重金属潜在生态危害与健康风险评价

土壤重金属潜在生态危害与健康风险评价

土壤重金属潜在生态危害与健康风险评价土壤重金属是指土壤中存在的含量超过一定标准的金属元素,如铅(Pb)、镉(Cd)、汞(Hg)、铬(Cr)等。

这些重金属对环境和人类健康造成潜在生态危害和健康风险。

本文将从土壤重金属的来源、生态危害和健康风险进行评价,并提出相应的解决措施。

首先,土壤重金属的来源主要包括自然和人为两个方面。

自然来源包括岩石崩解、土壤侵蚀和沉积物的运移等,但其含量较低。

人为来源主要包括工业、农业和城市化进程中的各类排放,如矿产资源开采、化肥和农药的使用、工业废水和废气的排放等。

这些活动对土壤中重金属的含量造成了显著影响。

其次,土壤重金属对生态环境的危害主要表现在以下几个方面。

首先,重金属的累积会导致土壤中微生物群落的变化,影响土壤的生物多样性和养分循环。

其次,重金属对植物的生长和发育有严重影响,如镉和铅会阻碍酵素活性,导致植物生理机能紊乱。

最后,土壤重金属还会进入水体、大气和食物链中,对水生生物和人类健康构成风险。

土壤重金属对人类健康造成的风险主要源于食物链的传递。

植物吸收土壤中的重金属,人类通过食用植物或食用含有重金属的肉类,摄入重金属。

重金属在人体内会积蓄并引起一系列健康问题,如铅中毒和镉中毒,严重影响神经系统、肝脏、肾脏、骨骼等器官的功能。

针对土壤重金属潜在生态危害和健康风险,应采取相应的解决措施。

在工业污染防治方面,应加强对重金属排放的监管,建立严格的环境标准和监测体系。

在农业管理方面,应合理使用化肥和农药,控制重金属的输入量。

此外,采用生物修复和植物吸收等技术,能有效减少土壤中重金属的含量。

同时,加强对土壤重金属的监测和风险评估,及时掌握土壤重金属污染状况,采取相应的措施进行修复和治理。

综上所述,土壤重金属对生态环境和人类健康构成潜在的生态危害和健康风险。

通过加强管理和监测,探索适宜的治理技术,能够有效减少土壤重金属的含量,保护生态环境和人类健康。

继续探讨土壤重金属潜在生态危害与健康风险评价的相关内容,还可以从评价方法和案例分析两个方面进行阐述。

土壤重金属污染生态风险评价方法综述

土壤重金属污染生态风险评价方法综述

土壤重金属污染生态风险评价方法综述一、本文概述随着工业化和城市化进程的加速,土壤重金属污染问题日益严重,对生态环境和人类健康构成严重威胁。

因此,对土壤重金属污染进行生态风险评价显得尤为重要。

本文综述了土壤重金属污染生态风险评价的方法,旨在为相关研究和实践提供全面的理论支持和技术指导。

本文首先介绍了土壤重金属污染的概念、来源及其危害,为后续的风险评价方法提供背景信息。

随后,文章重点阐述了生态风险评价的基本原理和流程,包括风险识别、暴露评估、效应评估和风险表征等关键步骤。

在此基础上,文章对国内外现有的土壤重金属污染生态风险评价方法进行了梳理和评价,包括基于概率统计的方法、基于地理信息系统的方法、基于生态模型的方法等。

这些方法各有优劣,适用于不同的评价对象和场景。

本文还讨论了土壤重金属污染生态风险评价中面临的主要问题和挑战,如数据获取困难、评价标准不统评价方法局限性等。

针对这些问题,文章提出了一些改进建议和未来研究方向,如加强数据共享和标准制定、发展多元化评价方法、提高评价精度和可靠性等。

本文旨在通过综述土壤重金属污染生态风险评价的方法,为相关领域的研究和实践提供有益的参考和启示。

通过不断完善和优化评价方法,我们有望更好地评估土壤重金属污染对生态环境和人类健康的风险,为制定有效的防控措施提供科学依据。

二、土壤重金属污染概述三、生态风险评价的基本原理生态风险评价(Ecological Risk Assessment, ERA)是一种系统性的方法,用于评估特定环境因子(如重金属)对生态系统及其组分可能产生的负面影响。

这一评价过程基于风险管理的原则,主要包括风险识别、风险分析、风险表征和风险管理四个步骤。

风险识别是生态风险评价的首要步骤,主要任务是确定可能的环境污染物、受体以及暴露途径。

在重金属污染的情况下,需要识别土壤中重金属的种类、浓度和分布,以及可能受到影响的生态系统类型,如水体、土壤生物和植物等。

风险分析阶段主要评估重金属暴露对生态系统及其组分可能产生的具体影响。

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价土壤中重金属元素是指相对密度大于4.5g/cm3的金属元素,其中包括镉、铬、铅、汞、铜、锌等元素。

它们对生态环境和人类健康具有较大的危害性,因此对土壤中重金属的分布特征及生态风险评价显得十分重要。

本文将通过对土壤中重金属的来源、分布特征及生态风险评价进行系统性分析,旨在为土壤环境保护提供科学依据和参考。

一、土壤中重金属的来源1. 工业排放工业生产过程中,会产生大量的废水和废气,其中含有大量的重金属污染物。

这些废水和废气在未经处理的情况下直接排放到土壤中,会导致土壤中重金属元素的积累。

2. 农药和化肥使用过量或过于频繁的农药和化肥会导致土壤中重金属的累积,尤其是含有镉、铅等元素的农药和化肥更容易引起土壤重金属的污染。

3. 人类活动人类的日常生活和生产活动也会造成土壤中重金属的污染,如燃煤、焚烧垃圾、废水排放等。

1. 地域分布差异土壤中重金属的含量在不同地域之间存在较大的差异,一般来说,工业发达地区和城市周边地区的土壤重金属含量较高,而农村地区和远离工业区的地区的土壤重金属含量相对较低。

2. 垂直分布差异土壤中重金属的含量随着土壤深度的增加而逐渐减少,表层土壤中的重金属含量明显高于深层土壤中的含量。

3. 形态分布差异土壤中的重金属存在不同的形态,包括可交换态、结合态和残渣态等。

其中可交换态和结合态的重金属对植物和土壤微生物具有较大的毒害性,是造成土壤污染的主要形态。

1. 毒性评价对土壤中重金属元素的毒性进行评价是十分必要的,通过对重金属元素的生物毒性和植物毒性进行研究,可以评估土壤中重金属的潜在毒害性。

2. 污染程度评价对土壤中重金属的污染程度进行评价,可以根据土壤中重金属的含量和环境质量标准进行比较,判断土壤是否受到了重金属的污染。

3. 生态风险评估通过对土壤中重金属的分布特征、生物毒性和污染程度进行综合评估,可以对土壤中重金属的生态风险进行评估,为土壤污染防治提供科学依据。

重金属污染的生态风险评估

重金属污染的生态风险评估

重金属污染的生态风险评估随着经济和工业的快速发展,人类对环境造成的影响也越来越大。

重金属污染是环境中一种较为严重的污染类型,往往伴随着生态风险。

在环境保护和资源利用方面,对重金属污染进行生态风险评估十分必要。

什么是生态风险评估?生态风险评估是指对各种生态系统和生物的自然或人工因素导致的潜在风险进行识别、评价和决策的过程。

生态风险评估的主要目的是确定可持续发展的条件和问题,保护生态环境和生物多样性,为制定和实施控制和管理计划提供科学依据。

重金属污染产生的生态风险重金属污染主要是指人工活动排放的金属污染物对环境造成的危害。

重金属包括铅、汞、铬、镉、铜、锌等,它们有机会通过空气、水、土壤进入生态系统,影响生态平衡和生态安全。

重金属污染产生的主要生态风险包括:1. 生物毒性:重金属污染物会在土壤、植物和水体中积累,生物体吸收后,会影响它们的新陈代谢,抑制植物生长和发育,影响生物体的生理和生化代谢过程,产生毒性效应。

2. 生态系统破坏:重金属污染对生态系统有直接或间接的影响。

其中,对土壤的影响最为显著。

重金属在土壤中积累后,会导致土壤酸化、微生物减少、土壤结构破坏等问题,影响作物品质和数量。

同时,重金属也会对水体造成污染,生态系统的破坏进一步加剧。

3. 级联效应:重金属污染的生态风险不仅会直接影响生态系统的健康,还会引发一连串的级联效应。

比如,重金属中毒的植物和动物会影响食物链的生态平衡,对整个生态系统造成连锁反应,加剧了环境和生态的恶化程度。

生态风险评估的关键环节对重金属污染的生态风险进行评估,需要做到以下几个关键环节:1. 风险识别:对污染源、环境质量、受影响的生态系统和生物种群进行识别和评价,确定潜在的生态风险环境。

2. 风险评价:对潜在的生态风险进行定量分析、预测和评估,确定生态效应和严重性。

3. 风险管理:根据风险评估结果,制定、实施和监控相应的风险管理策略,控制和纠正生态风险。

4. 风险沟通:使用适当的手段和方式,对政府、企业、公众等各利益相关方进行风险传递、信息反馈,提高风险管理的透明度和参与度。

生态环境中的重金属污染与生态风险评估分析

生态环境中的重金属污染与生态风险评估分析

生态环境中的重金属污染与生态风险评估分析随着经济的发展与城市化进程的加速,重金属污染已成为当前严重的生态环境问题之一。

重金属的来源包括自然界和人类活动,其中工业生产、燃料消耗、废弃物处理等工业活动是造成重金属污染的主要因素。

重金属污染不仅直接危害人类健康,而且对生态环境产生了不可逆转的影响。

生态风险评估分析对于重金属污染的治理有着重要的意义。

重金属污染的来源与特点重金属污染主要来源于人类活动,例如工业生产、燃料消耗、废弃物处理等。

重金属污染主要表现在土壤、水体和大气中。

铅、镉、汞、铬等重金属污染是当前比较常见的重金属污染问题。

重金属污染的危害重金属污染的危害涉及人体与生态环境两个方面。

重金属通过空气、水和食物等途径进入人体,对人体造成中毒性作用,对神经系统、免疫系统、呼吸系统等造成严重损害。

生态环境受到重金属污染的长期累积,会对生物多样性和生态系统平衡产生重大影响,对环境安全和人类健康产生潜在的威胁。

生态风险评估分析生态风险评估分析是对重金属污染治理的有力手段。

它通过系统分析重金属的来源、分布、转化过程和潜在危害等因素,评估重金属对生态环境的危害程度,制定出科学合理的治理方案。

生态风险评估分析包括风险识别、风险评价、风险管理和风险沟通等环节。

风险识别风险识别是生态风险评估分析的第一步,它包括对重金属污染的来源、属性、环境分布等进行调查研究,分析污染影响及其空间分布特征,确定重点监测和治理区域。

风险评价风险评价是生态风险评估分析的核心步骤,它包括对重金属的毒性、暴露途径、污染程度等因素进行综合评估,进而确定不同区域重金属污染的风险概率和风险程度。

风险管理风险管理是生态风险评估分析的关键环节,它包括制定重金属污染治理的技术、方法和规范,实施技术改造和措施,完善管理体系,落实责任,实现重金属污染治理的有效性和可行性。

风险沟通风险沟通是生态风险评估分析的重要补充,它包括组织相关利益相关者,建立信息共享和互动交流机制,采取有效的沟通策略与方式,提高公众参与重金属污染治理的意识和能力,促进生态环境治理和社会可持续发展。

农田土壤重金属污染风险评估

农田土壤重金属污染风险评估

农田土壤重金属污染风险评估1. 摘要本文档旨在评估农田土壤重金属污染的风险,并提出了相应的预防和治理措施。

我们通过对农田土壤中重金属的来源、污染特征、健康风险以及生态风险进行深入分析,为政府部门、农业企业和农民提供有针对性的建议,以保障农田土壤质量,维护人类健康和生态环境安全。

2. 背景与意义随着工业化和城市化的加速推进,农田土壤重金属污染问题日益严重。

重金属污染不仅影响农作物的生长和品质,还可能通过食物链传递,对人体健康造成潜在威胁。

因此,开展农田土壤重金属污染风险评估,对于保障国家粮食安全、人民健康以及生态环境可持续发展具有重要意义。

3. 评估方法与指标本评估采用文献分析、现场调查、采样分析等方法,结合国内外相关研究成果,对农田土壤重金属污染风险进行全面评估。

评估指标主要包括:- 重金属含量:评估农田土壤中重金属的种类、浓度及其分布特征;- 污染来源:分析重金属污染的来源,如工业排放、农业活动、生活污水等;- 健康风险:评估重金属污染对人类健康的潜在威胁,如食品污染、土壤摄入等;- 生态风险:评估重金属污染对生态环境的影响,如土壤退化、生物多样性下降等。

4. 评估结果与分析根据评估结果,我们将农田土壤重金属污染风险分为低风险、中风险和高风险三个等级。

具体分析如下:- 低风险:农田土壤重金属含量低于国家土壤环境质量标准,污染来源较少,对人体健康和生态环境的潜在风险较低;- 中风险:农田土壤重金属含量部分超过国家土壤环境质量标准,污染来源较为复杂,可能对人体健康和生态环境产生一定威胁;- 高风险:农田土壤重金属含量严重超过国家土壤环境质量标准,污染来源广泛,对人体健康和生态环境的潜在风险较高。

5. 预防与治理措施针对农田土壤重金属污染风险,我们提出以下预防和治理措施:- 加强源头控制:严格工业排放标准,加强农业化学品监管,提高生活污水处理水平;- 优化农业布局:调整农作物种植结构,实施绿色农业生产技术,减少农药和化肥使用;- 土壤污染修复:采用物理、化学和生物方法,对污染土壤进行修复和治理;- 加强监测预警:建立健全农田土壤重金属监测体系,及时发现和预警污染风险;- 提高公众意识:加强宣传教育,提高农民环保意识,引导绿色生活方式。

常规农业村土壤重金属污染及潜在生态风险评价——山西寿阳县为例

常规农业村土壤重金属污染及潜在生态风险评价——山西寿阳县为例

中国土壤与肥料 2020 (6)doi:10.11838/sfsc.1673-6257.19505常规农业村土壤重金属污染及潜在生态风险评价——山西寿阳县为例韩晋仙1,李二玲2*,班凤梅1(1.山西财经大学资源环境学院,山西 太原 030006; 2.河南大学农业与农村可持续发展研究所/环境与规划学院,河南 开封 475004)摘 要:以山西省寿阳县7个典型常规农业村耕地为研究对象,采集耕作层126个土壤样品,测定其Cd、Hg、As、Cu、Pb、Ni、Cr、Zn 8种重金属的含量。

运用单因子污染指数法(P)、污染负荷指数法(PLI)和潜在生态风险评价法(RI)评价土壤重金属污染和潜在生态风险程度,应用空间插值法探讨土壤重金属污染和潜在生态风险空间分布,并对重金属污染的来源进行讨论。

结果表明:该区域土壤除As的平均含量低于山西省土壤元素背景值外,其余重金属元素平均含量均高于山西省土壤元素背景值,Cu、Ni、Pb、Zn、Cd、Cr和Hg的平均含量分别为山西省元素背景值的1.03、1.03、1.13、1.15、1.55、1.72和2.26倍。

从单因子污染指数看,Hg属于中度污染,Cd、Cr、Zn、Cu、Ni、Pb为轻微污染,As则没有发生污染。

从综合污染指数看,该区域土壤8种重金属所有样点的PLI平均为1.09,总体上属于轻度污染。

从综合潜在生态风险指数看,所有样点8种重金属的RI平均为151.47,属于中度生态风险水平,其中Hg和Cd为主要贡献因子,其他重金属的生态风险很低。

该区域PLI和RI 的空间分析显示,8种重金属污染和潜在生态风险均呈现一定的空间差异,但二者的空间分布格局基本一致。

在局地自然地理条件基本一致的情况下,雾霾、燃煤、煤矿生产以及农业生产是造成该区土壤重金属含量增加的重要原因,而农户行为则可能是造成部分地块土壤重金属污染和生态风险突出的原因之一。

关键词:重金属;耕地土壤;污染;空间分布;潜在生态风险;常规农业村土壤是自然地理环境的重要组成部分,也是人类赖以生存的重要资源。

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价

土壤重金属分布特征及生态风险评价土壤中的重金属分布特征及其对环境和生态系统的风险评价一直是环境科学研究的重要内容之一。

重金属在自然界中普遍存在,但过量的重金属含量会对生态环境造成严重影响。

1. 重金属的分布特征:重金属的分布主要受到土壤来源、土壤性质、人类活动等因素的影响。

一般来说,重金属在土壤中的分布具有以下特征:- 垂直分布:重金属通常以深度渐减的趋势存在于土壤中,表层土壤中的重金属含量较高,随着深度增加逐渐降低。

- 水平分布:重金属的分布通常呈现高度异质性,后果受到土地利用和人类活动的影响很大。

- 空间变异:重金属在不同的土壤质地、土壤类型和地理区域之间存在显著的空间变异。

2. 重金属的生态风险评价:重金属的生态风险评价是评估重金属对生态系统和人体健康的潜在影响。

常用的评价方法包括生物有效性评估、污染程度评价和生态风险指数评价等。

- 生物有效性评估:通过测定土壤中重金属的可溶态、交换态和胶结态等形态,评估重金属的生物有效性。

生物有效性高的重金属更容易吸收到植物体内,对生态系统产生潜在影响。

- 污染程度评价:通过测定土壤中重金属的浓度与环境质量标准相比较,判断土壤的污染程度。

超过环境质量标准的土壤被认为是污染土壤,可能对生态系统和人体健康造成潜在威胁。

- 生态风险指数评价:综合考虑重金属的毒性效应和环境因子的影响,建立生态风险评价模型,评估重金属对生态系统的风险程度。

3. 影响土壤重金属分布和生态风险的因素:- 土壤来源:土壤中重金属含量与土壤来源密切相关,沉积土壤通常含有更高的重金属含量。

- 土壤性质:土壤质地、有机质含量、pH值等因素都会影响重金属在土壤中的分布和迁移行为。

- 人类活动:冶炼、工矿企业排放、农药和化肥使用等人类活动都会导致土壤中重金属超标。

- 植物吸收:植物对重金属有不同的吸收和累积能力,不同植物对重金属的吸收程度也不同,其中有些植物可以通过吸收重金属净化土壤。

了解土壤中重金属的分布特征以及对生态系统和人体健康的风险评价是保护环境、维护人类健康的重要内容。

某区域内矿区土壤重金属污染与生态风险评价

某区域内矿区土壤重金属污染与生态风险评价

第40卷第2期2021年4月四川环境SICHUAN ENVIRONMENTVol.40,No.2April2021•土壤环境•DOI:10.14034/ki.schj.2021.02.021某区域内矿区土壤重金属污染与生态风险评价李传飞1,刘登璐S赵平1,王智伟1,明毅1(1.四川省冶金地质勘查院,成都610051; 2.简阳市农业技术推广中心,成都641499)摘要:探究区域内矿区土壤重金属变化并对其进行污染评价,旨在为该区域环境保护及污染治理提供一定的理论依据,以期实现矿山地质环境保护与矿产资源开发并行的矿业绿色发展。

以铅、锌、镉、碑含量为评价指标,结合《土壤环境质量标准》(GB15618—2018),采用重金属单因子污染指数法与内梅罗综合污染指数法进行重金属污染评价,并对该区域矿区潜在生态风险作出评定。

结果表明,A矿区土壤各重金属含量的变异系数为149.05%~211.42%,B 矿区土壤各重金属含量变异系数为60.88%-118.58%;A矿区土壤重金属均出现超标现象,其中铅、锌和镉含量超标较为严重,超标率在72%以上,而碑含量超标现象则相对较轻,超标率为36.36%;B矿区土壤铅和锌含量均未出现超标,超标率为0,而碑和镉含量则出现不同程度的超标,其中碑含量超标率为92.31%,镉含量超标率为65.38%;两个矿区土壤各重金属含量均超背景值的现象,超背景值比例为42.31%~100.00%。

A矿区土壤以铅、锌和镉污染为主,而B矿区土壤中碑和镉的污染较为严重。

两个矿区土壤重金属综合污染指数均属重度污染,A矿区生态风险综合指数为很强生态风险危害,而B矿区为中等生态风险危害。

关键词:矿区土壤;重金属;污染评价中图分类号:X53文献标识码:A文章编号:1001-3644(2021)02-0141-08Evaluation of Soil Heavy Metal Pollution and Ecological Risk in a Mining AreaLI Chuan-fei1,LIU Deng-lu2,ZHAO Ping1,WANG Zhi-wei1,MING Yi1(1.Sichuan Metallurgical Geological Exploration Institute,Chengdu610051,China;2.Jiarvyang Agricultural Technology Extension Service Center,Chengdu641499,China)Abstract:This paper explores the changes of heavy metals in the soil of mining area and evaluates the pollution,aiming to provide certain theoretical basis for environmental protection and pollution control in this area,so as to realize the green development of mining industry in parallel with geological environmental protection and mineral resources development With the contents of lead,zinc,cadmium and arsenic as evaluation indexes and combined with the Soil Environmental Quality Standard (GB15618一2018),the heavy metal pollution was evaluated by the single factor pollution index method and the Nemero comprehensive pollution Index method,and the potential ecological risk of the mining area was evaluated.The results showed that the coefficient of variation of each heavy metal content in the soil of Mining Area A was149.05%to211.42%,and that of the soil of mining area B was60.88%to11&58%.The heavy metals in the soil of mine A all exceeded the standard,amongwhich the lead,zinc and cadmium content exceeded the standard seriously,with the exceeding rate of over72%,while the arsenic content exceeded the standard relatively mild,with the exceeding rate of36.36%.The content of lead and zinc in the soil of Mining Area B did not exceed the standard,and the exceeding rate was0%,while the content of arsenic and cadmium exceeded the standard to different degrees,among which the exceeding rate of arsenic content was92.31%and the exceeding rate of cadmium content was65.38%.The content of all heavy metals in the soil of the two mining areas exceeded the background value, and the proportion of the above background value was42.31%~100.00%.The soil in Mining Area A is mainly polluted by lead,zinc and cadmium,while the soil in mining area B is seriously polluted by arsenic and cadmium.The comprehensive pollution indexes of soil heavy metals in both mining areas are heavy pollution.The comprehensive ecological risk index of Mining area A is strong ecological risk hazard,while that of mining area B is medium ecological risk hazard・Keywords:Soil of mining area;heavy metals;pollution assessment收稿日期:2020-06-08作者简介:李传飞(1991男,四川达州人,毕业于四川农业大学土壤学专业,硕士研究生,主要从事耕地质量、土壤污染防治研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤重金属污染及生态风险评价
摘要:本文主要就我国目前土壤重金属污染及生态风险评价的现状、方法以及如何构建更加系统、全面和标准化的土壤重金属污染及生态风险评价机制作了一些探讨。

关键词:土壤;重金属污染;生态风险;评价;土壤修复
近30年来,随着我国社会经济的高速发展和高强度的工业活动,因重金属污染退化的土壤数量日益增加、范围不断扩大,土壤质量恶化加剧,危害更加严重,已经影响到全面建设小康社会和实现可持续发展的战略目标,未来15年将面临着更为严峻的挑战。

我国的土壤重金属污染形势日趋严峻,必须采取有效的措施控制和预防,这就要求首先要建立起科学合理的土壤重金属污染及生态风险评价机制,通过科学的评价针对性的构建预防和控制土壤重金属污染的策略和方法。

一、我国土壤重金属污染现状
据国土资源部统计发现,目前我国耕地面积约有10%以上受重金属污染,且多数集中在经济相对发达地区。

而根据我国农业部调查数据显示,在我国约140万公顷的污灌区中,受重金属污染的土地面积占污灌区面积的64.8%,其中轻度污染46.7%,中度污染9.7%,严重污染8.4%。

华南部分城市50%的耕地遭受镉、砷、汞等有毒重金属污染;长三角地区有些城市大片农田受多种重金属污染,10%的土壤基本丧失生产力。

数据显示,我国土壤重金属污染形势十分严峻,已对我国的农业生产和人的健康带来严重威胁。

目前我国土壤重金属污染的原因主要有两个。

一方面是在我国城市产业结构调整“退二进三”后,早期的城市工业区开始衰退并失去利用价值,逐渐成为被废弃、闲置或利用率很低的用地,而原有工业生产中大量的重金属废弃物被遗留进入土壤,成为潜在的环境风险场地。

第二则是大量的制造和化工企业违规排放含有铅、镉、铬、汞和类金属砷等生物毒性显著的重金属污水汇流入河从而污染周边土地。

土壤重金属污染的危害十分严重,首先会影响植物根和叶的发育,其次,经由被重金属污染土壤种植的农作物或蔬菜被人食用后,会破坏人体神经系统、免疫系统、骨骼系统等,给人类的身体健康带来重大疾病和危害。

土壤重金属污染经由水环境直接毒害植物体,并最终通过食物链危害人类健康,其治理和恢复非常迫切及难度很大。

二、我国土壤重金属污染及生态风险评价应用
2.1应用现状
目前我国的土壤重金属测定方法主要有物理化学法(如化学试剂提取法、扩散梯度膜(DGT)法、同位素稀释(ID)法)、生物学评价法和模型评价法等。

生物学测定法是近年来发展较快,普遍应用的一种金属生物有效性的测定方法,也是一种最直观、最常规的标准方法,主要分为植物、微生物、动物检测法。

模型评价法主要是应用生物有效性/毒性的预测模型来评价重金属的生物有效性,是当前比较新兴的研究方法。

从土壤重金属污染生态风险评价方面看,主要是针对土壤重金属污染和由此带来的土壤安全和作物的健康问题,国内学者提出了一些评价标准、手段和方法。

如将土壤背景同土壤临界含量联系起来为标准进行土壤污染的评价和分析,土壤临界值主要通过地球化学法和生态环境效应法进行制定。

此外还有以区域中清洁土壤对照点含量为评价标准,但由于各地区土壤中元素含量差别很大,
用这种方法做出的评价结果,只能反映区域相对于清洁区的基本状况,评价结果没有可比性,因此实际工作中应用较少。

我国土壤重金属污染评价方法的选取中,一般采用单项污染指数和综合污染指数两种来评价土壤的污染状况。

在获得单项污染指数的基础上,常以内梅罗污染指数式计算土壤综合污染指数。

但从总体的应用来看,我国土壤重金属污染及生态风险评价主要侧重于调查土壤重金属污染物总量统计以及来源的研究。

但对于城市土壤中重金属的化学形态关注不够。

在评价土壤质量方面,主要以相关化学指标作为评价标准,繁琐、耗时、耗钱,需要寻找一种更为便捷的土壤生态风险评价方法。

此外,也没有建立一个类似空气污染指数这样的一个科学量化的评价体系。

2.2发展方向
因此,为了更好的预防和控制土壤重金属污染,应建立起更快速,更有效的评价机制。

从国内外研究来看,一些组织和学者正从不同的层面致力于土壤重金属污染及生态风险评价的更好方法。

总体而言有四个方面。

一是充分重视土壤中重金属的化学形态对它在土壤中的环境行为及污染能力的影响。

二是通过一些间接方法,如用较易观察的生物学特征来衡量土壤中重金属形态分布这种不易观测的指标,且在两者之间建立一个量化的关系。

在这方面跳虫对重金属污染十分敏感,具有成为土壤污染指示生物的良好潜力,但目前跳虫在土壤污染生态风险评价中的研究尚处于初步阶段。

三是致力于建立“土壤污染指数”这种量化指标,为土壤重金属污染的科学评价,提供新思路。

2.3应用思路
选定地块,以重金属的化学形态为研究重点,同时关注土壤污染的生态风险评价。

以对重金属污染较为敏感的跳虫作为指示生物,希望在重金属的化学形态分布和跳虫的种类及数目之间的响应过程建立一个量化的关系。

并在此基础上,构建“土壤污染指数”这一评价土地重金属污染的量化指标。

整个应用流程可分为①土壤采样并编号②样本分析与数据采集③统计分析初步建立定量关系④室⑤内模拟实验,修正定量关系⑥总结评估,建立“土壤污染指数”。

这一应用思路总体还是基于生物学评价法的基本理论和方法,通过研究污染对跳虫群落结构和功能的影响,测得土壤重金属污染物对生态长期和综合影响的结果。

其量化因素主要是跳虫数量减少或消失,抗性强的种类保存下来,甚至发展,与生态环境基本相同的群落组成相比较,其种类组成和最小面积减少等。

通过量化分析,建立起清洁、轻度污染、中度污染和重度污染的重金属风险评价。

三、基于土壤重金属污染评价的土壤修复
在选修复技术时,应根据污染物的性质(如种类、形态、浓度等)、土壤条件(如pH、渗透性、地下水等)、污染程度、预期的修复目标,实践限制、成本、修复技术的适用范围等因素加以综合考虑,选择最适合的修复技术或其组合,达到高效,低耗的双重效果。

从工程措施修复方法来看,主要包括客土、换土和深耕翻土等措施。

深耕翻土用于轻度污染的土壤,而客土和换土则是用于重污染区。

工程措施是比较经典的土壤重金属污染治理措施,它具有彻底、稳定的优点,但实施工程量大、投资费用高,破坏土体结构,引起土壤肥力下降,并且还要对换出的污土进行堆放或处理。

另外,采用植物修复技术也是较为常用的一种土壤重金属污染修复方法。

如采用小花南芥可修复Pb、Zn复合污染,蜈蚣草可用于修复As污染,东南景天可
修复Cd、Pb、Zn、Cu复合污染,花葵可修复Cd污染,油菜可修复Cd污染。

与传统的修复技术相比, 植物修复易接受、成本低、技术要求低。

但也具备一定的局限性,如要求植株具有高的生物量;对污染物的耐受性要高;受植物根系分布的限制;受气候、土质等的影响;清除污染物所需的时间长;转基因技术的应用可能会造成潜在的环境污染等。

从目前土壤重金属污染修复技术的应用来看,虽然总体上取得了较大的进展,但从应用和推广方面尚缺乏规模性效益,一些修复技术还处在实验室模拟实验阶段,离较为成熟的应用还有较大距离。

重金属污染土壤的修复是一个系统工程,单一的修复技术很难达到预期效果,必须以植物修复为主,辅以物理化学、微生物及农业生态措施,增加重金属的生物有效性,促进植物的生长和吸收,从而提高植物修复的综合效率。

因此,生物修复综合技术将是今后重金属污染土壤修复技术的主要研究方向。

结论与总结
目前,我国土壤重金属污染及生态风险评价机制尚未完全建立,应用层面还缺乏系统性和全面性。

从目前进展来看,未来土壤重金属污染及生态风险评价应朝一个更为系统的标准体系方向发展,主要包括强化土壤安全标准的研究和制定,研究合理、可操作的土壤安全的分级方法。

加强土壤中重金属含量同农作物、蔬菜重金属积累的相关性研究,找出农作物、蔬菜从土壤中吸收重金属元素的规律和累积部位,为开展土地适宜性研究奠定基础。

还要加强土壤安全的预警研究工作,分析土壤重金属污染的变化趋势。

参考文献:
[1] 尚英男.土壤-植物的重金属污染特征及铅同位素示踪研究——以成都经济区典型城市为例[D].成都理工大学,2007.
[2] 樊文华,白中科,李慧峰等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.DOI:10.3969/j.issn.1002-6819.2011.01.056.
[3] 崔元俊,王红晋,赵西强等.山东省东部地区表层土壤重金属污染及生态效应评价[J].科学技术与工程,2012,12(23):5841-5846.DOI:10.3969/j.issn.1671-1815.2012.23.033.。

相关文档
最新文档