陆佩文材料科学基础名词解释-课后

合集下载

无机材料科学基础 陆佩文 课后答案

无机材料科学基础 陆佩文 课后答案

2-1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错 (c )类质同象与同质多晶解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。

如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。

(b )滑移方向与位错线垂直的位错称为刃型位错。

位错线与滑移方向相互平行的位错称为螺型位错。

(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。

同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。

2-6(1)在CaF 2晶体中,弗仑克尔缺陷形成能为2.8eV ,肖特基缺陷的生成能为5.5eV ,计算在25℃和1600℃时热缺陷的浓度?(k =1.38×10-23J/K )(2)如果CaF 2晶体中,含有百万分之一的YF 3杂质,则在1600℃时,CaF 2晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。

解:(1)弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能5.5eV ,所以CaF 2晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。

-----------1分当T =25℃=298K 时,热缺陷浓度为:2423192981006.2)2981038.1210602.18.2exp()2exp(---⨯=⨯⨯⨯⨯⨯-=∆-=⎪⎭⎫ ⎝⎛kT G N n f ----2分 当T =1600℃=1873K 时,热缺陷浓度为:423191873107.1)18731038.1210602.18.2exp()2exp(---⨯=⨯⨯⨯⨯⨯-=∆-=⎪⎭⎫ ⎝⎛kT G N n f -----2分 (2)CaF 2中含百万分之一(10-6)的YF 3时的杂质缺陷反应为:Ca F Ca CaF V F Y YF ''++−−→−•62223 由此可知:[YF3]=2[Ca V ''],所以当加入10-6YF3时,杂质缺陷的浓度为: 73105][21][-⨯==''YF V Ca 杂--------------------1分 此时,在1600℃下的热缺陷计算为:Cai Ca V Ca Ca ''+→•• x x +5×10-7 则:8241089.2)107.1()exp(][]][[--••⨯=⨯=∆-==''kTG k Ca V Ca f Ca Ca i 即:871089.21)105(--⨯=⨯+x x ,x ≈8.1×10-4 热缺陷浓度: 4101.8][-⨯=≈''x V Ca热------------------1分显然:][][热杂Ca CaV V ''>'',所以在1600℃时是弗仑克尔热缺陷占优势 2-10 ZnO 是六方晶系,a=0.3242nm ,c=0.5195nm ,每个晶胞中含2个ZnO 分子,测得晶体密度分别为5.74,5.606 g/cm 3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积 V===4.73cm 3在两种密度下晶胞的重量分别为W 1=d 1v=5.74×4.73×10-23=2.72×10-22(g) W 2=d 2v=5.606×4.73×10-23=2.65×10-22(g)理论上单位晶胞重W= =2.69(g)∴密度是d1时为间隙型固溶体,是d2时为置换型固溶体。

陆佩文版无机材料科学基础习题及解答第八章烧结

陆佩文版无机材料科学基础习题及解答第八章烧结

第八章烧结过程8-1 名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。

(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。

(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。

在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。

而在塔曼温度以上,主要为烧结,结晶黏结长大。

(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。

(5)固相烧结:在固态状态下进行的烧结。

(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。

(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象.(8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。

8-2 烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。

传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。

8-3 下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩? 试说明理由。

(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。

第四章材料科学基础武汉理工大学陆佩文

第四章材料科学基础武汉理工大学陆佩文

第四章材料科学基础武汉理工大学陆佩文第四章表面与界面内容提要:本章讨论1、固体表面张力场与表面能。

离子晶体在表面力场作用下,离子的极化与重排过程。

2、多相体系中的界面化学:如弯曲表面效应、润湿与粘附,表面的改性。

3、多晶材料中的晶界分类,多晶体的组织,晶界应力与电荷。

4、粘土胶粒带电与水化等一系列由表面效应而引起的胶体化学性质如泥浆的流动性、稳定性、泥团的触变性和可塑性等。

重点:润湿与粘附,粘土与水系统的胶体化学难点:晶体表面结构与多晶体组织§4-1固体的表面一、固体表面特征1、固体表面的不均一性(1)由于晶格缺陷、空位或位错而造成表面的不均一性。

(2)由于外来物质污染、吸附外来原子占据表面位置引起固体表面的不均一性。

2、固体表面力场固体表面力:固体表面质点排列的周期性重复中断,使处于表面边界上质点力场对称性破坏,表现出剩余的键力,即固体表面力。

(1)范德华力:分子引力,定向作用力(静电力:发生在极性分子之间诱导作用力发生在极性分子与非极性分子之间分散作用力(色散力),发生在非极性分子之间(2)长程力按作用原理不同,长程力两类:一类依靠粒子间的电场传播,如色散力,可简单加和。

另一类通过一个分子到另一个分子逐个传播而达长距离的,如诱导力。

二、晶体表面结构1、离子晶体的表面2、晶体表面的几何结构3、固体的表面能固体的表面能是用晶体中一个原子(离子)移到晶体表面时,自由焓的变化来计算的。

(即每增加单位表面积时,体系自由能的增量)§4-2界面行为一、弯曲表面效应1、弯曲表面的附加压力(1)定义:弯曲表面两边的压力差成为弯曲表面的附加压力。

符号:?P(2)产生原因:由于表面张力的作用。

(3)?P 与曲率半径R 的关系r P γ2=? (球形曲面))11(21r r P +=?γ (非球形曲面)式中γ——表面张力;21r r 、——曲面主曲率半径。

由上式可见,附加压力P ?与曲率半径成反比。

无机材料科学基础陆佩文课后答案

无机材料科学基础陆佩文课后答案

12-1名词解释(a )弗伦克尔缺陷与肖特基缺陷 ;(b )刃型位错和螺型位错(c )类质同象与同质多晶解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来 位置上形成空位,这种缺陷称为弗伦克尔缺陷。

如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶 体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。

( b )滑移方向与位错线垂直的位错称为刃型位错。

位错线与滑移方向相互平行的位错称为螺型位错。

(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变 化的现象。

同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。

2-6 (1)在CaFa 晶体中,弗仑克尔缺陷形成能为 2.8eV ,肖特基缺陷的生成能为5.5eV ,计算在25C 和1600C 时热一 23缺陷的浓度? ( k = 1.38 X 10 J/K )(2)如果CaE 晶体中,含有百万分之一的YR 杂质,则在1600 C 时,CaR 晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。

解:(1 )弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能 5.5eV ,所以Ca£晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。

------------- 1分 当T = 25C= 298K 时,热缺陷浓度为:19/ 2.8 1.602 10 、ccc" 24—exp( 天 )2.06 10 ---- 2 分2 1.38 10 23 298当T = 1600C= 1873K 时,热缺陷浓度为:19/ 2.8 1.602 10 、「“ 4exp( 元 )1.7 102 1.38 10 23 1873(2) CaF 2中含百万分之一(10 6)的YF 3时的杂质缺陷反应为:2YF 3 C aF2 2丫二 6F F V ca由此可知:[YF3]=2[V ca ],所以当加入10一6YF3时,杂质缺陷的浓度为:1[V Ca 杂]孑和彳]5 10 7 ------------------------ 1分此时,在1600 C 下的热缺陷计算为:x + 5X 10 一7exp(―—)N 2982kTG fN 1873eXP(2kT )CaCa??Ca i " V Ca则:99 [Ca i ][V Ca ] k[Ca Ca ]exp((1.7 10 4)2 2.89 10 8即: x (x 5 10 7)2.8910 8, x ~ 8.1 X 10一4]x8.1 10 4热缺陷浓度: [VCa热23显然:[V ca 杂][V ca 热],所以在1600 C 时是弗仑克尔热缺陷占优势2-10 ZnO 是六方晶系,a=0.3242nm , c=0.5195nm ,每个晶胞中含 2个ZnO 分子,测得晶体密度分别为5.74, 5.606g/cm 3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积=2.69幻广卸(g)•••密度是d1时为间隙型固溶体,是 d2时为置换型固溶体。

陆佩文材料科学基础名词解释(课后)-

陆佩文材料科学基础名词解释(课后)-

陆佩文材料科学基础名词解释(课后)-第二章晶体结构2.1名词解释晶体是由原子(或离子分子等)组成的固体物质晶体。

)在空间中周期性排列。

晶胞是能反映晶体结构特征的最小单位。

晶体可以看作是一堆无间隙的晶体单元。

晶体结构中的平行六面体单元晶格(空间晶格)是在三维空间中周期性排列的一系列几何点。

对称:物体的同一部分有规律地重复。

对称型:晶体结构中所有点对称元素(对称平面、对称中心、对称轴和旋转轴反向延伸)的集合,也称为点群。

空间群:指晶体结构中所有对称元素的集合brafi晶格以相同的方式将元素放置在每个晶格点上以获得实际晶体结构只有一个原子的晶格叫做布拉菲晶格范德华简分子间由于色散、诱导和取向而产生的吸引力的总配位数:晶体结构中任何原子周围的最近邻和等距原子数。

2.2试图从晶体结构的周期性讨论晶格结构不能有5个或6个以上的旋转对称?2.3金属镍具有最紧密堆积的立方结构。

一个晶胞中有多少个镍原子?如果已知镍原子的半径为0.125纳米,单位晶胞边长是多少?2.4金属铝属于立方晶系,边长为0.405纳米。

假设其质量密度为2.7g/m3,试确定其晶胞的Blavy晶格类型2.5晶体为四方结构,晶胞参数为a=b,c=a/2。

如果一个晶面在x y z 轴上的截距分别是2A3C6,试着给出晶面的米勒指数。

2.6尝试在立方晶体结构中绘制以下晶面(001)(110)(111),并标记以下晶体方向[210] [111] [101]。

2.14氯化铯(CsCl)晶体属于简单的立方结构,假设铯+和氯-沿立方对角线接触。

计算了氯化铯晶体结构中离子的堆积密度,并结合致密堆积结构的堆积密度讨论了其堆积特性。

根据面心立方,2.15氧化锂(Li2O)的晶体结构可视为O2的致密堆积。

Li+占据四面体空间。

如果Li+的半径为0.074nm,O2-的半径为0.140nm,则尝试计算li2o的单元电池常数II O2-的密集堆积所形成的空隙的最大半径,以容纳正离子2.16氧化镁具有氯化钠晶体结构。

材料科学基础(武汉理工陆佩文)课后习题答案大全

材料科学基础(武汉理工陆佩文)课后习题答案大全

1-10临界半径比的定义是:紧密堆积的阴离子恰好互相接触,并与中心的阳离子也恰好接触的条件下,阳离子半径与阴离子半径之比。

即每种配位体的阳、阴离子半径比的下限。

计算下列配位的临界半径比:(a)立方体配位;(b)八面体配位;(c)四面体配位;(d)三角形配位。

解:(1)立方体配位在立方体的对角线上正、负离子相互接触,在立方体的棱上两个负离子相互接触。

因此:(2)八面体配位在八面体中,中心对称的一对阴离子中心连线上正、负离子相互接触,棱上两个负离子相互接触。

因此:(3)四面体配位在四面体中中心正离子与四个负离子直接接触,四个负离子之间相互接触(中心角)。

因此:底面上对角中心线长为:(4)三角体配位在三角体中,在同一个平面上中心正离子与三个负离子直接接触,三个负离子之间相互接触。

因此:2-10ZnO是六方晶系,a=0.3242nm,c=0.5195nm,每个晶胞中含2个ZnO分子,测得晶体密度分别为5.74,5.606g/cm3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积V===4.73cm3在两种密度下晶胞的重量分别为W1=d1v=5.74×4.73×10-23=2.72×10-22(g)W2=d2v=5.606×4.73×10-23=2.65×10-22(g)理论上单位晶胞重W==2.69(g)∴密度是d1时为间隙型固溶体,是d2时为置换型固溶体。

2-11非化学计量化合物Fe x O中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。

解:非化学计量化合物Fe x O,可认为是α(mol)的Fe2O3溶入FeO中,缺陷反应式为:Fe2O32Fe+V+3O Oα2αα此非化学计量化合物的组成为:Fe Fe O已知:Fe3+/Fe2+=0.1则:∴α=0.044∴x=2α+(1-3α)=1-α=0.956又:∵[V3+]=α=0.044正常格点数N=1+x=1+0.956=1.956∴空位浓度为3-5玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数?解:Na2O CaO SiO2wt%131374mol0.210.23 1.23mol%12.613.873.6R=(12.6+13.8+73.6×2)/73.6=2.39∵Z=4∴X=2R﹣Z=2.39×2﹣4=0.72Y=Z﹣X=4﹣0.72=3.28氧桥%=3.28/(3.28×0.5+0.72)=69.5%3-9在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5,此时析晶能力是增强还是削弱?解:设加入x mol的Na2O,而SiO2的量为y mol。

无机材料科学基础 (陆佩文 著) 武汉工业大学出版社 课后答案

无机材料科学基础 (陆佩文 著) 武汉工业大学出版社 课后答案
图 2-1 MgO 晶体中不同晶面的氧离子排布示意图
2 面排列密度的定义为:在平面上球体所占的面积分数。
(a)画出 MgO(NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b)计算这三个晶面的面排列密度。 解:MgO 晶体中 O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a)(111)、(110)和(100)晶面上的氧离子排布情况如图 2-1 所示。
图 2-2 六方紧密堆积晶胞中 有关尺寸关系示意图
( ) c0 / a0 = 4 2 / 3r / 2r = 2 2 / 3 = 1.633

co / 2
(2r)2 − 2r /
2
3 =2
2 / 3r
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。 解:体心:原子数 2,配位数 8,堆积密度 55.5%;
密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm3) MgO 体积分数小于 74.05%,原因在于 r+/r-=0.072/0.14=0.4235>0.414,正负离子紧密接 触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不 再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数 74.05%。
面心:原子数 4,配位数 6,堆积密度 74.04%; 六方:原子数 6,配位数 6,堆积密度 74.04%。
7 设原子半径为 R,试计算体心立方堆积结构的(100)、(110)、(111)面的面排列 密度和晶面族的面间距。
解:在体心立方堆积结构中: a0 = 4 / 3R
( ) (100)面:面排列密度=

无机材料科学基础陆佩文

无机材料科学基础陆佩文
依键能大小,可把氧化物分为三类: (1)网络形成体,单键能>335kJ/mol以类氧化物可单独或玻 璃。 Si (2)网络变性体,单键能>250KkJ/mol,这类氧化物不能形成 玻璃,但能改变网络结构,从而改变玻璃性质。 Na (3)中间体介于(1)与(2)之间 AI 结论,在一定温度和组成,键强愈高,熔体中负离子愈牢固, 因而键的破坏和重组也愈难,成核住垒愈高,不易析晶易成玻 璃。
2、键型
化学键是决定物质性质的主要因素,极性共价键和 半金属共价键的离子才能形成玻璃,其它键型不易生 成。
A离子键化合物
熔融态-单独离子状态-流动性大-在凝固点靠库仑 力迅速成核,且离子键作用范围大,无方向性,有较 高的分配位数-成核几率高,难以成玻璃。
B金属键物质
熔融态-失去联系较弱电子-正离子状态-属键无方 向性且有取高配位数-原子相成核几率最大最不易成玻 璃。
(四个物理通性)
一、各向同性
玻璃内部任何方向性质均是相同的,与液体类似与晶体相反, 与统计结果吻合,如折射率、导电性、热膨胀系数等。
二、介稳性
玻璃体是一种介稳态,即在低温下保留了高温时的结构而不变 化,包含有过剩内能,有析晶可能。 热力学观点:玻璃为高能量状态必然自低能量状态较变,即析 晶。 动力学观点:市温下玻璃粘度大,较变为晶态速率十分小,相 对稳定
6、R2O用RO影响因素
(一)碱金属()熔体中,本身含量对粘度影响也不同
(二)碱土金属二价阳离子影响(RO)
粘度主要影响因素为离子半径
18电子层离子 多。
比8电子层离子:
顺序为:
粘度小→大
降低粘度更
半径大的离子易极化,极化变形使Si-O键削弱则降低粘度。
特殊氧化物B2O3影响 B2O3最初加入,硼处于三度空间连接的硼氧四面体,BO4 中结构网络紧密,粘度上升,B2O3含量增加,硼开始处于三体 中,结构网变松,粘度下降。

无机材料科学基础(陆佩文)

无机材料科学基础(陆佩文)

无机材料科学基础概论一. 研究对象与学习目的自古以来,材料的发展一直是人类文明的里程碑.材料、能源、•信息被公认为是现代文明的三大支柱.新材料已成为各个高技术领域的突破口.材料主要包括:金属材料、有机材料、无机非金属材料.本课程研究的对象是无机非金属材料.无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的.无机非金属材料的发展在国民经济中的重要作用是显而易见.研究的对象是"无机非金属材料〞,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等.从物质结构上看:可以包括单晶体、多晶体或无定形体.本专业主要研究多晶、多相无机非金属材料,也可称为"陶瓷".从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料.从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉与各个领域.传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等.现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料.如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环〔石墨〕、能承受超高温作用的结构部件.功能陶瓷:具有声、光、•电、•磁、•热等功能的陶瓷制品.•如:•压电陶瓷〔PbTiO3系>、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池〔β-Al2O3>材料等.我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律.至于如何具体从技术上实现这些,则属于工艺课的范畴.二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能与生产过程中的一些共性问题从理论上做了系统的讨论.该课程是后续工艺课的理论基础课,同样也是今后指导实际工作,进行理论研究的理论基础.其重要性显而易见.学习过程中实现思维方式的两个转变:--从微观结构的角度考虑问题如:扩散原高浓度—低浓度现为什么在不同的物质中扩散速度不同—结构决定--建立工程意识科学教育—是与非;工程教育—是否可行、是否有效、是否最优.谈到某一因素的影响时既有有利一面又有不利一面.应结合具体情况进行综合考虑.材料科学基础研究无机非金属材料的共性问题,是一门新兴学科,一些理论和学说仍在发展之中,这使我们更容易了解这些理论和学说建立的过程,从中可学习到材料科学的一些研究方法和研究思路.材料科学基础是以物理、化学、物化等学科的知识为基础.要求在学习过程中与时复习所涉与到的有关内容.材料科学基础是一门新兴学科,有些理论尚不成熟.在某些问题上不同学派存在不同观点,为了广泛了解这些观点授课内容不只限于选用教材.所以要求同学们课上做好笔记,课下多看参考书.为了加强同学们独立分析解决问题的能力,习题的选择有一定的难度.某些习题是课堂授课内容的延伸.希望能独立、认真地完成,以收到良好的学习效果.第一章晶体无机非金属材料所用原料与其制品大多数是以结晶状态存在的物质.然而不同的晶体结构具有不同的性质.例如 ,TiO2光催化材料可以在太阳光的照射下降解污染物,TiO2有金红石、锐钛矿、板钛矿等几种晶体结构,锐钛矿型TiO2材料的光催化性能优于金红石型;陶瓷行业中常用的粘土,由于晶体结构不同,工艺性能也表现出很大的差异;α-Al2O3是良好的绝缘材料,而β-Al2O3可作为电池中的电解质以离子导电的方式传递电荷.人们对晶体的研究首先是从研究晶体几何外形的特征开始的,1912年X射线晶体衍射实验的成功,使人们对晶体的研究从晶体的外部进入到了晶体的内部,使得对晶体的认识有了质的变化.晶体所具有的性质是由晶体中质点排列方式所决定,结构发生变化,性质随之发生变化.然而晶体结构又取决于晶体的化学组成,组成晶体的质点不同意味着质点间键的作用形式和排列方式发生改变.所以,本章主要研究晶体的组成、空间结构和性质之间的关系.本章主要介绍了几何结晶学、晶体化学的基本概念和原理.从这些基本原理出发,介绍了描述晶体结构的方法,包括:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置以通过这些方法掌握NaCl型、CsCl 型、闪锌矿型、萤石型、刚玉型的晶体结构,并了解纤锌矿型、金红石型、碘化镉CdI2型、钙钛矿型和尖晶石型结构.在此基础上,了解晶体的组成、空间结构和性质之间的关系.第一节几何结晶学基本概念一、晶体的定义1、定义晶体是内部质点在三维空间作有规则的周期性重复排列的固体,是具有格子构造的固体.晶体的这一定义表明,不论晶体的组成如何不同,也不论其表观是否具有规则的几何外形,晶体的共同特征是内部质点在三维空间按周期性的重复排列.不具备这一特征的物体就不是晶体.以NaCl晶体为例.NaCl的晶胞结构2、空间点阵〔空间格子〕在三维空间按周期性重复排列的几何点的集合称为空间点阵〔空间格子〕.空间点阵〔空间格子〕中的结点是抽象的几何点并非实际晶体中的质点.阵点或结点:空间点阵中的几何点称为阵点或结点.等同点:同一套空间格子中的结点叫等同点.实际晶体是由组成晶体的离子或原子去占据一套或几套穿插在一起的空间格子的结点位置而构成.实际晶体的内部质点是有实际内容的原子或离子.实际晶体中化学组成相同、结晶化学环境相同的质点占据的结点构成一套等同点.所谓结晶化学环境相同是指质点周围在相同方位上离开相同距离有相同的质点.晶体中有几套空间格子就有几套等同点,判断晶体中有几套空间格子的方法是看晶体中有几套等同点.NaCl晶体有2套空间格子,Na+ 离子和Cl-离子各构成一套空间格子.CsCl晶体有2套空间格子,Cs+ 离子和Cl-离子各构成一套空间格子.CaF2 晶体有3套空间格子,Ca2+离子构成一套空间格子;F-离子有两套空间格子. 3、晶体的性质:结晶均一性、各向异性、自限性、对称性、最小内能性.二、晶系:根据晶体的对称性,将晶体分为三大晶族、七大晶系.高级晶族:立方晶系〔等轴晶系〕中级晶族:六方晶系、三方晶系〔菱方晶系〕、四方晶系〔正方晶系〕低级晶族:斜方晶系〔正交晶系〕、单斜晶系、三斜晶系三、晶胞晶胞是晶体中重复出现的最小结构单元,它包含了整个晶体的特点.对应于七大晶系,晶胞形状有七种.四、空间格子的类型:〔14种布拉维空间格子〕以等同点为基准取晶胞,根据七大晶系,晶胞的形状共有7种. 等同点在晶胞的位置可以有以下几种:1.原始式:等同点占据晶胞的各个角顶2.体心式:等同点占据晶胞的各个角顶和体心3.面心式:等同点占据晶胞的各个角顶和面心4.底心式:等同点占据晶胞的各个角顶和上下底面中心根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子〔布拉维空间点阵〕.晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞原始式四方晶胞原始式体心式斜方晶胞原始式体心式面心式底心式单斜晶胞原始式体心式三斜晶胞原始式如:①NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成.②CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成.CsCl晶体结构③立方ZnS〔闪锌矿〕晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成.④CaF2〔萤石〕晶体是由一套Ca2+离子立方面心格子和两套F-离子立方面心格子穿插而成.⑤TiO2〔金红石〕晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成.第二节晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键.分子键:分子间较弱的相互作用力.电负性〔X〕可衡量电子转移的情况,因而可用来判断化学键的键型.原子的X越大,越易得到电子,X 大于2,呈非金属性;原子的X越小,越易失去电子,X小于2,呈金属性.化学键的类型:离子键:凡是X值相差大的不同种原子作用形成离子键.X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子.如:碱土金属与氧原子结合.离子键无饱和性和方向性.共价键:凡是X值较大的同种或不同种原子组成共价键.共价键有饱和性和方向性.金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中.金属键无饱和性和方向性.分子键的类型:范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和.氢键:X—H…Y,可将其归入分子键.氢键键键力 > 范德华键键力一般的情况下各种键的强度顺序如下:共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键.2.键型的过渡性凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键型.如:Si-O键〔共价键和离子键成份各占50%〕.依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp[-1/4〔xA-xB〕2]二离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F∝<q1q2>/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大.当引力=斥力时处于平衡,平衡间距r=r0.r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和.对于存在于离子晶体中的离子,它有确定的离子半径.r0=r++ r-三、球体的堆积方式:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定.球体的堆积倾向于最紧密方式堆积.2. 等径球体的堆积方式:〔1〕最紧密堆积①六方最紧密堆积:ABAB……〔ACAC……〕每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子.其密排面//〔0001〕②立方最紧密堆积:ABCABC……〔ACBACB……〕每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子.其密排面//〔111〕除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC……,每四层重复一次,或ABABCABABC……,每五层重复一次,等等.密堆率〔堆积系数〕:晶胞中含有的球体体积与晶胞体积之比.最紧密堆积密堆率都是74.05%,空隙率25.95%.最紧密堆积体中是有空隙的,空隙类型有:①四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体.②八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体.空隙半径〔空隙中内切球半径〕:八面体>四面体有n个球体作最紧密堆积:①每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2②每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个八面体空隙.〔2〕简单立方堆积简单立方堆积不是最紧密堆积.球体分布方式与立方原始格子相对应,密堆率为52%.堆积体中只形成立方体空隙〔8个球包围,其球心连线形成一个立方体〕.同理可知,n 个球做简单立方堆积有n个立方体空隙.〔3〕不等径球体的堆积不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中.在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中.用这种方式描述离子晶体结构,虽不严密但有助于我们想象.如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙.CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中.ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙.CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙.不等径球体堆积达到的密堆率可以大于等径球体的密堆率.四、配位数〔CN〕:定义在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数.如:NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体配位数决定了配位多面体的形态.配位数:8——配位多面体:立方体;配位数:4——配位多面体:四面体假设离子是刚性球,正离子的配位数由R+/R-决定:在最紧密堆积体中,八面体空隙内切球的半径:设:堆积球的半径为R,八面体空隙内切球的半径为r,连接四个堆积球的球心为正方形, 所以, 2〔2R〕2=〔2R+2r〕2解得,1.414R=R+r 所以, r/ R=0.414可见,当R+/ R-=0.414 时,正离子恰好填入八面体空隙,此时正离子的配位数为6.同理,当R+/ R-=0.225时,正离子恰好填入四面体空隙,此时正离子的配位数为4.当R+/ R-=0.732 时,正离子恰好填入立方体空隙,此时正离子的配位数为8.实际上,离子晶体中的R+/ R-很少恰好是这些数值,当R+/ R-在两临界值之间时,配位数取下限值.正离子的配位数与R+/ R-的关系如下:R+/ R- <0.155≤R+/ R- <0.225≤R+/ R- <0.414≤ R+/ R- <0.732≤ R+/ R- <1≤ R+/ R-配位数 2 3 4 6 8 12 注意:当配位数为12 相当于等径球体的最紧密堆积.3. 离子的极化对晶体结构的影响在外电场作用下离子被极化,产生偶极矩.离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力.极化率〔极化系数〕α:离子被极化的难易程度〔α越大,变形程度越大;α越小,变形程度越小〕极化力β:离子极化其它离子的能力,主极化.一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅β大.而且α也大,总的极化作用大大加强,晶体结构类型可能因此而改变.* 例:离子极化对卤化银晶体结构的影响AgClAgBrAgIR+/R-0.6350.5870.523实际配位数664〔理论为6〕理论结构类型NaClNaClNaC l实际结构类型NaClNaCl立方ZnS五、决定离子晶体结构的因素——结晶化学定律离子晶体结构取决其组成质点的数量关系、大小关系和极化性能.数量关系:正负离子的比例,如:NaCl中为1:1〔两套立方面心格子〕,CaF2中为1:2〔三套立方面心格子〕大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6.CsCl 中,R+/R-=1.69/1.81=0.93,CN=8.极化性能:AgCl,CN=6;AgI,CN=4.六、晶格能1.定义:把1mol离子晶体中各离子拆散至气态时所需要的能量.对于二元离子晶体U=W1W2e2N0A<1-1/n>/r0其中:W1W2——正负离子的电价, e——电子电荷,r0——平衡间距,N0——阿佛加德罗常数,A——马德伦常数, n——波恩指数.2.晶格能的意义:对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质如:MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型,故:晶格能UMgO>U CaO >U SrO >UBaO故熔点 MgO>CaO>SrO>BaO硬度 MgO>CaO>SrO>BaO在利用晶格能比较晶体物理性质时必须注意极化的影响,如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZr<RCe<RTh晶格能U ZrO2>U CeO2>U ThO2实际熔点为:2710℃<2750℃<3050℃,熔点ZrO2最低而ThO2最高.七从多面体堆积角度认识晶体——鲍林规则1 第一规则:关于组成负离子多面体的规则在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比.2 第二规则:电价规则在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和.W-=∑Si〔偏差不超过1/4价〕其中:Si—静电键强度〔中心正离子分配给每个负离子的电价分数〕〔1〕对于二元晶体可推断其结构〔已知结构稳定〕如:NaClR+/R-=0.95/1.81=0.52,形成[NaCl6]八面体,Si=1/6∴W-=1=∑Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个[NaCl6]八面体的共用顶点.〔2〕判断结构是否稳定〔已知结构〕如:镁橄榄石〔Mg2SiO4〕已知结构中,一个[SiO4]四面体和三个[MgO6]八面体共用一个O顶点∴∑Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著.阴离子多面体存在方式不连共顶共棱共面阴离子多面体共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小.正离子间距减小,排斥力增大,不稳定程度增大.4、第四规则:不同种类配位多面体之间的连接规则在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点.该规则的物理基础与第三规则相同.5、第五规则:节约规则八、典型无机化合物的结构* 描述晶体结构的方法:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置1、AX型〔1〕NaCl型方法i:一套Cl-和一套Na+的立方面心格子穿插而成.方法ii:Cl-做立方最紧密堆积,Na+填充全部的八面体空隙.方法iii:第一规则:RNa+/RCl-=0.52,形成[NaCl6]八面体.第二规则:已知结构稳定,W-=1=∑Si在[NaCl6]八面体中,Si=1/6 ∴1=1/6*i 推出:i=6即:每个Cl-是6个[NaCl6]八面体的共用顶点.第三规则:最高连接方式是共棱连接,结构稳定.方法iv:Cl-为基准取晶胞,立方晶胞:Cl- <0,0,0>,<1/2,0,1/2>,<0,1/2,1/2>,<1/2,1/2,0>Na+ <1/2,1/2,1/2>NaCl晶胞中含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4即:每个晶胞中含有4个式量分子.〔"分子〞〕碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构.〔其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子〕〔2〕CsCl型方法i:由一套Cl-和一套Cs+离子的立方原始格子穿插而成.方法ii:Cl-做简单立方堆积,Cs+填充全部立方体空隙.方法iii:第一规则:RCs+/RCl-=0.167/0.181=0.93,形成[CsCl8]立方体第二规则:W-=1=∑Si在[CsCl8]立方体中,Si=1/8 ∴1=1/8*i 推出:i=8即:每个Cl-是8个[CsCl8]立方体的共用顶点.方法iv:立方晶胞:Cl-:<0,0,0>Cs+:<1/2,1/2,1/2>晶胞中含有的式量分子数:Cs+:体心 1Cl-:角顶 1/8*8=1即:每个晶胞中含有1个CsCl式量分子.属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等〔3〕闪锌矿型〔立方ZnS〕方法i:由一套S2-和一套Zn2+的立方面心格子穿插而成.方法ii:S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙.方法iii:R Zn2+/R S2-=0.44,理论上为[ZnO6]八面体,实际为[ZnO4]四面体.W-=2=∑Si Si=2/4=1/2 ∴1/2*i=2 推出:i=4即:每个S2-是4 个[ZnO4]四面体的共用顶点.最高连接方式为共顶连接.立方晶胞中S2-:<0,0,0>,<0,1/2,1/2>,<1/2,0,1/2>,<1/2,1/2,0>Zn2+:<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4>,<3/4,3/4,3/4> 晶胞中含有的式量分子数:S2-:各角顶,各面心 1/8*8+1/2*6=4Zn2+:各1/8小立方体的体心 8*1/2=4即:每个晶胞含有4个ZnS"分子".β-SiC、GaAs、AlP、InSb等具有该类型结构.〔4〕纤锌矿型〔六方ZnS〕由2套S2-和2套Zn2+的六方底心格子穿插而成.2. AX2型〔1〕CaF2〔萤石型〕方法i:由一套Ca2+和2套F-的立方面心格子穿插而成.方法ii:F-做简单立方堆积,Ca2+填充一半的立方体空隙.方法iii:R Ca2+/R F-=0.112/0.131=0.85,形成[CaF8]立方体W-=1=∑Si Si=2/8=1/4 ∴1/4*i=1 推出:i=4即:4个[CaF8]立方体共用1 个顶点最高连接方式为共棱连接.方法iv:立方晶胞:Ca2+:<0,0,0>,<1/2,1/2,0>,<1/2,0,1/2>,<0,1/2,1/2>F-:<1/4,1/4,1/4>,<3/4,3/4,1/4>,<3/4,1/4,3/4>,<1/4,3/4,3/4>,<3/4,3/4,3/4>,<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4> 晶胞中含有的式量分子数:Ca2+:各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8即:每个晶胞中含有4个CaF2式量分子.该类型结构晶体有ZrO2、UO2、ThO2等* 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙.晶体举例:碱金属氧化物Li2O、Na2O、K2O〔2〕TiO2〔金红石型〕方法i:由2套Ti4+和4套O2-的四方原始格子穿插而成.方法ii:O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙.方法iii:R Ti4+/R O2-=0.06/0.125=0.46,形成[TiO6]八面体W-=2=∑Si Si=4/6=2/3 ∴2/3*i=2 推出:i=3即:每个O2-是三个[TiO6]八面体的共用顶点.最高连接方式为共棱连接.方法v:四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心、4个小立方体底心 2+4*1/2=4即:每个晶体中含有2个TiO2式量分子.晶体举例:GeO2、SnO2、PbO2、MnO2等.* TiO2变体:①金红石型:八面体之间共用棱边数为2条②板钛矿型:八面体之间共用棱边数为3条③锐钛矿型:八面体之间共用棱边数为4条〔3〕CdI2型I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙.填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体.两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接.方法iii:R Cd2+/R I-=0.095/0.22=0.44,形成[CdI6]八面体W-=1=∑Si Si=2/6=1/3 ∴1/3*i=1 推出:i=3即:每个I-是三个[CdI6]八面体的共用顶点.晶体举例:Mg<OH>2、Ca<OH> 23. A2X3型:α-Al2O3〔刚玉型〕——三方晶系O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙.晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但α-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多.R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成[AlO6]八面体W-=2=∑Si Si=3/6=1/2 ∴1/2*i=2 推出:i=4即:每个O2-是4个[AlO6]八面体的共用顶点.晶体举例:α-Fe2O3、Cr2O3、Ti2O3、V2O3等.4、ABO3型:〔1〕 CaTiO3〔钙钛矿型〕Ca2+:个角顶 O2-:个面心 Ti4+:体心——[TiO6]Ti4+:个角顶 Ca2+:体心 O2-:各边边心——[CaO12]可视做Ca2+、 O2-〔较大的Ca2+〕做立方最紧密堆积〔2〕钛铁矿:FeTiO3〔A离子较小〕O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙.〔3〕络阴离子团的ABO3:CaCO3〔B离子较小〕5、AB2O4型:MgAl2O4〔镁铝尖晶石〕O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙.将一个晶胞分为8个小立方体〔4个为A,4个为B〕其中A:O2-:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:O2-:各角顶、各面心 Al3+:另6条边边心和体心无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙.反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙.第二章晶体缺陷固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低.晶体中的原子按理想的晶格点阵排列.实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷.结构缺陷的存在与其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础.晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类.其中点缺陷按形成原因又可分为热缺陷、组成缺陷〔固溶体〕和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响.本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解.第一节热缺陷一.热缺陷定义当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷.由于质点热运动产生的缺陷称为热缺陷.二.热缺陷产生的原因当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷.三.热缺陷的基本类型1.肖特基缺陷。

第三章材料科学基础武汉理工大学陆佩文

第三章材料科学基础武汉理工大学陆佩文

第三章材料科学基础武汉理工大学陆佩文第三章熔体与玻璃体内容提要:本章主要叙述1、硅酸盐熔体的结构——聚合物理论。

2、熔体的性质:粘度和表面张力。

3、玻璃的四个通性。

4、玻璃形成的动力学手段——3T图(时间-温度-转变)的绘制和形成玻璃的结晶化学条件。

5、玻璃的结构:晶子假说和无规则网络假说的主要实验依据和论点。

硅酸盐玻璃和硼酸盐玻璃结构与性质。

重点:熔体的性质玻璃的结构难点:熔体的结构——聚合物理论§3-1熔体的结构——聚合物理论一、聚合物的形成聚合物:由单个、两个、三个或n个[SiO4]4-四面体构成的络阴离子团。

如:[SiO7]6-、[Si3O10]8-、[Si n O3n+1]2(n+1) 低聚物:聚合物中含[SiO4]4-四面体较少的络阴离子团。

高聚物:聚合物中含[SiO4]4-四面体较多的络阴离子团。

硅酸盐熔体聚合物的形成可以分为三个阶段:1、熔融石英的分化:初期由于Si—O键具有高键能、方向性和低配位等特点,当石英晶体受碱作用而分化,随O/Si比增加,使部分桥氧断裂成非桥氧,从而使高聚体石英分化为三维碎片、高聚物、低聚物和单体;2、中期各类聚合物缩聚并伴随变形;3、后期在一定时间和温度下,聚合解聚达到平衡。

产物中有低聚物[Si3O10]8-、高聚物[Sin O13+n])1(2+n、三维碎片[SiO2]n、(MO)。

因而熔体是不同聚合程度的各种聚合物的混合物。

聚合物的种类、大小和数量随熔体的组成和温度而变化。

多种聚合物同时并存而不是一种独存是构成熔体结构近程有序而远程无序的必然结果,是熔体结构远程无序的实质。

二、影响聚合物聚合程度的因素1、当熔体组成不变时,各种聚合物的浓度与温度有关T↑, 低聚物浓度↑; T↓, 低聚物浓度↓, 高聚物浓度↑.2、当熔体温度不变时,各种聚合程度的聚合物的浓度与熔体的组成有关R↑,碱金属氧化物↑,低聚物浓度↑;R↓, 碱金属氧化物↓,高聚物浓度↑.§3-2熔体的性质一、粘度1、定义:熔体流动的特点是在切向力作用下,产生的剪切速度dxdv与剪切应力σ成正比。

第八章材料科学基础武汉理工大学陆佩文

第八章材料科学基础武汉理工大学陆佩文

第八章相变内容提要:本章介绍1、相变的分类。

2、液固相变过程的热力学、动力。

3、液-液相变过程。

重点:1、相变过程的推动力及晶核形成条件。

2、析晶过程难点:液-液相变过程相变过程是物质从一个相庄、转变为另一个相的过程。

一般相变前后相的化学组成不变。

狭义上讲,相变仅限于同组成的两相之间的结构变化。

广义概念,相变应包括过程前后相组成发生变化的情况。

§8-1相变的分类分类方法有很多,目前有以下几种:按热力学分类;按相变方式分类;按质点迁移方式分类。

一、按热力学分类一级相变:相变时两相化学势相等但化学势的一阶偏微商不相等称为一级相变。

发生一级相变时有潜热和体积的变化。

因此,熔化、升华、凝固、气化、晶型转变都属于一级相变。

二级相变:相变时两相化学势相等,其一阶偏微商也相等,但二阶偏微商不相等称为二级相变。

发生二级相变时无潜热和体积变化,只有热容量、膨胀系数和压缩系数的变化。

二、按相变方式分类成核—长大型相变:由组成波动程度大、空间范围小的浓度起伏开始发生的相变。

初期起伏生成新相核心,然后是新相核心长大。

有均匀成核和非均匀成核两类。

连续型相变:由组成波动程度小、空间波动范围广的起伏引起的相变,即起伏连续地生长而形成新相。

三、按质点迁移方式分类扩散型相变:相变过程依靠原子(或离子)的扩散来进行的相变.无扩散型相变:相变过程不存在原子(或离子)的扩散,或虽存在扩散但不是相变所必需的或不是主要过程的相变.马氏体相变马氏体相变的特征是相变时新相和母相之间具有严格的趋向关系,靠切变维持共格晶界,并存在一个习性平面,在相变前后保持既不扭曲变形也不旋转变形的状态。

§8-2液-固相变过程热力学一、相变过程的不平衡状态及亚稳区亚稳区:理论上应发生相变而实际上不能发生相转变的区域由此得出:(1)亚稳区具有不平衡状态的特征,是物相在理论上不能稳定存在,而实际上却能稳定存在的区域;(2)在亚稳区内,物系不能自发产生新相,要产生新相,必然要越过亚稳区,这就是过冷却的原因;(3)在亚稳区内虽然不能自发产生新相,但是当有外来杂质存在时,或在外界能量影响下,也有可能在亚稳区内形成新相,此时使亚稳区缩小。

陆佩文材料科学基础 名词解释 -课后汇总

陆佩文材料科学基础 名词解释 -课后汇总

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性。

2、宇文皓月3、中间相:两组元A和B组成合金时,除了形成以A为基或以B 为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

4、亚稳相:亚稳相指的是热力学上不克不及稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转变成稳定相而暂时稳定存在的一种相。

5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

6、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新发生了无畸变的新晶粒,而性能也发生了明显的变更并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)。

7、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为共晶组织。

8、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

9、过时效:铝合金经固溶处理后,在加热保温过程中将先后析出GP降,这种现象称为过时效。

10、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化。

11、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的强度得到加强的现象。

12、弥散强化:许多资料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在资料内,这种资料的强度往往会增加,称为弥散强化。

13、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

14、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态。

15、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错。

16、包晶转变:包晶转变就是以结晶的固相与剩余液相反应形成另一固相的恒温转变。

第九章材料科学基础武汉理工大学陆佩文

第九章材料科学基础武汉理工大学陆佩文

第九章烧结内容提要:本章叙述1、烧结定义、推动力和基本模型。

2、分析纯固态和有液相参与的烧结过程中,四种基本传质产生的原因、条件、特点和动力学方程。

3、烧结过程中晶粒生长与二次再结晶的控制和影响烧结的因素。

4、特种烧结原理简介。

重点:1、四种基本传质产生的原因、条件、特点和动力学方程。

2、烧结过程中晶粒生长与二次再结晶的控制和影响烧结的因素。

烧结的目的:是把粉状物料转变为致密体。

烧结致密体的显微结构:是由晶体、玻璃体和气孔组成。

§9-1概述一、烧结定义1、烧结的物理过程颗粒间接触面积扩大;颗粒聚集;颗粒中心距逼近;逐渐形成晶界;气孔形状变化;体积缩小;从连通的气孔变成各自独立的气孔并逐渐缩小,以致最后大部分甚至全部气孔从晶体中排除2、烧结的定义(1)根据烧结粉末体所出现的宏观变化:烧结过宏观定义是:一种或多种固体(金属、氧化物、氮化物、粘土等)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。

(2)烧结的微观本质认为:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。

(3)衡量烧结程度的指标:①坯体收缩率②气孔率③吸水率④相对密度二、与烧结有关的概念1、烧结与烧成烧结:包括多种物理和化学变化烧成:仅指粉料经加热而致密化的简单物理过程。

2、烧结与熔融烧结是在低于固态物质的熔融温度下进行的。

烧结温度和熔融温度的关系:金属粉末T s≈ ( 0.3 ~0.4 ) T M盐类T s≈ 0.57 T M硅酸盐T s≈ ( 0.8 ~0.9 ) T M3、烧结与固相反应相同点:均在低于材料熔点或熔融温度下进行,并且过程中都至少有一相是固相。

不同点:固相反应至少有两组分参加,并发生化学反应,生成化合物;烧结可以是单组分或两组分参加,两组分间不发生化学反应。

烧结使材料更加致密,但结构并不发生变化。

陆佩文材料科学基础名词解释-课后

陆佩文材料科学基础名词解释-课后

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

无机陆佩文课后答案无机材料科学基础课后答案

无机陆佩文课后答案无机材料科学基础课后答案

无机陆佩文课后答案无机材料科学基础课后答案导读:就爱阅读网友为您分享以下“无机材料科学基础课后答案”的资讯,希望对您有所帮助,感谢您对的支持!4-19试简述哪些物质可以形成非晶态固体(NCS)?形成(NCS)的手段有哪些?可以用什么实验方法研究NCS结构?解:熔体和玻璃体可以形成非晶态固体。

将熔体和玻璃体过冷可以得到非晶态固体。

4-20试简述淬火玻璃与退火玻璃在结构与性能上有何差异?解:消除和均衡由温度梯度产生的内应力的玻璃为退火玻璃,这类玻璃不易碎裂且切割方便。

淬火处理是将制品加热至接近其软化温度,使玻璃完全退火,然后进行迅速冷却(淬火处理)。

因此产生均匀的内应力,从而使玻璃表面产生预加压应力,增加了抗弯、抗冲击的抗扭曲变形的能力。

4-21以下三种物质,哪个最容易形成玻璃?哪个最不容易形成玻璃,为什么?(1)Na2O·2SiO2;(2)Na2O·SiO2;(3)NaCl解:(1)最容易形成玻璃,(3)最不容易形成玻璃。

经计算可知R1=2.5,R2=3,Y1=3,Y2=2Y1&gt;Y2,高温下(1)粘度大,容易形成玻璃,NaCl不具备网络结构,为典型的离子晶体很难形成玻璃。

4-22查阅下列系统的粘度和Tg/TM等有关数据,试判断下列系统形成玻璃可能性的顺序。

(1)GeO2·SiO2,以100℃/s冷却;(2)GeO2·SiO2气相沉积在0℃SiO2基板上;(3)金属金气相沉积在0℃铜基板上;(4)A12O3气相沉积在0℃A12O3基板上;(5)液态硫以1℃/s冷却;6(6)液态金以10℃/s冷却;(7)气态NaCl在0℃A12O3基板上冷却;(8)液态ZnCl2以100℃/s冷却。

解:略。

4-23若将10mol%Na2O加入到SiO2中去,计算O∶Si比例是多少?这样一种配比有形成玻璃趋向吗?为什么?解:,这种配比有形成玻璃的趋向,因为此时结构维持三维架状结构,玻璃的粘度还较大,容易形成玻璃。

无机材料科学基础(陆佩文)

无机材料科学基础(陆佩文)

无机材料科学基础概论一. 研究对象与学习目的自古以来,材料的发展一直是人类文明的里程碑.材料、能源、•信息被公认为是现代文明的三大支柱.新材料已成为各个高技术领域的突破口.材料主要包括:金属材料、有机材料、无机非金属材料.本课程研究的对象是无机非金属材料.无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的.无机非金属材料的发展在国民经济中的重要作用是显而易见.研究的对象是"无机非金属材料〞,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等.从物质结构上看:可以包括单晶体、多晶体或无定形体.本专业主要研究多晶、多相无机非金属材料,也可称为"陶瓷".从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料.从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉与各个领域.传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等.现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料.如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环〔石墨〕、能承受超高温作用的结构部件.功能陶瓷:具有声、光、•电、•磁、•热等功能的陶瓷制品.•如:•压电陶瓷〔PbTiO3系>、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池〔β-Al2O3>材料等.我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律.至于如何具体从技术上实现这些,则属于工艺课的范畴.二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能与生产过程中的一些共性问题从理论上做了系统的讨论.该课程是后续工艺课的理论基础课,同样也是今后指导实际工作,进行理论研究的理论基础.其重要性显而易见.学习过程中实现思维方式的两个转变:--从微观结构的角度考虑问题如:扩散原高浓度—低浓度现为什么在不同的物质中扩散速度不同—结构决定--建立工程意识科学教育—是与非;工程教育—是否可行、是否有效、是否最优.谈到某一因素的影响时既有有利一面又有不利一面.应结合具体情况进行综合考虑.材料科学基础研究无机非金属材料的共性问题,是一门新兴学科,一些理论和学说仍在发展之中,这使我们更容易了解这些理论和学说建立的过程,从中可学习到材料科学的一些研究方法和研究思路.材料科学基础是以物理、化学、物化等学科的知识为基础.要求在学习过程中与时复习所涉与到的有关内容.材料科学基础是一门新兴学科,有些理论尚不成熟.在某些问题上不同学派存在不同观点,为了广泛了解这些观点授课内容不只限于选用教材.所以要求同学们课上做好笔记,课下多看参考书.为了加强同学们独立分析解决问题的能力,习题的选择有一定的难度.某些习题是课堂授课内容的延伸.希望能独立、认真地完成,以收到良好的学习效果.第一章晶体无机非金属材料所用原料与其制品大多数是以结晶状态存在的物质.然而不同的晶体结构具有不同的性质.例如 ,TiO2光催化材料可以在太阳光的照射下降解污染物,TiO2有金红石、锐钛矿、板钛矿等几种晶体结构,锐钛矿型TiO2材料的光催化性能优于金红石型;陶瓷行业中常用的粘土,由于晶体结构不同,工艺性能也表现出很大的差异;α-Al2O3是良好的绝缘材料,而β-Al2O3可作为电池中的电解质以离子导电的方式传递电荷.人们对晶体的研究首先是从研究晶体几何外形的特征开始的,1912年X射线晶体衍射实验的成功,使人们对晶体的研究从晶体的外部进入到了晶体的内部,使得对晶体的认识有了质的变化.晶体所具有的性质是由晶体中质点排列方式所决定,结构发生变化,性质随之发生变化.然而晶体结构又取决于晶体的化学组成,组成晶体的质点不同意味着质点间键的作用形式和排列方式发生改变.所以,本章主要研究晶体的组成、空间结构和性质之间的关系.本章主要介绍了几何结晶学、晶体化学的基本概念和原理.从这些基本原理出发,介绍了描述晶体结构的方法,包括:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置以通过这些方法掌握NaCl型、CsCl 型、闪锌矿型、萤石型、刚玉型的晶体结构,并了解纤锌矿型、金红石型、碘化镉CdI2型、钙钛矿型和尖晶石型结构.在此基础上,了解晶体的组成、空间结构和性质之间的关系.第一节几何结晶学基本概念一、晶体的定义1、定义晶体是内部质点在三维空间作有规则的周期性重复排列的固体,是具有格子构造的固体.晶体的这一定义表明,不论晶体的组成如何不同,也不论其表观是否具有规则的几何外形,晶体的共同特征是内部质点在三维空间按周期性的重复排列.不具备这一特征的物体就不是晶体.以NaCl晶体为例.NaCl的晶胞结构2、空间点阵〔空间格子〕在三维空间按周期性重复排列的几何点的集合称为空间点阵〔空间格子〕.空间点阵〔空间格子〕中的结点是抽象的几何点并非实际晶体中的质点.阵点或结点:空间点阵中的几何点称为阵点或结点.等同点:同一套空间格子中的结点叫等同点.实际晶体是由组成晶体的离子或原子去占据一套或几套穿插在一起的空间格子的结点位置而构成.实际晶体的内部质点是有实际内容的原子或离子.实际晶体中化学组成相同、结晶化学环境相同的质点占据的结点构成一套等同点.所谓结晶化学环境相同是指质点周围在相同方位上离开相同距离有相同的质点.晶体中有几套空间格子就有几套等同点,判断晶体中有几套空间格子的方法是看晶体中有几套等同点.NaCl晶体有2套空间格子,Na+ 离子和Cl-离子各构成一套空间格子.CsCl晶体有2套空间格子,Cs+ 离子和Cl-离子各构成一套空间格子.CaF2 晶体有3套空间格子,Ca2+离子构成一套空间格子;F-离子有两套空间格子. 3、晶体的性质:结晶均一性、各向异性、自限性、对称性、最小内能性.二、晶系:根据晶体的对称性,将晶体分为三大晶族、七大晶系.高级晶族:立方晶系〔等轴晶系〕中级晶族:六方晶系、三方晶系〔菱方晶系〕、四方晶系〔正方晶系〕低级晶族:斜方晶系〔正交晶系〕、单斜晶系、三斜晶系三、晶胞晶胞是晶体中重复出现的最小结构单元,它包含了整个晶体的特点.对应于七大晶系,晶胞形状有七种.四、空间格子的类型:〔14种布拉维空间格子〕以等同点为基准取晶胞,根据七大晶系,晶胞的形状共有7种. 等同点在晶胞的位置可以有以下几种:1.原始式:等同点占据晶胞的各个角顶2.体心式:等同点占据晶胞的各个角顶和体心3.面心式:等同点占据晶胞的各个角顶和面心4.底心式:等同点占据晶胞的各个角顶和上下底面中心根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子〔布拉维空间点阵〕.晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞原始式四方晶胞原始式体心式斜方晶胞原始式体心式面心式底心式单斜晶胞原始式体心式三斜晶胞原始式如:①NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成.②CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成.CsCl晶体结构③立方ZnS〔闪锌矿〕晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成.④CaF2〔萤石〕晶体是由一套Ca2+离子立方面心格子和两套F-离子立方面心格子穿插而成.⑤TiO2〔金红石〕晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成.第二节晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键.分子键:分子间较弱的相互作用力.电负性〔X〕可衡量电子转移的情况,因而可用来判断化学键的键型.原子的X越大,越易得到电子,X 大于2,呈非金属性;原子的X越小,越易失去电子,X小于2,呈金属性.化学键的类型:离子键:凡是X值相差大的不同种原子作用形成离子键.X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子.如:碱土金属与氧原子结合.离子键无饱和性和方向性.共价键:凡是X值较大的同种或不同种原子组成共价键.共价键有饱和性和方向性.金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中.金属键无饱和性和方向性.分子键的类型:范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和.氢键:X—H…Y,可将其归入分子键.氢键键键力 > 范德华键键力一般的情况下各种键的强度顺序如下:共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键.2.键型的过渡性凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键型.如:Si-O键〔共价键和离子键成份各占50%〕.依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp[-1/4〔xA-xB〕2]二离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F∝<q1q2>/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大.当引力=斥力时处于平衡,平衡间距r=r0.r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和.对于存在于离子晶体中的离子,它有确定的离子半径.r0=r++ r-三、球体的堆积方式:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定.球体的堆积倾向于最紧密方式堆积.2. 等径球体的堆积方式:〔1〕最紧密堆积①六方最紧密堆积:ABAB……〔ACAC……〕每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子.其密排面//〔0001〕②立方最紧密堆积:ABCABC……〔ACBACB……〕每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子.其密排面//〔111〕除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC……,每四层重复一次,或ABABCABABC……,每五层重复一次,等等.密堆率〔堆积系数〕:晶胞中含有的球体体积与晶胞体积之比.最紧密堆积密堆率都是74.05%,空隙率25.95%.最紧密堆积体中是有空隙的,空隙类型有:①四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体.②八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体.空隙半径〔空隙中内切球半径〕:八面体>四面体有n个球体作最紧密堆积:①每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2②每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个八面体空隙.〔2〕简单立方堆积简单立方堆积不是最紧密堆积.球体分布方式与立方原始格子相对应,密堆率为52%.堆积体中只形成立方体空隙〔8个球包围,其球心连线形成一个立方体〕.同理可知,n 个球做简单立方堆积有n个立方体空隙.〔3〕不等径球体的堆积不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中.在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中.用这种方式描述离子晶体结构,虽不严密但有助于我们想象.如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙.CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中.ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙.CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙.不等径球体堆积达到的密堆率可以大于等径球体的密堆率.四、配位数〔CN〕:定义在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数.如:NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体配位数决定了配位多面体的形态.配位数:8——配位多面体:立方体;配位数:4——配位多面体:四面体假设离子是刚性球,正离子的配位数由R+/R-决定:在最紧密堆积体中,八面体空隙内切球的半径:设:堆积球的半径为R,八面体空隙内切球的半径为r,连接四个堆积球的球心为正方形, 所以, 2〔2R〕2=〔2R+2r〕2解得,1.414R=R+r 所以, r/ R=0.414可见,当R+/ R-=0.414 时,正离子恰好填入八面体空隙,此时正离子的配位数为6.同理,当R+/ R-=0.225时,正离子恰好填入四面体空隙,此时正离子的配位数为4.当R+/ R-=0.732 时,正离子恰好填入立方体空隙,此时正离子的配位数为8.实际上,离子晶体中的R+/ R-很少恰好是这些数值,当R+/ R-在两临界值之间时,配位数取下限值.正离子的配位数与R+/ R-的关系如下:R+/ R- <0.155≤R+/ R- <0.225≤R+/ R- <0.414≤ R+/ R- <0.732≤ R+/ R- <1≤ R+/ R-配位数 2 3 4 6 8 12 注意:当配位数为12 相当于等径球体的最紧密堆积.3. 离子的极化对晶体结构的影响在外电场作用下离子被极化,产生偶极矩.离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力.极化率〔极化系数〕α:离子被极化的难易程度〔α越大,变形程度越大;α越小,变形程度越小〕极化力β:离子极化其它离子的能力,主极化.一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅β大.而且α也大,总的极化作用大大加强,晶体结构类型可能因此而改变.* 例:离子极化对卤化银晶体结构的影响AgClAgBrAgIR+/R-0.6350.5870.523实际配位数664〔理论为6〕理论结构类型NaClNaClNaC l实际结构类型NaClNaCl立方ZnS五、决定离子晶体结构的因素——结晶化学定律离子晶体结构取决其组成质点的数量关系、大小关系和极化性能.数量关系:正负离子的比例,如:NaCl中为1:1〔两套立方面心格子〕,CaF2中为1:2〔三套立方面心格子〕大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6.CsCl 中,R+/R-=1.69/1.81=0.93,CN=8.极化性能:AgCl,CN=6;AgI,CN=4.六、晶格能1.定义:把1mol离子晶体中各离子拆散至气态时所需要的能量.对于二元离子晶体U=W1W2e2N0A<1-1/n>/r0其中:W1W2——正负离子的电价, e——电子电荷,r0——平衡间距,N0——阿佛加德罗常数,A——马德伦常数, n——波恩指数.2.晶格能的意义:对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质如:MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型,故:晶格能UMgO>U CaO >U SrO >UBaO故熔点 MgO>CaO>SrO>BaO硬度 MgO>CaO>SrO>BaO在利用晶格能比较晶体物理性质时必须注意极化的影响,如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZr<RCe<RTh晶格能U ZrO2>U CeO2>U ThO2实际熔点为:2710℃<2750℃<3050℃,熔点ZrO2最低而ThO2最高.七从多面体堆积角度认识晶体——鲍林规则1 第一规则:关于组成负离子多面体的规则在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比.2 第二规则:电价规则在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和.W-=∑Si〔偏差不超过1/4价〕其中:Si—静电键强度〔中心正离子分配给每个负离子的电价分数〕〔1〕对于二元晶体可推断其结构〔已知结构稳定〕如:NaClR+/R-=0.95/1.81=0.52,形成[NaCl6]八面体,Si=1/6∴W-=1=∑Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个[NaCl6]八面体的共用顶点.〔2〕判断结构是否稳定〔已知结构〕如:镁橄榄石〔Mg2SiO4〕已知结构中,一个[SiO4]四面体和三个[MgO6]八面体共用一个O顶点∴∑Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著.阴离子多面体存在方式不连共顶共棱共面阴离子多面体共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小.正离子间距减小,排斥力增大,不稳定程度增大.4、第四规则:不同种类配位多面体之间的连接规则在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点.该规则的物理基础与第三规则相同.5、第五规则:节约规则八、典型无机化合物的结构* 描述晶体结构的方法:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置1、AX型〔1〕NaCl型方法i:一套Cl-和一套Na+的立方面心格子穿插而成.方法ii:Cl-做立方最紧密堆积,Na+填充全部的八面体空隙.方法iii:第一规则:RNa+/RCl-=0.52,形成[NaCl6]八面体.第二规则:已知结构稳定,W-=1=∑Si在[NaCl6]八面体中,Si=1/6 ∴1=1/6*i 推出:i=6即:每个Cl-是6个[NaCl6]八面体的共用顶点.第三规则:最高连接方式是共棱连接,结构稳定.方法iv:Cl-为基准取晶胞,立方晶胞:Cl- <0,0,0>,<1/2,0,1/2>,<0,1/2,1/2>,<1/2,1/2,0>Na+ <1/2,1/2,1/2>NaCl晶胞中含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4即:每个晶胞中含有4个式量分子.〔"分子〞〕碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构.〔其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子〕〔2〕CsCl型方法i:由一套Cl-和一套Cs+离子的立方原始格子穿插而成.方法ii:Cl-做简单立方堆积,Cs+填充全部立方体空隙.方法iii:第一规则:RCs+/RCl-=0.167/0.181=0.93,形成[CsCl8]立方体第二规则:W-=1=∑Si在[CsCl8]立方体中,Si=1/8 ∴1=1/8*i 推出:i=8即:每个Cl-是8个[CsCl8]立方体的共用顶点.方法iv:立方晶胞:Cl-:<0,0,0>Cs+:<1/2,1/2,1/2>晶胞中含有的式量分子数:Cs+:体心 1Cl-:角顶 1/8*8=1即:每个晶胞中含有1个CsCl式量分子.属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等〔3〕闪锌矿型〔立方ZnS〕方法i:由一套S2-和一套Zn2+的立方面心格子穿插而成.方法ii:S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙.方法iii:R Zn2+/R S2-=0.44,理论上为[ZnO6]八面体,实际为[ZnO4]四面体.W-=2=∑Si Si=2/4=1/2 ∴1/2*i=2 推出:i=4即:每个S2-是4 个[ZnO4]四面体的共用顶点.最高连接方式为共顶连接.立方晶胞中S2-:<0,0,0>,<0,1/2,1/2>,<1/2,0,1/2>,<1/2,1/2,0>Zn2+:<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4>,<3/4,3/4,3/4> 晶胞中含有的式量分子数:S2-:各角顶,各面心 1/8*8+1/2*6=4Zn2+:各1/8小立方体的体心 8*1/2=4即:每个晶胞含有4个ZnS"分子".β-SiC、GaAs、AlP、InSb等具有该类型结构.〔4〕纤锌矿型〔六方ZnS〕由2套S2-和2套Zn2+的六方底心格子穿插而成.2. AX2型〔1〕CaF2〔萤石型〕方法i:由一套Ca2+和2套F-的立方面心格子穿插而成.方法ii:F-做简单立方堆积,Ca2+填充一半的立方体空隙.方法iii:R Ca2+/R F-=0.112/0.131=0.85,形成[CaF8]立方体W-=1=∑Si Si=2/8=1/4 ∴1/4*i=1 推出:i=4即:4个[CaF8]立方体共用1 个顶点最高连接方式为共棱连接.方法iv:立方晶胞:Ca2+:<0,0,0>,<1/2,1/2,0>,<1/2,0,1/2>,<0,1/2,1/2>F-:<1/4,1/4,1/4>,<3/4,3/4,1/4>,<3/4,1/4,3/4>,<1/4,3/4,3/4>,<3/4,3/4,3/4>,<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4> 晶胞中含有的式量分子数:Ca2+:各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8即:每个晶胞中含有4个CaF2式量分子.该类型结构晶体有ZrO2、UO2、ThO2等* 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙.晶体举例:碱金属氧化物Li2O、Na2O、K2O〔2〕TiO2〔金红石型〕方法i:由2套Ti4+和4套O2-的四方原始格子穿插而成.方法ii:O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙.方法iii:R Ti4+/R O2-=0.06/0.125=0.46,形成[TiO6]八面体W-=2=∑Si Si=4/6=2/3 ∴2/3*i=2 推出:i=3即:每个O2-是三个[TiO6]八面体的共用顶点.最高连接方式为共棱连接.方法v:四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心、4个小立方体底心 2+4*1/2=4即:每个晶体中含有2个TiO2式量分子.晶体举例:GeO2、SnO2、PbO2、MnO2等.* TiO2变体:①金红石型:八面体之间共用棱边数为2条②板钛矿型:八面体之间共用棱边数为3条③锐钛矿型:八面体之间共用棱边数为4条〔3〕CdI2型I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙.填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体.两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接.方法iii:R Cd2+/R I-=0.095/0.22=0.44,形成[CdI6]八面体W-=1=∑Si Si=2/6=1/3 ∴1/3*i=1 推出:i=3即:每个I-是三个[CdI6]八面体的共用顶点.晶体举例:Mg<OH>2、Ca<OH> 23. A2X3型:α-Al2O3〔刚玉型〕——三方晶系O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙.晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但α-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多.R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成[AlO6]八面体W-=2=∑Si Si=3/6=1/2 ∴1/2*i=2 推出:i=4即:每个O2-是4个[AlO6]八面体的共用顶点.晶体举例:α-Fe2O3、Cr2O3、Ti2O3、V2O3等.4、ABO3型:〔1〕 CaTiO3〔钙钛矿型〕Ca2+:个角顶 O2-:个面心 Ti4+:体心——[TiO6]Ti4+:个角顶 Ca2+:体心 O2-:各边边心——[CaO12]可视做Ca2+、 O2-〔较大的Ca2+〕做立方最紧密堆积〔2〕钛铁矿:FeTiO3〔A离子较小〕O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙.〔3〕络阴离子团的ABO3:CaCO3〔B离子较小〕5、AB2O4型:MgAl2O4〔镁铝尖晶石〕O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙.将一个晶胞分为8个小立方体〔4个为A,4个为B〕其中A:O2-:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:O2-:各角顶、各面心 Al3+:另6条边边心和体心无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙.反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙.第二章晶体缺陷固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低.晶体中的原子按理想的晶格点阵排列.实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷.结构缺陷的存在与其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础.晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类.其中点缺陷按形成原因又可分为热缺陷、组成缺陷〔固溶体〕和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响.本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解.第一节热缺陷一.热缺陷定义当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷.由于质点热运动产生的缺陷称为热缺陷.二.热缺陷产生的原因当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷.三.热缺陷的基本类型1.肖特基缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

2.16 MgO具有NaCl型晶体结构,试画出MgO在(111)(110)和(100)晶面上离子的排列图案,写出其离子面密度和晶面间距的表达式。

第三章熔体玻璃体3.1熔体高温下熔融形成的液态固体玻璃体高温熔体快冷时,由于冷却速度快,粘度增大太快,质点没来得及做有规则排列就已经固化,形成玻璃体网络形成体:正离子是网络形成离子,单键强度大于335 kJ/mol,能单独形成玻璃的氧化物。

网络改变体:正离子是网络变性离子,单键强度小于250KJ/mol,不能单独形成玻璃,但能改变玻璃网络结构和性质的氧化物。

网络中间体网络改变体向玻璃中加入某种氧化物使得玻璃的结构改变,性质改变,这种氧化物称为“网调整氧化物”桥氧:与两个网络形成离子相连的氧称为桥氧,非桥氧: 只与一个网络形成离子相连的氧称为非桥氧晶子学说:玻璃性质的变化是由于石英的多晶转变引起的。

所以玻璃是高分散晶体(晶子)的集合体。

“晶子”不同于一般微晶,是带有晶格变形的有序区域,它们分散在无定型介质中,从“晶子”部分到无定型部分的过渡是逐渐完成的,两者之间无明显界线. 晶子学说的核心是结构的不均匀性及进程有序性。

无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。

这种网络是由离子多面体(三角体或四面体)构筑起来的。

玻璃中结构多面体的重复没有规律性。

多面体的结合程度取决于桥氧离子的百分数,而网络变性离子均匀而无序的分布在四面体骨架空隙中玻璃形成温度T g又称脆性温度,是玻璃出现脆性的最高温度,由于在这个温度下可以消除玻璃制品因不均匀冷却产生的内应力,因此又称为退火温度上限.软化温度T f玻璃开始出现液体状态典型特征的温度,是玻璃可以拉成丝的最低温度.玻璃的通性各向同性, 热力学介稳性, 凝固的渐变性与可逆性, 熔融态向玻璃态转化时物理化学性质随温度变化的连续性无规密堆积模型将原子看作是不可压缩的硬球,这些硬球无规则地堆垛,使其总体密度达到最大可能值。

液态金属的结构是由一些基本的几何单元组成的近程有序,最小的单元是四面体,这种模型又成为密集无序堆垛模型微晶无序模型微晶:带有晶格变形的有序区域,大小为1--10nm,几个到几十个原子间距。

在微晶中心质点排列有序,离其中心越远则变形程度愈大。

拓扑无序模型拓扑无序模型认为:非晶态合金是均匀连续、致密填充、混乱无规的原子硬球的集合,不存在微晶与周围原子以晶界分开的情况。

硼反常现象在Na2O-SiO2熔体中加入B2O3粘度会先增大后减小.最初加入B2O3时,主要形成[SiO4]四面体进行补网作用,由于Na2O拆网使粘度很低;随着B2O3加入量的增加,[BO4]含量增加,粘度不断增加,直到补网完成[BO4]的比例最大,粘度达到最大值;此后继续加入B2O3,则形成[BO3]平面三角形的结构,使网络的连接变得疏松,又导致粘度η下降.(其他名词解释)类质同晶:物质结晶时,其晶体结构中原有离子或原子的配位位置被介质中部分类质类似的它种离子或原子占存,共同结晶成均匀的,单一的混合晶体,但不引起键性。

同质多晶:化学组成相同的物质,在不同的热力学条件下结晶或结构不同的晶体。

正尖晶石:二价阳离子分布在1/8四面体空隙中,三价阳离子分布在1/2八面体空隙的尖晶石。

反尖晶石:如果二价阳离子分布在八面体空隙中,而三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。

分化过程:架状[SiO4]断裂称为熔融石英的分化过程。

缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。

单键强度:化合物的分解能除以化合物的配位数得出的商数即为单键强度。

3.2影响熔体粘度的因素有哪些?分析R2O对硅酸盐熔体黏度的影响规律以及原因3.3简述石英晶体,石英熔体,Na2O·SiO2熔体结构和性质的区别3.4简述非晶态合金材料的主要特性以及应用3.6 SiO2熔体粘度在1000°C时的粘度10的14次方Pa*S,在1400°C时为10的7次方Pa*S,Si2O玻璃的粘滞流动的活化能是多少?上述数据在恒压下获得,若在恒容下获得,你认为活化能会改变吗为什么?3.8 在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5 ?此时析晶能力是增强还是减弱?3.9计算下列玻璃的结构参数以及非桥氧分数(1)(2)(3)(4)3.10 有一种玻璃组成为14% Na2O 13%CaO 73%SiO2 (Wt%)其密度为2.5g/cm3计算该玻璃的原子堆积系数和结构参数值3.11两种不同配比的玻璃,其组成(wt%)见下表,试计算玻璃结构参数,并由结构参数说明该两种玻璃在高温时粘度的大小。

3.13比较硅酸盐玻璃和硼酸盐玻璃在结构和性能上的差异。

第四章点缺陷和线缺陷弗伦克尔缺陷:在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位。

这种缺陷称为弗伦克尔缺陷。

肖特基缺陷:如果正常格点上的原子,热起伏过程中活的能量离开平衡位置迁移到晶体的表面,在晶体内正常格点上留下空位,这即是肖特基缺陷。

刃型位错:伯格斯矢量b与位错线垂直的位错称为刃型位错。

螺型位错:位错线和滑移方向(伯格斯矢量b)平行,由于位错线垂直的平行面不是水平的,而是像螺旋形的,故称螺旋位错。

伯格斯矢量第五章表面与界面表面:固体的表面现象与液体相似,通常把一个相与它本身蒸汽接触的分界面称为表面。

界面:相邻晶粒不仅位向不同,而且结构、组成也不相同,即它们代表不同的两个相,则其间界称为界面。

第六章相平衡与相图相体系中具有相同物理与化学性质的均匀部分的总和,如纯液体或真溶液均为单相。

固溶体也为单相。

相平衡相与相之间的平衡,是动态平衡。

第七章固体中质点的扩散7.1本征扩散:主要出现肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散称为本征扩散。

非本征扩散:因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称为非本征扩散。

自扩散互扩散稳定扩散:扩散质点的浓度分布不随时间变化的扩散称为稳定扩散;不稳定扩散扩散质点的浓度分布随时间变化的扩散称为不稳定扩散菲克第一定律:在扩散体系中,参与扩散质点的浓度因位置而异,且可随时间而变化。

正扩散:受热力学因子作用,物质由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化,D i>0。

逆扩散:受热力学因子作用,物质由低浓度处流向高浓度处,扩散结果使溶质趋于均匀化,D i<0。

无序扩散:无化学位梯度、浓度梯度。

无外场推动力,由热起伏引起的扩散。

质点的扩散是无序的、随机的。

互扩散推动力:多元系统中几种离子同时进行扩散,扩散过程中化学位梯度的变化。

间隙扩散:质点从一个间隙到另一个间隙矿化剂:在固相反应中加入少量非反应物,反应过程中不与反应物起化学反应,只起加速反应作用的物质。

第八章固态化学反应固态化学反应(固相反应)狭义指固体与固体间发生化学反应生成新的固体产物的过程。

广义凡是具有固相参加的化学反应都叫固相反应。

固相反应特征第九章固态相变3.1 一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商不相等的称为一级相变。

二级相变:相变时两相化学势相等,其一级偏微商也相等,但二级偏微商不等。

玻璃析晶:指由于玻璃的内能较同组成的晶体为高,所以玻璃处于介稳状态。

在一定条件下存在着自发地析出晶体的倾向,这种出现晶体的现象叫做析晶。

又称失透或反玻璃化。

玻璃分相:一个均匀的玻璃相在一定的温度和组成范围内有可能分成两个互不溶解或部分溶解的玻璃相,并相互共存的现象称为玻璃分相。

均匀成核:晶核从均匀的单相熔体中产生的几率处处相同。

非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置等而形成晶核的过程。

马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立方体积的剪切作用以极迅速的速率而进行相变称为马氏体相变。

第十章固态烧结10.1熔融温度烧结温度泰曼温度烧结:由于固态中分子的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。

烧成:把一定温度范围内烧制成为致密体的一系列物理、化学、变化过程,人们把完成这样一个烧结过程的工艺称之为烧成。

体积密度:材料在包含实体积、开口和密闭孔隙的状态下单位体积的质量称为材料的体积密度。

理论密度:多孔材料中固相的密度,即同种材料在无孔状态下的密度。

相对密度:多孔体的密度与无孔状态下同成分材料的密度之比,通常以百分率表示。

固相烧结:没有液相参与,完全是由固体颗粒直接的高温烧结过程。

液相烧结:有液相参与的烧结。

晶粒生长:无应变的材料在热处理时,平衡晶粒尺寸在不改变其分布的情况下连续增大的过程。

相关文档
最新文档