关于高等数学上公式

合集下载

大学高等数学公式大全

大学高等数学公式大全

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-s inαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

(完整版)高数公式汇总

(完整版)高数公式汇总

高数公式汇总经管学生会内部资料导数公式:(tgx) sec x(ctgx) csc x(secx) secx tgx(cscx) cscx ctgx(a x) a x l na(log a x) 1xl na基本积分表:tgxdxctgxdxsecxdxcscxdxdx~ 2a xdx~ 2x adx~ 2a xdx2a x 高等数学公式In cosx CIn sinx CIn secx tgx C In cscx ctgx C 1 x-arctg — Ca a1 x a —— C 2a x a1 a x —— C 2a a xarcs in仝C aI n2sin xdx cos x2 2 a 'x2 2 a 'a2x2dxdxdxo三角函数的有理式积分:2usin x 2, c osx1 u22u2,1 u(arcsin x)(arccos x)(arctgx)(arcctgx)dx2~ cosxdx~~~2-sin xxdxx 2—x22 ax 2—x22 ax 21 a2 xn2otg i,111 x211 x2sec2 xdx tgx C2csc xdx ctgx Csecx tgxdx secx Ccscx ctgxdx cscx Cxa x dx — CIn ashxdx chx Cchxdx shx C2 2----------- In( x 、x a ) C2 2 v 7 x aI n2 a —In( x22 a .一In x22a . x arcs in C2x2 a2) C、x2 a2dx2du1 u2高数公式汇总 经管学生会内部资料两个重要极限:sin x ’lim 1x 0 xlim(1 -)x e 2.718281828459045…xarchx In (x x 21)三角函数公式:•诱导公式:-和差角公式:sin( )sin COS COS sin COS ( )COSCOS sin sintg()汽tg1 tg tgCtg()CtgCtg 1Ctg Ctg-和差化积公式:sin sin 2 si nCOS 2 2sinsin2 COSsin22COS COS 2 COSCOS --2 2COS COS2 si nsin2 2一些初等函数: xe e x2xxe e2shx x e x echx x e x ex 21)arthx llnl 双曲正弦:shx双曲余弦:chx双曲正切:thx高数公式汇总经管学生会内部资料sin 2 2sin cos cos2 2cos 2 1ctg2ctg 212ctgtg2 2tg 21 tg•倍角公式: 1 2si n 2-半角公式: 2cos 2sinsin3 3sin 4sin 3 cos3 4cos 3costg33tg tg 31 3tg 2tg 2sin — 2 1 cos 1 cos sin sin 1 cos-余弦定理:-正弦定理:a b sin A sinB c si nC2Rc 2 a 2 b 2 2ab cosC•反三角函数性质: arcs inx arccosx 2 arctgx arcctgx高阶导数公式 ------ 莱布尼兹( Leibniz )公式:2! k ! 中值定理与导数应用:拉格朗日中值定理: f(b) f(a) f ( )(b a) 柯西中值定理:丄型 f (a) f () F(b) F(a) F () n (n) k (n k) (k)(uv) C n u v k 0(n) (n 1) n(n 1) (n 2) n(n 1) (n k 1) (n k) (k)u v nu v u vu v当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:uv(n)高数公式汇总 经管学生会内部资料弧微分公式:ds .1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变 化量;s : MM 弧长。

大学高数公式大全

大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

大学高等数学所有公式大全.

大学高等数学所有公式大全.

大学高等数学公式·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·平方关系:sin^2(α+cos^2(α=1tan^2(α+1=sec^2(αcot^2(α+1=csc^2(α·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β=cosα·cosβ-sinα·sinβcos(α-β=cosα·cosβ+sinα·sinβsin(α±β=sinα·cosβ±cosα·sinβtan(α+β=(tanα+tanβ/(1-tanα·tanβtan(α-β=(tanα-tanβ/(1+tanα·tanβ·三角和的三角函数:sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B·倍角公式:sin(2α=2sinα·cosα=2/(tanα+cotαcos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(αtan(2α=2tanα/[1-tan^2(α]·三倍角公式:sin(3α=3sinα-4sin^3(αcos(3α=4cos^3(α-3cosα·半角公式:sin(α/2=±√((1-cosα/2cos(α/2=±√((1+cosα/2tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα·降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2 tan^2(α=(1-cos(2α/(1+cos(2α·万能公式:sinα=2tan(α/2/[1+tan^2(α/2] cosα=[1-tan^2(α/2]/[1+tan^2(α/2] tanα=2tan(α/2/[1-tan^2(α/2]·积化和差公式:sinα·cosβ=(1/2[sin(α+β+sin(α-β] cosα·sinβ=(1/2[sin(α+β-sin(α-β] cosα·cosβ=(1/2[cos(α+β+cos(α-β] sinα·sinβ=-(1/2[cos(α+β-cos(α-β]·和差化积公式:sinα+sinβ=2sin[(α+β/2]cos[(α-β/2] sinα-sinβ=2cos[(α+β/2]sin[(α-β/2] cosα+cosβ=2cos[(α+β/2]cos[(α-β/2] cosα-cosβ=-2sin[(α+β/2]sin[(α-β/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2·其他:sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得:sinx=[e^(ix-e^(-ix]/(2i cosx=[e^(ix+e^(-ix]/2 tanx=[e^(ix-e^(-ix]/[ie^(ix+ie^(-ix]泰勒展开有无穷级数,e^z=exp(z=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高数公式大全

高数公式大全

高等数学公式汇总第一章一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x x x xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x -----==++==±+-+===+-双曲正弦双曲余弦;反双曲余弦双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++= 22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,lim 1n a >=;lim 1n →∞=ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan ;1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x na x a e x x ax x x--++++3、连续:定义:00lim 0;lim ()()x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或第二章导数与微分1、基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (co t )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ) (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====-222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n xn x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑ 3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高等数学常用公式总结

高等数学常用公式总结

(2) 在点 x0 的某去心邻域内,f'(x) 及 g'(x) 都存在且 g'(x) ≠ 0;
(3) lim f'(x) = A(A 可为实数,也可为 士o 或o), x→x0 g'(x)
则 lim f(x) = lim f'(x) = A. x→x0 g(x) x→x0 g'(x)
若将洛必达法则中 x →x0 换 →x0 → x0 →士 →o,只要相应地修正(2)
y = f(x) 的反函数 也可记为 dy
x
=
9(y )
的导数为
9'(y )
=
1
f'(x)
8. 常用高阶导数公 式:
, =1.
dx dx dy
更多升本资讯
升本资料
模拟真题
.5 .
(1)(ex )(n) = ex;
(2)(sinx)(n) = sin(x +2 n . r );
(3)(cosx )(n)cos(x +n . r );
x→x0
x→x0
x→x0
(2) lim[f(x) .g(x)] = lim f(x) .lim g(x ) = A .B;
x→x0
x→x0
x→x0
(3)
当 x→Bx≠ 0 0
时 ,有 lim
f(x )
lim f(x)
=
=
A;
x→x0 g(x)
(4) lim f(g(x )) = f(B ). x → x0
1
dx;
(14)d(arccotx) = 一 1
1 +x2
dx. 1 +x2
15. 微分在近似计算中的应用
△y = f(x0 + △x ) 一 f(x0 ) ≈ f'(x0 )△x ,

高等数学公式必背大全

高等数学公式必背大全

高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。

导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。

高等数学公式大全

高等数学公式大全

高等数学公式大全
1.极限运算法则:lim(f(x)+g(x))=limf(x)+limg(x),
lim(f(x)-g(x))=limf(x)-limg(x),
lim(f(x)*g(x))=limf(x)*limg(x),
lim(f(x)/g(x))=limf(x)/limg(x)。

2.导数公式:包括求导的四则运算法则、复合函数的求导法
则、高阶导数等。

3.导数的应用:包括极值与拐点、曲线的凹凸性和拐点、函
数图形的描绘等。

4.不定积分:包括不定积分的性质和运算法则、基本积分公
式、积分的方法等。

5.定积分:包括定积分的性质和运算法则、微积分基本定理
等。

6.多重积分:包括二重积分、三重积分等。

7.微分方程:包括一阶微分方程、高阶微分方程、线性微分
方程等。

8.空间解析几何:包括向量的表示与运算、向量的数量积、
向量积等。

9.多元函数的微分学:包括偏导数与高阶偏导数、全微分、
方向导数等。

10.重积分:包括二重积分、三重积分、曲线积分、曲面
积分等。

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学公式大全

高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u ux uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec)(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxCtgx xdx x dxxx)ln(ln csc csc sec sec csc sinseccos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxC ctgx x xdx C tgx x xdx C x ctgxdx Cx tgxdx+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cossin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -t gα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全

高等数学公式大全
导数公式:
(tgx)′ = sec2 x
(ctgx)′ = − csc2 x
(sec x)′ = sec x ⋅tgx
(csc x)′ = − csc x ⋅ ctgx
(a x )′ = a x ln a
(log a
x)′
=
1 x ln a
高等数学公式
(arcsin x)′ = 1 1− x2
(arccos x)′ = − 1 1− x2
=
0, dy dx
=

Fx Fy
, d 2 y dx 2
=
∂ ∂x
(−
Fx Fy
)+ ∂ ∂y
(−
Fx Fy
)⋅
dy dx
隐函数F (x, y, z) = 0, ∂z = − Fx , ∂z = − Fy
∂x Fz
∂y Fz
∂F ∂F
⎧F (x, 隐函数方程组:⎩⎨G(x,
y,u,v) y,u,v)
2、过此点的切平面方程:Fx (x0 , y0 , z0 )(x − x0 ) + Fy (x0 , y0 , z0 )( y − y0 ) + Fz (x0 , y0 , z0 )(z − z0 ) = 0
3、过此点的法线方程: x − x0 = y − y0 = z − z0 Fx (x0 , y0 , z0 ) Fy (x0 , y0 , z0 ) Fz (x0 , y0 , z0 )
2
2
a
sin
x
=
2u 1+ u
2
, cos
x
=
1− 1+
u u
2 2
, u
=
tg

关于高等数学公式大全

关于高等数学公式大全

关于高等数学公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·诱导公式:·和差角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数:一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程。

大学高等数学公式(珍藏版)

大学高等数学公式(珍藏版)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学基本公式(全)

高等数学基本公式(全)

高等数学公式等价无穷小替换公式:x-arcsinx~(x^3)/6tanx-sinx~(x^3)/2e^x-1~xtanx-x~(x^3)/3导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高等数学上公式 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
学姐偷懒直接从网上下了一份公式总结,然后按照咱们的考试要求改了一下,特别诡异的那些公式我都删掉了,剩下的都是可能会出现的,哪些必须记哪些可以记也都写在后面了,有的出题形式我也加在知识点后面了,可以做个参考。

这上面的知识点不很全,但应付考试差不多了,上面没有的学霸们可以自己再看看书哈。

重点关注黑体字!!!电子版已发各部长,可以找部长要。

祝大家都能考个好成绩~
——魏亚杰
高等数学(一)上 公式总结
第一章 一元函数的极限与连续
1、一些初等函数公式:(孩子们。

没办法,背吧)
1sin cos [sin()sin()]2
1cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2
αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:
222222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot αααααααααααααα==-=-=-=--=倍角公式:
22222222sin cos 1;tan 1sec ;
cot 1csc ;1
sin
cos 221cos sin tan
2sin 1cos 1cos sin cot 2
sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:
, (一般用倍角公式就可以了,这个不好记) 3322()()()a b a b a ab b ±=±+,222(1)(21)126
n n n n +++++=
2、极限
➢ 常用极限:1,lim 0n n q q →∞<=;1,lim 1n a →∞>=;1n = ➢ 两个重要极限
➢ :常用等价无穷小(一定要记!!一定记得是x 趋于0或者1/x 趋于无穷才能用) 极限运算法则(求极限必出,你得记住常用的,再用运算法则求要求的)
极限存在准则:夹逼准则、单调有界数列必有极限(大题里求极限可能用到夹逼准则,还是记一下吧)
3、连续:
定义:0
00lim 0;lim ()() x x x y f x f x ∆→→∆== 间断点:(填空选择考的概率很大!!)
第一类间断点(左右极限存在)
第二类间断点(不是第一类的都是第二类)
(有界性与最大值最小值定理、零点定理、介值定理,求零点的,有时间就看没时间就算了)
第二章 导数与微分
1、 基本导数公式:
(记清楚导数概念,可能会有上面这个样子的题)
(又是一波要记的,必须记!!,记清楚导数的,就等于记清楚常用微分,后面的那个常用积分就是把它反过来)
2、高阶导数:(有能力者自选~一般不会让求n 阶,要是考了就认命吧)
✧ 牛顿-莱布尼兹公式:
3、微分:
(求导法则我就不啰嗦了,见书上94页)
隐函数求导、参数方程求导重点看一下,参数方程求导基本每年考
第三章 微分中值定理与导数的应用(一道十分左右的证明题)
1、基本定理
洛必达法则,特别好用,求极限题不会求的时候看看能不能用洛必达法则
泰勒中值定理就算了,可以记几个比较常用的泰勒公式
求极值虽然不是每年都考,但考的也比较多,跟高中的差不太多,要看
第四章 不定积分
1、常用不定积分公式: (个别常用求导公式里没有的记一下,当然,想记牢的最好办
法就是…刷题…)
2、常用凑微分公式:
(分部积分法,必须掌握!!)
第五章 定积分
1、基本概念
()(())()a
b f x dx f t t dt αβϕϕ'=⎰⎰,()()()()()()a a
b b u x dv x u x v x v x du x =-⎰⎰ 2、常用定积分公式:;
0(),()2()a a a f x f x dx f x dx -=⎰⎰为偶函数;(),()0a
a f x f x dx -=⎰为奇函数; T T
T 2T 02()()()a a f x dx f x dx f x dx +-==⎰⎰⎰;T T
0()()a n a f x dx n f x dx +=⎰⎰ Wallis 公式:(这个。

自愿吧。

考的概率不大)
无穷限积分:
第六章 定积分应用
(只看在几何学上的应用就行,大题可能会有一道以这种形式考微积分,可能是面积,也可能是体积,比如下面这两道)
1、平面图形的面积: 直角坐标情形:()b a A f x dx =⎰;()()b a A f x g x dx =-⎰;()()d c
A y y dy ϕψ=-⎰ 参数方程情形:()()()();(();())A t d t t t dt a b ββ
ααψϕψϕϕαϕβ'====⎰⎰ 极坐标情形:21()2A d βα
ρθθ=⎰ 2、空间立体的体积:
由截面面积:()b
a V A x dx =⎰ 旋转体:绕x 轴旋转:222();[()()()2();2()()()
b b
a a d d c c V f x dx V f x g x dx x V y y dy V y y y dy y πππϕπϕψ==-==-⎰⎰⎰⎰为积分变量为积分变量
绕y 轴旋转:22
2()2()();()[()()]()b b
a a d c V x f x dx x f x g x dx x V y y dy y πππϕψ==-=-⎰⎰⎰为积分变量为积分变量 3、平面曲线的弧长:
第七章 空间解析几何与向量代数
(一道大题,一般考的是平面和直线的方程),比如
总结
(这是人家总结好的,挺全的,我就批注一下哪个用记哪个不用记,领会一下精神吧。


求极限方法:
1、
极限定义;2、函数的连续性;3、极限存在的充要条件;4、两个准则;
5、两个重要极限;
6、等价无穷小;
7、导数定义;8利用微分中值定理;
9、洛必达法则;10、麦克劳林公式展开(可以不用,有能力的话记几个常用的);
求导法:
1、导数的定义(求极限);
2、导数存在的充要条件;
3、基本求导公式;
4、导数四则运算及反函数求导;(反函数求导就算了…)
5、复合函数求导;
6、参数方程确定的函数求导(重点!!);
7、隐函数求导法;
8、高阶导数求导法(莱布尼茨公式/常用的高阶导数,这个就不要求了);
等式与不等式的证明:
1、利用微分中值定理;
2、利用泰勒公式展开;
3、函数的单调性;
4、最大最小值;
5、曲线的凸凹性(这个也可以不用)。

相关文档
最新文档