操作系统实验报告--内存管理
操作系统实验-内存管理

操作系统实验-内存管理(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--广州大学学生实验报告开课学院及实验室:计算机科学与工程实验室 2015 年一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
二、实验内容1、常用页面置换算法模拟实验设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
1)、最佳淘汰算法(OPT)2)、先进先出的算法(FIFO)3)、最近最久未使用算法(LRU)4)、最不经常使用算法(LFU)5)、最近未使用算法(NUR)命中率=1-页面失效次数/页地址流长度2、在Linux环境下利用下列系统调用malloc(), free()编写一段程序实现内存分配与回收的管理。
要求:1)、返回已分配给变量的内存地址;2)、返回释放后的内存地址;3)、释放已分配的内存空间后,返回释放内存后未使用内存的大小。
三、实验原理一、虚拟存储系统UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。
当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。
这种页面调入方式叫请求调页。
为实现请求调页,核心配置了四种数据结构:页表、页框号、访问位、修改位、有效位、保护位等。
二、页面置换算法当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。
该程序通过查找页表,得到该页所在外存的物理块号。
如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。
如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。
实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。
2. 掌握动态分区分配方式中的数据结构和分配算法。
3. 通过编写程序,实现内存分配和回收功能。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。
内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。
(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。
(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。
2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。
动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。
(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。
(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。
四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。
(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。
(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。
(2)对比两种算法在内存分配效率、外部碎片等方面的差异。
五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。
内存管理实验报告

内存管理实验报告内存管理实验报告引言内存管理是计算机系统中非常重要的一部分,它负责管理计算机系统的内存资源,为程序的运行提供必要的支持。
本次实验旨在探究不同的内存管理策略对计算机系统性能的影响,以及如何优化内存管理以提高系统效率。
一、实验背景计算机系统中的内存是用于存储程序和数据的关键资源。
在多道程序设计环境下,多个程序需要共享有限的内存资源,因此需要一种有效的内存管理策略来分配和回收内存空间。
本次实验中,我们将研究并比较两种常见的内存管理策略:固定分区和动态分区。
二、实验过程1. 固定分区固定分区是将内存划分为固定大小的若干区域,每个区域可以容纳一个程序。
在实验中,我们将内存划分为三个固定大小的区域,并将三个不同大小的程序加载到内存中进行测试。
通过观察程序的运行情况和内存利用率,我们可以评估固定分区策略的优缺点。
2. 动态分区动态分区是根据程序的大小动态地分配内存空间。
在实验中,我们将使用首次适应算法来实现动态分区。
首次适应算法将按照程序的大小从低地址开始查找可以容纳该程序的空闲分区,并分配给程序使用。
通过观察动态分区策略下的内存利用率和碎片情况,我们可以评估该策略的优劣。
三、实验结果1. 固定分区在固定分区策略下,我们观察到每个程序都能够顺利运行,但是内存利用率较低。
由于每个程序都需要占用一个固定大小的分区,当程序大小与分区大小不匹配时,会出现内存浪费的情况。
此外,固定分区策略也存在无法分配较大程序的问题。
2. 动态分区在动态分区策略下,我们观察到内存利用率较高,碎片情况也较少。
由于动态分区可以根据程序的大小动态分配内存空间,因此可以更加高效地利用内存资源。
然而,动态分区策略也存在着内存分配和回收的开销较大的问题。
四、实验总结通过本次实验,我们对固定分区和动态分区两种内存管理策略进行了比较和评估。
固定分区策略适用于程序大小已知且固定的情况,但会导致内存浪费;而动态分区策略可以更加灵活地分配内存空间,但会增加内存分配和回收的开销。
内存管理实验报告

内存管理实验报告实验名称:内存管理实验目的:掌握内存管理的相关概念和算法加深对内存管理的理解实验原理:内存管理是操作系统中的一个重要模块,负责分配和回收系统的内存资源。
内存管理的目的是高效地利用系统内存,提高系统的性能和稳定性。
实验过程:1.实验环境准备本实验使用C语言编程,要求安装GCC编译器和Linux操作系统。
2.实验内容实验主要包括以下几个部分:a.基本内存管理创建一个进程结构体,并为其分配一定大小的内存空间。
可以通过C语言中的指针操作来模拟内存管理的过程。
b.连续分配内存算法实现两种连续分配内存的算法:首次适应算法和最佳适应算法。
首次适应算法是从低地址开始寻找满足要求的空闲块,最佳适应算法是从所有空闲块中选择最小的满足要求的块。
c.非连续分配内存算法实现分页和分段两种非连续分配内存的算法。
分页是将进程的虚拟地址空间划分为固定大小的页面,然后将页面映射到物理内存中。
分段是将进程的地址空间划分为若干个段,每个段可以是可变大小的。
3.实验结果分析使用实验中的算法和方法,可以实现对系统内存的高效管理。
通过比较不同算法的性能指标,我们可以选择合适的算法来满足系统的需求。
具体而言,连续分配内存算法中,首次适应算法适用于内存中有大量小碎片的情况,可以快速找到满足要求的空闲块。
最佳适应算法适用于内存中碎片较少的情况,可以保证最小的内存浪费。
非连续分配内存算法中,分页算法适用于对内存空间的快速分配和回收,但会带来一定的页表管理开销。
分段算法适用于对进程的地址空间进行分段管理,可以灵活地控制不同段的权限和大小。
实验中还可以通过性能测试和实际应用场景的模拟来评估算法的性能和适用性。
实验总结:本实验主要介绍了内存管理的相关概念和算法,通过编写相应的代码实现了基本内存管理和连续分配、非连续分配内存的算法。
通过实际的实验操作,加深了对内存管理的理解。
在实验过程中,我们发现不同算法适用于不同情况下的内存管理。
连续分配算法可以根据实际情况选择首次适应算法或最佳适应算法。
操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。
二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。
尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。
在实际应用中,首次适应算法被广泛采用。
2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。
最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。
因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。
四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。
两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。
操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收、页面置换算法等关键概念,并能够分析和解决存储管理中可能出现的问题。
二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了 Visual Studio 等编程工具和相关的调试环境。
三、实验内容(一)内存分配与回收算法实现1、首次适应算法首次适应算法从内存的起始位置开始查找,找到第一个能够满足需求的空闲分区进行分配。
在实现过程中,我们通过建立一个空闲分区链表来管理内存空间,每次分配时从表头开始查找。
2、最佳适应算法最佳适应算法会选择能够满足需求且大小最小的空闲分区进行分配。
为了实现该算法,在空闲分区链表中,分区按照大小从小到大的顺序排列,这样在查找时能够快速找到最合适的分区。
3、最坏适应算法最坏适应算法则选择最大的空闲分区进行分配。
同样通过对空闲分区链表的排序和查找来实现。
(二)页面置换算法模拟1、先进先出(FIFO)页面置换算法FIFO 算法按照页面进入内存的先后顺序进行置换,即先进入内存的页面先被置换出去。
在模拟过程中,使用一个队列来记录页面的进入顺序。
2、最近最久未使用(LRU)页面置换算法LRU 算法根据页面最近被使用的时间来决定置换顺序,最近最久未使用的页面将被置换。
通过为每个页面设置一个时间戳来记录其最近使用的时间,从而实现置换策略。
3、时钟(Clock)页面置换算法Clock 算法使用一个环形链表来模拟内存中的页面,通过指针的移动和页面的访问标志来决定置换页面。
四、实验步骤(一)内存分配与回收算法的实现步骤1、初始化内存空间,创建空闲分区链表,并为每个分区设置起始地址、大小和状态等信息。
2、对于首次适应算法,从链表表头开始遍历,找到第一个大小满足需求的空闲分区,进行分配,并修改分区的状态和大小。
3、对于最佳适应算法,在遍历链表时,选择大小最接近需求的空闲分区进行分配,并对链表进行相应的调整。
操作系统 实验二 windows内存管理实验

实验二windows内存管理实验一.问题描述内存管理是操作系统的主要任务之一,地址转换是其中的重要内容,本实验主要研究windows的地址转译过程。
通过这次实验了解windows内存管理策略及基本的数据结构,理解windows的地址过程。
通过任意给出一个虚拟地址,可以从windbg 观察相关数据并找到其物理地址。
二.Windows地址转译过程原理1.Windows内存管理器:Windows的内存管理器主要由Windows执行体中的虚存管理程序负责,并由环境子系统负责与具体API相关的一些用户态特征的实现。
有两个任务:地主转换;变换。
2.Windows内存管理策略:Windows采用页式虚拟存储管理技术管理内存,页面是硬件级别上的最小保护单位。
根据硬件体系结构的不同,页面尺寸被分为两种大页面:4KB小页面:4MB通常的PC机,一般都为小页面。
3、Windows虚拟地址空间布局Windows系统的虚拟地址空间布局,默认情况下,32位的windows 系统中每个用户进程可以占有2GB的私有地址空间,操作系统占有另外的2GB。
如下:4、X86虚拟地址转译X86虚拟地址转译是指进程的虚拟地址空间映射到实际物理页面的过程,Windows系统中地址转译过程如下:关键的数据结构如下:页目录:每个进程都有一个页目录,进程页目录的地址被保存在内核地址块(KPROCESS)中。
在windows中,它被映射到虚拟地址0xC0300000。
由cr3可以知道该进程页目录的位置。
页目录由页表项构成。
页表:进程的页目录指向页表。
每个页表只占一个页面,含有1024个PTE,一个PTE为4字节,包含两个主域:PFN,即为数据所在的物理页面的页面帧编号。
虚拟地址结构:x86系统上,一个32位虚拟地址结构被解释成三个独立的部分:页目录索引,页表索引和字节索引,如下:由于页目录项有1024个,因此页目录索引为10位,一个页表中含有1024个PTE,因此页表索引也为10位;字节索引为12位,正好表示一页内容。
《操作系统》存储管理实验报告

《操作系统》存储管理实验报告操作系统是计算机系统中最基础、最核心的软件之一,负责管理计算机硬件资源和提供资源的分配与调度。
而存储管理是操作系统中的重要组成部分,它负责管理计算机的内存,包括内存的分配、回收、保护等操作。
本文将针对存储管理进行实验,并撰写实验报告。
本次实验主要涉及以下内容:内存的分配与回收、内存的保护。
实验过程中,我首先根据操作系统的要求,设计了相应的算法用于内存的分配与回收。
并通过编写程序,验证了算法的正确性。
随后,我进一步研究了内存的保护机制,通过设置访问权限位和访问控制表,实现了对内存的合理保护。
在内存的分配与回收方面,我设计了一种简单的算法,首次适应算法。
具体实现如下:首先,将内存分为若干个块,每个块的大小为固定值。
当需要分配内存时,首先遍历内存块列表,找到第一个大小合适的块,将其分配给进程。
当进程终止时,将其占用的内存块回收,以便后续进程使用。
通过编写程序进行测试,结果表明该算法能够正确地进行内存的分配与回收。
在内存的保护方面,我采用了访问权限位和访问控制表的方式进行。
具体实现如下:首先,为每个进程分配一组访问权限位,记录了该进程能够访问的内存区域。
同时,设置一个访问控制表,记录了每个内存块的权限。
当进程访问一些内存块时,首先检查该进程的访问权限位,再与访问控制表中的权限进行比较,以确定该进程是否有权限访问该内存块。
通过编写程序进行测试,证明了该机制能够有效地保护内存。
总结来说,本次实验主要涉及了操作系统中的存储管理部分,包括内存的分配与回收、内存的保护。
通过设计算法和编写程序,我成功地实现了这些功能,并验证了其正确性。
通过本次实验,我进一步加深了对操作系统存储管理的理解,提高了编程和设计的能力。
内存操作实验报告

一、实验目的1. 熟悉内存的基本操作,包括内存的分配、释放、读写等。
2. 掌握C语言中内存操作的相关函数,如malloc、free、memcpy等。
3. 提高对内存管理重要性的认识,了解内存泄漏的成因及预防措施。
二、实验环境1. 操作系统:Windows 102. 编译器:Visual Studio 20193. 编程语言:C语言三、实验内容1. 内存分配与释放2. 内存读写3. 内存拷贝4. 内存泄漏检测四、实验步骤1. 内存分配与释放(1)编写一个函数,使用malloc分配内存,并打印分配的内存地址。
```c#include <stdio.h>#include <stdlib.h>void test_malloc() {int p = (int )malloc(sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_malloc();return 0;}```(2)编写一个函数,使用calloc分配内存,并打印分配的内存地址。
```c#include <stdio.h>#include <stdlib.h>void test_calloc() {int p = (int )calloc(10, sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_calloc();return 0;}```2. 内存读写(1)编写一个函数,使用memcpy函数复制内存内容。
操作系统实验-内存管理

操作系统实验-内存管理操作系统实验内存管理在计算机系统中,内存管理是操作系统的核心任务之一。
它负责有效地分配和管理计算机内存资源,以满足各种程序和进程的需求。
通过本次操作系统实验,我们对内存管理有了更深入的理解和认识。
内存是计算机用于存储正在运行的程序和数据的地方。
如果没有有效的内存管理机制,计算机系统将无法高效地运行多个程序,甚至可能会出现内存泄漏、内存不足等严重问题。
在实验中,我们首先接触到的是内存分配策略。
常见的内存分配策略包括连续分配和离散分配。
连续分配是将内存空间视为一个连续的地址空间,程序和数据被依次分配到连续的内存区域。
这种方式简单直观,但容易产生内存碎片,降低内存利用率。
离散分配则将内存分成大小相等或不等的块,根据需求进行分配。
其中分页存储管理和分段存储管理是两种常见的离散分配方式。
分页存储管理将内存空间划分为固定大小的页,程序也被分成相同大小的页,通过页表进行映射。
分段存储管理则根据程序的逻辑结构将其分成不同的段,如代码段、数据段等,每个段有不同的访问权限和长度。
接下来,我们研究了内存回收算法。
当程序不再使用分配的内存时,操作系统需要回收这些内存以便再次分配。
常见的内存回收算法有首次适应算法、最佳适应算法和最坏适应算法。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲区域进行分配;最佳适应算法则选择大小最接近需求的空闲区域进行分配;最坏适应算法选择最大的空闲区域进行分配。
为了更直观地理解内存管理的过程,我们通过编程实现了一些简单的内存管理算法。
在编程过程中,我们深刻体会到了数据结构和算法的重要性。
例如,使用链表或二叉树等数据结构来表示空闲内存区域,可以提高内存分配和回收的效率。
在实验中,我们还遇到了一些实际的问题和挑战。
比如,如何处理内存碎片的问题。
内存碎片是指内存中存在一些无法被有效利用的小空闲区域。
为了解决这个问题,我们采用了内存紧缩技术,将分散的空闲区域合并成较大的连续区域。
操作系统内存管理实验报告

操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。
内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。
本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。
在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。
内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。
二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。
三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。
该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。
当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。
2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。
该机制使用页表来记录虚拟地址与物理地址的映射关系。
当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。
3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。
该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。
只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。
操作系统实验之内存管理实验报告

操作系统实验之内存管理实验报告一、实验目的内存管理是操作系统的核心功能之一,本次实验的主要目的是深入理解操作系统中内存管理的基本原理和机制,通过实际编程和模拟操作,掌握内存分配、回收、地址转换等关键技术,提高对操作系统内存管理的认识和实践能力。
二、实验环境本次实验在 Windows 操作系统下进行,使用 Visual Studio 作为编程环境,编程语言为 C++。
三、实验原理1、内存分配算法常见的内存分配算法有首次适应算法、最佳适应算法和最坏适应算法等。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲分区进行分配;最佳适应算法则选择大小最接近需求的空闲分区;最坏适应算法选择最大的空闲分区进行分配。
2、内存回收算法当进程结束释放内存时,需要将其占用的内存区域回收至空闲分区链表。
回收过程中需要考虑相邻空闲分区的合并,以减少内存碎片。
3、地址转换在虚拟内存环境下,需要通过页表将逻辑地址转换为物理地址,以实现进程对内存的正确访问。
四、实验内容1、实现简单的内存分配和回收功能设计一个内存管理模块,能够根据指定的分配算法为进程分配内存,并在进程结束时回收内存。
通过模拟多个进程的内存请求和释放,观察内存的使用情况和变化。
2、实现地址转换功能构建一个简单的页式存储管理模型,模拟页表的建立和地址转换过程。
给定逻辑地址,能够正确计算出对应的物理地址。
五、实验步骤1、内存分配和回收功能实现定义内存分区的数据结构,包括起始地址、大小、使用状态等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
创建空闲分区链表,初始化为整个内存空间。
模拟进程的内存请求,调用相应的分配算法进行内存分配,并更新空闲分区链表。
模拟进程结束,回收内存,处理相邻空闲分区的合并。
2、地址转换功能实现定义页表的数据结构,包括页号、页框号等信息。
给定页面大小和逻辑地址,计算页号和页内偏移。
通过页表查找页框号,结合页内偏移计算出物理地址。
操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。
最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。
最坏适应算法:选择空闲分区中最大的分区进行分配。
2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。
最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。
时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。
五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。
2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。
实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。
编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。
操作系统-内存分配与回收实验报告

操作系统-内存分配与回收实验报告本次实验是关于内存管理的实验,主要涉及内存分配和回收的操作。
本文将对实验过程和结果进行详细介绍。
1. 实验目的本次实验的主要目的是熟悉内存管理的基本原理和机制,掌握内存分配和回收的方法,并且实现一个简单的内存管理器。
2. 实验原理内存管理是操作系统的重要组成部分,主要负责管理计算机的内存资源,并且协调进程对内存的访问。
在计算机工作过程中,内存扮演着重要的角色,因此内存管理的效率和稳定性对计算机的性能和稳定性有着重要影响。
内存管理包括内存分配和回收两个方面。
内存分配是指为进程分配空闲的内存空间,以便程序可以执行;内存回收是指将已经使用完成的内存空间还回给系统,以便其他进程使用。
3. 实验步骤为了实现一个简单的内存管理器,我们需要进行以下步骤:(1)定义内存块结构体首先,我们需要定义一个内存块结构体,用于描述内存块的基本信息。
内存块结构体可以包含以下信息:· 内存块的起始地址· 内存块是否被分配下面是一个内存块结构体定义的示例代码:typedef struct mem_block{void *start_address; // 内存块的起始地址size_t size; // 内存块的大小bool is_allocated; // 内存块是否已经分配}MemBlock;(3)实现内存分配函数现在,我们可以开始实现内存分配函数了。
内存分配函数需要完成以下工作:· 在内存管理器中寻找一个合适的内存块void *mem_alloc(MemManager *manager, size_t size){MemBlock *p = manager->block_list;while(p){if(p->size >= size && !p->is_allocated){p->is_allocated = true;return p->start_address;}p = p->next;}return NULL;}· 找到该内存块所在的位置· 将该内存块标记为未分配状态4. 实验结果本次实验实现了一个简单的内存管理器,通过该内存管理器可以实现内存分配和回收的操作。
操作系统实验报告三

操作系统实验报告三一、实验目的本次操作系统实验的目的在于深入了解操作系统的进程管理、内存管理和文件系统等核心功能,通过实际操作和观察,增强对操作系统原理的理解和掌握,提高解决实际问题的能力。
二、实验环境本次实验在 Windows 10 操作系统环境下进行,使用了 Visual Studio 2019 作为编程工具,并借助了相关的操作系统模拟软件和调试工具。
三、实验内容与步骤(一)进程管理实验1、创建多个进程使用 C++语言编写程序,通过调用系统函数创建多个进程。
观察每个进程的运行状态和资源占用情况。
2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。
分析在不同并发情况下程序的执行结果,理解进程同步的重要性。
(二)内存管理实验1、内存分配与回收实现一个简单的内存分配算法,如首次适应算法、最佳适应算法或最坏适应算法。
模拟内存的分配和回收过程,观察内存的使用情况和碎片产生的情况。
2、虚拟内存管理了解 Windows 操作系统的虚拟内存机制,通过查看系统性能监视器观察虚拟内存的使用情况。
编写程序来模拟虚拟内存的页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法等。
(三)文件系统实验1、文件操作使用 C++语言对文件进行创建、读写、删除等操作。
观察文件在磁盘上的存储方式和文件目录的结构。
2、文件系统性能测试对不同大小和类型的文件进行读写操作,测量文件系统的读写性能。
分析影响文件系统性能的因素,如磁盘碎片、缓存机制等。
四、实验结果与分析(一)进程管理实验结果1、创建多个进程在创建多个进程的实验中,通过任务管理器可以观察到每个进程都有独立的进程 ID、CPU 使用率、内存占用等信息。
多个进程可以并发执行,提高了系统的资源利用率。
2、进程同步与互斥在生产者消费者问题的实验中,当使用正确的信号量机制时,生产者和消费者能够协调工作,不会出现数据不一致或死锁的情况。
操作系统实验 内存管理

操作系统实验报告计算机学院(院、系)网络工程专业082 班组课学号20 姓名区德智实验日期教师评定实验四内存管理一、实验目的通过实验使学生了解可变式分区管理使用的主要数据结构,分配、回收的主要技术,了解最优分配、最坏分配、最先分配等分配算法。
基本能达到下列具体的目标:1、掌握初步进程在内存中的映像所需要的内存需求。
2、内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。
二、实验内容1、在进程管理的基础上实现内存分配。
2、运用java实现整体的布局与分配内存时的动态图画显示。
三、实验步骤1.构建一个Process的对象类,每分配一次内存就实例化一个对象。
这对象包含分配内存的名字,内存大小(byte),绘画的起点像素,绘画的终点像素。
主要代码:public class Process {private String name;private int size;private int beginPx;private int endPx;public int getBeginPx() {return beginPx;}public void setBeginPx(int beginPx) {this.beginPx = beginPx;}public int getEndPx() {return endPx;}public void setEndPx(int endPx) {this.endPx = endPx;}public String getName() {return name;}public void setName(String name) { = name;}public int getSize() {return size;}public void setSize(int size) {this.size = size;}}2.根据用户输入而分配内存的大小,若输入的大小大于目前可分配内存的大小则拒绝分配操作,否则增加一个新进程入链表中,并在已分配表中增加进程的名字,更新剩余内存大小。
操作系统实验报告

操作系统实验报告一、实验目的本次操作系统实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理和关键机制,包括进程管理、内存管理、文件系统以及设备管理等方面。
同时,培养我们解决实际问题的能力,提高对操作系统相关知识的综合运用水平。
二、实验环境本次实验使用的操作系统为 Windows 10 和 Linux(Ubuntu 2004 LTS),实验所使用的编程工具包括 Visual Studio Code、gcc 编译器等。
三、实验内容及步骤(一)进程管理实验1、进程创建与终止在 Windows 系统中,使用 C++语言编写程序,通过调用系统 API函数创建新的进程,并观察进程的创建和终止过程。
在 Linux 系统中,使用 C 语言编写程序,通过 fork()系统调用创建子进程,并通过 wait()函数等待子进程的终止。
2、进程调度观察Windows 和Linux 系统中进程的调度策略,包括时间片轮转、优先级调度等。
通过编写程序模拟进程的执行,设置不同的优先级和执行时间,观察系统的调度效果。
(二)内存管理实验1、内存分配与释放在 Windows 系统中,使用 C++语言的 new 和 delete 操作符进行内存的动态分配和释放,并观察内存使用情况。
在 Linux 系统中,使用 C 语言的 malloc()和 free()函数进行内存的分配和释放,通过查看系统的内存使用信息来验证内存管理的效果。
2、虚拟内存管理研究 Windows 和 Linux 系统中的虚拟内存机制,包括页表、地址转换等。
通过编写程序访问虚拟内存地址,观察系统的处理方式和内存映射情况。
(三)文件系统实验1、文件操作在 Windows 和 Linux 系统中,使用编程语言对文件进行创建、读取、写入、删除等操作。
观察文件的属性、权限设置以及文件在磁盘上的存储方式。
2、目录操作实现对目录的创建、删除、遍历等操作。
研究目录结构和文件路径的表示方法。
内存分配实验报告总结(3篇)

第1篇一、实验目的本次实验旨在让学生深入理解内存分配的基本原理和不同分配算法,通过实际操作,提高学生对内存管理技术的掌握程度。
通过本次实验,我们希望达到以下目标:1. 熟悉内存分配的基本概念和过程;2. 掌握常见的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法;3. 理解内存分配中的碎片问题,并尝试解决;4. 培养学生的动手实践能力和问题解决能力。
二、实验内容1. 实验环境:使用C语言编写程序,运行在Linux操作系统上。
2. 实验步骤:(1)首次适应算法:从内存空间的起始位置开始查找,找到第一个满足申请大小的空闲分区,将其分配给请求者。
(2)最佳适应算法:从所有空闲分区中查找一个最小的满足申请大小的分区,将其分配给请求者。
(3)最坏适应算法:从所有空闲分区中查找一个最大的满足申请大小的分区,将其分配给请求者。
(4)解决内存碎片问题:采用紧凑算法,将所有空闲分区合并成一个连续的大空间,从而减少内存碎片。
三、实验过程1. 编写程序实现内存分配算法,包括内存初始化、申请内存、释放内存等功能。
2. 对不同分配算法进行测试,观察分配效果,分析不同算法的优缺点。
3. 分析内存碎片问题,尝试解决方法,如紧凑算法。
四、实验结果与分析1. 首次适应算法:该算法简单易实现,但可能导致内存利用率较低,且可能产生较大的内存碎片。
2. 最佳适应算法:该算法分配效果较好,内存利用率较高,但分配速度较慢。
3. 最坏适应算法:该算法分配效果较差,内存利用率较低,但分配速度较快。
4. 紧凑算法:通过合并空闲分区,减少了内存碎片,提高了内存利用率。
五、实验体会1. 通过本次实验,我们深入了解了内存分配的基本原理和不同分配算法,掌握了常见内存分配算法的优缺点。
2. 实验过程中,我们遇到了各种问题,如内存碎片问题、算法实现问题等,通过查阅资料、讨论和尝试,最终解决了这些问题,提高了我们的问题解决能力。
3. 实验使我们认识到,内存管理是操作系统中的一个重要组成部分,对计算机性能和稳定性有着重要影响。
存储管理实验报告

一、实验目的1. 理解操作系统存储管理的概念和作用。
2. 掌握存储管理的基本算法和策略。
3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。
2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。
(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。
五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。
但页式存储管理也存在页面碎片问题,导致内存碎片化。
2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统课程设计
实验报告
学院:信息学院
班级:计1109班
姓名:林海慧
学号:XXXXXXXXXXXXX
指导老师:XXXX
实验三、内存管理
一、[问题描述] 设计一个请求页式存储管理方案,为简单起见。
页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中修改状态位。
而不再判断它是否被改写过,也不将它写回到辅存。
二、[基本要求]
页面尺寸1K,输入进程大小(例如5300bytes),对页表进行初始化,
页表结构:
,块号分别为0、1、2,页框管理表(空闲块表):
任意输入一个需要访问的指令地址流(例如:3635、3642、1140、0087、1700、5200、4355,输入负数结束),打印页表情况。
每访问一个地址时,首先要计算该地址所在的页的页号,然后查页表,判断该页是否在主存——如果该页已在主存,则打印页表情况;如果该页不在主存且页框未满,则调入该页并修改页表,打印页表情况;如果该页不在主存且页框已满,则按FIFO页面淘汰算法淘汰一页后调入所需的页,修改页表,打印页表情况;
存储管理算法的流程图如下:
三、源代码
#include <stdio.h>
#include <stdlib.h>
#define BUSY 1
#define NOTBUSY 0
struct PageB{
int PNumber; //页号
int BNumber; //物理块号
int Count; //计数器,在内存驻留时间
bool State; //状态位
} ;
PageB
Page[6]={{0,-1,0,false},{1,-1,0,false},{2,-1,0,false},{3,-1,0,false},{4,-1,0,false},{5,-1,0,false}};
int queye=0;
struct Physical{
int BNumber; //物理块号
int State; //状态位
}Physical[3]={{0,0},{1,0},{2,0}};
int MaxSzie, MaxCount = 0;
bool IsInPage(int P)//判断是否在内存
{
int i=0;
int flag=0;
for (i = 0; i <= 5; i++)
{
if (Page[i].PNumber == P && Page[i].State == true)
{
printf("\n页在主存,打印页表:");
printf("\n页号:%d 物理块号:%d 状态:%d(true)",Page[i].PNumber,Page[i].BNumber,Page[i].State);
flag=1;
}
}
if(flag==1)
return true;
else return false;
}
void FIFO(int P)//FIFO页面置换算法
{
int i, j, k;
int BNumber;//暂存物理块号
for(i = 0; i <= 5; i++)
{
if (Page[i].PNumber == P && Page[i].State == false)
{
printf("页号%d在辅存\n",P);
//分配给该进程的物理块均被占
if(Physical[0].State == BUSY && Physical[1].State == BUSY && Physical[2].State == BUSY)
{
MaxCount=0;
for (j = 0; j <= 5; j++)
{
if (Page[j].Count >= MaxCount && Page[j].State == true)
{
MaxCount = Page[j].Count;
k = j;
}
}
BNumber = Page[k].BNumber;
Page[k].Count = 0;
Page[k].State = false;
Page[k].BNumber=-1;
Page[i].BNumber = BNumber;
Page[i].State = true;
for (j = 0; j <= 5; j++)
if (Page[j].State == true)//驻留在内存的页号时间增加
Page[j].Count = Page[j].Count + 1;
printf("\n页在辅存并已调入主存,打印页表:");
printf("\n页号:%d 物理块号:%d 状态:%d(true)",Page[i].PNumber,Page[i].BNumber,Page[i].State);
}
else //分配给该进程的物理块有空闲
{
for (j = 0; j <= 2 ; j++)
{
if (Physical[j].State == NOTBUSY)
{
Page[i].BNumber = Physical[j].BNumber;
Page[i].State = true;
Physical[j].State=BUSY;
for (j = 0; j <= 5; j++)//驻留在内存的页号时间增加
if (Page[j].State == true)
Page[j].Count = Page[j].Count + 1;
printf("\n页在辅存,打印页表:");
printf("\n页号:%d 物理块号:%d 状态:%d(true)",Page[i].PNumber,Page[i].BNumber,Page[i].State);
}
}
}
}
}
}
void DisFIFO()//查看内存物理块号使用情况
{
printf("\n物理块号页表号\n");
for(int w=5;w>=0;w--)
{
if(Page[w].State==true)
printf(" %d %d\n",Page[w].BNumber,Page[w].PNumber);
}
}
int main()
{
int P;
printf("\n请求页式存储管理\n:");
printf("*********为该进程分配的所有内存块都是空闲的\n**********:");
printf("\n输入进程大小:");
scanf("%d",&MaxSzie);//输入进程大小
DisFIFO();
int Address;
while(1)
{
printf("\n输入地址:");
scanf("%d",&Address);//输入要访问的地址
while(Address < 0 || Address > MaxSzie)
{
printf("输入地址溢出");
printf("\n请重新输入地址:");
scanf("%d",&Address);
}
P = Address / 1024;//判断页号
if(!IsInPage(P))
{
queye++;
FIFO(P);
}
DisFIFO();
getchar();
char ch;
printf("\n继续输入:y:");
scanf("%c",&ch);
if(ch!='y')
break;
}
printf("此次运行缺页次数为:%d\n",queye);
return 0;
}
四、运行结果
五、遇见的问题
开始时,对请求页式存储管理原理不理解,经过看书、查资料、跟同学讨论,理解后结合课件,终于写出程序。
可见对理论知识掌握的重要性。