智能仪器实验指导书

合集下载

设备仪器的作业指导书

设备仪器的作业指导书

设备仪器的作业指导书设备仪器的作业指导书1.目的和范围1.1 规范本公司检测仪器和设备校准准则,确保检测仪器和设备精度,进而保证产品质量。

1.2 适用所有与产品质量相关的检测仪器,包含监控装置。

2.定义:2.1 外部校验设备:量块、高度仪、投影仪、耐压测试仪、扭力计、螺纹环规、数显千分尺、推拉力计、稳压仪、标准压力表、百分表、数显温度表、数显多用表、示波表、功率分析仪、电流互感器、弹簧测试仪、microvu,其它不能内校仪器。

2.2 内部校验设备:电流连续性检测、耐高压测试夹具、辅助测试系统、气压表、电子称等。

3.职责3.1 计量工程师3.2 计量员4.授权4.1 质保经理5.程序5.1 品保部负责制定全公司《检测仪器检定一览表》,以作为校准的依据。

5.2 外部校验:5.2.1由计量员定期查看(每三月一次)外部仪器状态,将到期仪器送国家级仪器鉴定中心校验。

5.2.2 经国家级仪器鉴定中心判定ok之仪器,由计量员将鉴定合格标签贴在仪器上,鉴定证书存档并认可,作好相应记录。

5.2.3 经国家级仪器鉴定中心判定ng之仪器,由计量室认可,标识不合格标签,并对鉴定不合格仪器作好相应处理(特殊情况如仪器维修或报废需报经理处理),并作好记录。

5.2.4 对维修后之仪器,需再送国家级仪器鉴定中心鉴定,校验步骤再依5.2.2,5.2.3执行。

E6006 仪器设备管理作业指导书2016-06-01 22:12 | #2楼一、仪器设备的购置、验收和使用制度1、凡需要购置仪器设备,必须遵循性能先进、质量优良、配套齐全、价格适宜的原则。

首先由各分析室、车间根据科研测试需要,提出计划报室集中,经室研究后上报队批准购买。

2、仪器设备到货后,及时组织验收,收齐技术资料文件,然后入库建档立档。

如型号、质量、数量等有问题,及时办理补差、索赔、退货手续。

3、仪器设备安装调试、验收后,确定专人负责保管,并编号或翻译使用操作规程。

操作人员必须严格遵守操作规程。

PLC原理及应用实验指导书

PLC原理及应用实验指导书

实验一、基本指令的编程练习在基本指令的编程练习实验区完成本实验一、实验目的1、熟悉PLC 实验装置。

2、练习手持编程器的使用。

3、熟悉系统操作。

4、掌握与、或、非逻辑功能的编程方法。

二、基本指令编程练习的实验面板图上图中下面两排接线孔,通过防转叠插锁紧线与PLC 的主机相应的输入输出插孔相接。

Xi 为输入点,Yi 为输出点。

图中中间两排X0~X13为输入按键,模拟开关量的输入。

(TKPLC-3)本指令程练习的实验面板图基编(TKPLC-C)本指令程练习的实验面板图基编八路一排Y0~Y7是LED 指示灯,接继电器输出用以模拟输出负载的通与断。

三、编制梯形图并写出程序通过程序判断Y1、Y2、Y3、Y4的输出状态,然后再输入并运行程序加以验证。

实验参考程序,梯形图参考图1四、实验步骤梯形图中的X001、X003分别对应控制实验单元输入开关X1、X3。

通过专用电缆连接手持编程器与PLC 主机。

打开编程器,逐条输入程序,检查无误后,将可编程控制器主机上的STOP/RUN 按钮拨到RUN 位置,运行指示灯点亮,表明程序开始运行,有关的指示灯将显示运行结果。

拨动输入开关X1、X3,观察输出指示灯Y1、Y2、Y3、Y4是否符合与、或、非逻辑的正确结果。

自己设计一个抢答器X001X003Y001Y002X001X003X001X001X003X003END Y004Y0031定时器认识实验、X001T0T0K50Y000END图2-1图12定时器扩展实验、图2-23计数器认识实验、X001T0T0K50Y000ENDT1T1K30X001T0T0T0X000C0K100K20RST C0OUTY000图2-3 END实验二定时/计数器实验在基本指令的编程练习实验区完成本实验。

一、实验目的掌握定时器、计数器的正确编程方法,并学会定时器和计数器扩展方法。

二、编制梯形图并写出实验程序定时器、计数器及其扩展的参考梯形图见图2—1与图2—2。

智能仪器仪表实验教学大纲

智能仪器仪表实验教学大纲

《智能仪器仪表》课程实验教学大纲课程名称:智能仪器仪表课程编码:060241003课程类别:专业课课程性质:必修适用专业:测控技术与仪器专业适用教学计划版本:2017课程总学时:48实验(上机)计划学时: 10开课单位:自动化与电气工程学院一、大纲编写依据1.测控技术与仪器专业2006版教学计划;2.测控技术与仪器专业《智能仪器仪表》理论教学大纲对实验环节的要求;3.近年来《智能仪器仪表》实验教学经验。

二、实验课程地位及相关课程的联系1.《智能仪器仪表》是测控技术与仪器专业重要的专业方向课程;2.本实验项目是《智能仪器仪表》课程综合知识的运用;3.本实验项目是理解智能仪表数据处理方法的基础;4.本实验以《微机原理及应用2》、《单片机原理与接口技术》为先修课。

5.本实验为毕业设计等有指导意义。

三、实验目的、任务和要求1.熟悉单片机开发系统的使用,了解仿真器的基本原理及功能;2.培养学生观察问题、分析问题和独立解决问题的能力;3.掌握采用查表法,线性插值法进行传感器非线性特性校正的软件设计,调试方法;4.熟悉S型热电偶查表法,插值法校正法表格的设计方法;5.熟悉S型热电偶查表法,插值法校正法程序的设计方法;6.培养正确记录实验数据和现象,正确处理实验数据和分析实验结果的能力以及正确书写实验报告的能力。

四、教学方法、教学形式、教学手段的特色重视学生的实际动手能力五、实验内容和学时分配实验一认识实验1、实验目的:(1)熟悉智能仪表的开发过程。

(2)掌握智能仪表试验台的硬件电路,工作原理和特性。

2、实验要求:(1)掌握编程器使用方法。

(2)读取MCU数据的方法。

(3)对实验操作过程中出现的进行分析和总结。

3、实验内容:(1)掌握键入、修改程序的操作(2)熟悉检查有关存储单元内容的方法;掌握程序运行及调试过程。

4、主要仪器设备及试剂:(据实选填)(1)名称·规格型号·数量·设备编号教学用传感器实验仪 10(2)名称·规格·数量·耗材性质实验开发板,电阻箱,并口电缆,14芯扁平电缆连接线万用表实验二A/D转换实验1、实验目的:(1)了解A/D转换的工作原理。

智能仪器设计课程教学大纲

智能仪器设计课程教学大纲

《智能仪器设计》课程教学大纲Design of intelligent Instrument一、课程教学目标1、任务和地位:没有测量就没有鉴别,科学技术就不能前进。

要测量就必须有正确的测量方法和先进的仪器仪表。

随着微电子技术和计算机技术的迅速发展,特别是单片微机的出现和发展,使传统的电子测量仪器在原理、功能、精度及自动化水平等方面都不得发生了巨大变化,形成一种完全突破传统概念的新一代测试仪器——智能仪器。

现在很多厂商、研究所以及高等院校都在研制开发各种智能化测量控制仪表,广大的仪表设计、生产和使用人员都不得迫切希望了解和掌握单片机在测量控制仪表中的应用技术。

为了跟上时代的步伐,本课程是测控专业学生必不可少的一门技术基础课。

2、知识要求:要求必须具备电路、电子仪器与测量技术、汇编原理及单片机原理的学习知识,通过本课程的学习为以后学生出去工作打下基础。

3、能力要求:系统地阐述基于单片机的智能化测量控制仪表的基本原理与设计方法,智能化测量控制仪表的人机接口、过程通道接口、串行和并行通讯接口、硬件和软件抗干扰技术、数据处理技术、仪表硬件及软件的设计方法。

通过课程设计加强学生综合知识的应用能力和设计动手能力。

二、教学内容的基本要求和学时分配2、具体要求:第一章绪论[目的要求]让学生了解智能化测量控制仪表的功能特点、智能化测量控制仪表的设计方法[教学内容]学习智能化测量控制仪表的基本与发展、智能化测量控制仪表的功能特点、智能化测量控制仪表的设计方法[重点难点]智能化测量控制仪表的功能特点[教学方法]板书,以教、学相结合来进行讲解。

[作业]课后复习思考题[课时]0.5学时第二章智能化测量控制仪表中专用微处理机[目的要求]让学生掌握MCS-51系列单片机的结构、MCS-51单片机的指令系统[教学内容]介绍了MCS-51系列单片机的特点、 MCS-51系列单片机的结构、CHMOS型单片机的节电工作方式、MCS-51单片机的指令系统[重点难点]MCS-51系列单片机的结构、CHMOS型单片机的节电工作方式、MCS -51单片机的指令系统[教学方法]板书,以教、学相结合来进行讲解。

常用电子仪器的使用实验指导书

常用电子仪器的使用实验指导书

常用电子仪器的使用实验指导书实验一常用电子仪器的使用一、实验目的1. 学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要性能、技术指标及正确使用方法。

2. 初步掌握使用双踪示波器观察信号波形和测量波形参数的方法。

二、实验设备与器件器材名称器材名称函数信号发生器双踪示波器交流毫伏表频率计直流稳压电源导线若干三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。

它们和万用表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

在实验中,各种电子仪器要进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接通常如图1-1所示。

为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。

信号发生器和交流毫伏表的连接线通常用屏蔽线或专用电缆线,示波器的连接线使用专用电缆线,直流电源的连接线用普通导线。

图1-1模拟电子电路中常用电子仪器布局图1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种基本参数的测量,其基本功能和主要使用方法如下:(1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。

②触发方式开关置“自动”。

③适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。

(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。

)(2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”、“断续”二种双踪显示方式。

“交替”显示方式一般适宜于输入信号频率较高时使用,“断续”显示一般适宜于输入信号频率较低时使用。

(3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。

常用电子仪器的使用实验指导书

常用电子仪器的使用实验指导书

实验一常用电子仪器的使用一、实验目的1. 学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要性能、技术指标及正确使用方法。

2. 初步掌握使用双踪示波器观察信号波形和测量波形参数的方法。

二、实验设备与器件器材名称器材名称函数信号发生器双踪示波器交流毫伏表频率计直流稳压电源导线若干三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。

它们和万用表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

在实验中,各种电子仪器要进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接通常如图1-1所示。

为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。

信号发生器和交流毫伏表的连接线通常用屏蔽线或专用电缆线,示波器的连接线使用专用电缆线,直流电源的连接线用普通导线。

图1-1模拟电子电路中常用电子仪器布局图2 模拟电子技术实验1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种基本参数的测量,其基本功能和主要使用方法如下:(1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。

②触发方式开关置“自动”。

③适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。

(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。

)(2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”、“断续”二种双踪显示方式。

“交替”显示方式一般适宜于输入信号频率较高时使用,“断续”显示一般适宜于输入信号频率较低时使用。

(3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。

过程控制系统实验指导书

过程控制系统实验指导书

过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。

二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。

4.了解单回路控制,串级控制及顺序控制的概念,组成方式。

三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。

其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。

高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。

能在一个屏幕上对串级或两个独立的回路进行操作。

标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。

对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。

(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。

(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。

当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。

LabVIEW实验指导书(智能仪器)

LabVIEW实验指导书(智能仪器)

LabVIEW系统基本编程实验指导书目录实验一LabVIEW编程环境与基本操作实验 (2)实验二LabVIEW数据类型和数据运算实验 (6)实验三LabVIEW程序结构设计实验 (9)实验一LabVIEW编程环境与基本操作实验一、实验目的1. 理解LabVIEW的运行机制,熟悉LabVIEW的编程环境;2. 掌握创建、编辑、调试VI的操作方法。

二、实验内容创建一个VI,该VI可产生指定的仿真信号(正弦波、三角波)并在图形中显示该信号,编写相关程序。

三、实验设备安装有LabVIEW的计算机,要求安装LabVIEW 8.0或以上版本。

四、实验步骤1.启动LabVIEW,选择文件菜单,单击新建VI,保存该VI。

查看前面板窗口和程序框图窗口,可以用快捷键Ctrl+E切换前面板和程序框图窗口。

前面板窗口对应的选板为控件选板,若控件选板未显示,可以单击查看菜单中的控件选板,也可在前面板窗口的空白处单击鼠标右键。

前面板上的输入控件相当于物理仪器的输入装置,为VI 的程序框图提供数据。

程序框图对应的选板为函数选板,包含用于控制前面板对象的各种VI 和结构。

按下Ctrl+H快捷键打开即时帮助窗口。

2.在函数选板的Express组中,单击选择输入->仿真信号,在程序框图空白处单击鼠标左键,即可将仿真信号控件放置到程序框图中。

在弹出的配置窗口中将信号类型设置为正弦波,频率为50,幅值为1。

选中添加噪声项,噪声类型为均匀白噪声,噪声幅值为0.2,其余选项不变,单击确定。

3.将鼠标放置在仿真信号上,然后向下拉动,直到出现噪声幅值选项为止,如下图所示。

4.在控件选板中新式组里面数值中选择旋钮控件,并将其放置在前面板上,将控件的标题改为信号幅值,同理产生一个标题为信号频率和标题为噪声幅值的旋钮控件,并将信号频率的输入范围改为0-100。

通过前面板窗口菜单栏下面的工具栏中的对齐对象和分布对象工具将控件排列对齐。

在程序框图中分别将信号幅值、信号频率、噪声幅值控件跟仿真信号控件的对应项相连。

基于C51单片机的智能仪器综合设计实验

基于C51单片机的智能仪器综合设计实验

基于单片机的智能仪器综合设计实验一、实验目的在实验一~实验三的基础上,完成综合设计实验,学会信号采集、数据处理、键盘控制、LCD或LED显示等功能的智能仪器设计。

二、复习与参考实验一~实验三三、设计指标利用K分度号热电偶进行温度检测,测温范围为500-1200ºC,室温为20ºC,用LCD或LED显示室温和测量温度。

具有4路温度信号循环检测功能,通道切换时间可调;具有任意指定通道显示功能。

四、实验要求1.选择传感器,设计硬件电路,包括检测电路、信号调理电路、AD转换电路、单片机最小系统、LED显示(单号)、LCD显示(双号)、独立式按键,画出电路原理图。

2.画出软件流程图。

3.用Keil C51编写程序。

3.实验结果在LCD或LED上显示出来。

4.实验前完成第1、2项备查。

五、实验仪器设备和材料清单PC机;单片机实验板、连接导线、ST7920图形液晶模块Keil c51软件六、实验成绩评定方法实验成绩包括预习、实验完成质量、实验报告质量3部分组成,各部分所占比例分别为30%、40%、30%。

八、实验报告要求实验报告格式:●实验名称●实验目的●实验内容●硬件设计●软件设计●调试过程●参考文献●附1:电路原理图●附2:程序清单附录:实验程序源代码如下:(陈寅)#include "reg51.h"#define THC0 0xee //5ms时间常数设置#define TLC0 0x00sbit ADWR=P3^6; /***WR*****/sbit ADRD=P3^7; /***RD*****/sbit ADCS=P2^7; /***CS*****/sbit EOC=P3^3; /***EOC****/sbit ADA=P1^3; //通道选择引脚sbit ADB=P1^4;sbit ADC=P1^5;sbit CS =P1^0; /****************/sbit SID=P1^1; /**液晶引脚定义**/sbit SCLK=P1^2; /****************/sbit MODE=P2^0; /*************************/sbit UP=P2^1; /*四个按键接口,0表示按下*/sbit DOWN=P2^2; /*************************/sbit LED1=P2^3; /**4个LED灯引脚定义**/sbit LED2=P2^4; /********************/sbit LED3=P2^5; /********************/sbit LED4=P2^6; /********************//***************500~1200°C范围的K分度表,间隔10*******************/ unsigned int code K_TABLE[71]={20644,21066,21493,21919,22346,22772,23198,23624,24050,24476,24902,25327,25751,26176,26599,27022,27445,27867,28288,28709,29128,29547,29965,30383,30799,31214,31629,32042,32455,32866,33277,33686,34095,34502,34909,35314,35718,36121,36524,36925,37325,37725,38122,38519,38915,39310,39703,40096,40488,40897,41296,41657,42045,42432,42817,43202,43585,43968,44349,44729,45108,45486,45863,46238,46612,46985,47356,47726,48095,48462,48828}; unsigned char GetAdData[10]={0}; //存放获得AD值的数组变量unsigned char ViewTemperature[4]={"0000"}; //显示温度缓冲数组变量unsigned MODESelect=1;int ChangeTime=2; //通道切换时间,单位Sint TongDao=1;void delay(unsigned int j){unsigned char i;do{for(i=0;i<100;i++);}while(j--);}void send_command(unsigned char command_data) //发送命令{unsigned char i;unsigned char i_data;i_data=0xf8; //操作命令,可以查看资料delay(10);CS=1;SCLK=0;for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}i_data=command_data;i_data&=0xf0;for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}i_data=command_data;i_data=i_data&0x0f;i_data<<=4;for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}CS=0;}void send_data(unsigned char command_data) //发送数据{unsigned char i;unsigned char i_data;i_data=0xfa; //操作命令,可以查看资料delay(10);CS=1;for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}i_data=command_data;i_data&=0xf0;for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}i_data=command_data;i_data=i_data&0x0f; //取低四位i_data<<=4; //左移四位,从而变成高四位for(i=0;i<8;i++){SID=(bit)(i_data&0x80);SCLK=0;SCLK=1;i_data=i_data<<1;}CS=0;}void InitLCD() //液晶初始化{send_command(0x30); //功能设置:一次送8位数据,基本指令集send_command(0x06); //点设定:显示字符/光标从左到右移位,DDRAM地址加1send_command(0x0c); //显示设定:开显示,显示光标,当前显示位反白闪动send_command(0x04); //显示设定:开显示,显示光标,当前显示位反白闪动send_command(0x01); //清DDRAMsend_command(0x02); //DDRAM地址归位send_command(0x80); //把显示地址设为0X80,即为第一行的首位}/* x,y为起始座标x(0<=x<=3),y(0<=y<=7),x为行座标,y为列座标;how为要显示汉字的个数;style为显示字符的类型,0表汉字,1表字母;str是要显示汉字的地址*/void Display(unsigned char x,unsigned char y,unsigned char how,bit style,unsigned char *stri) //液晶显示{unsigned char hi=0;if(x==0) send_command(0x80+y);else if(x==1) send_command(0x90+y);else if(x==2) send_command(0x88+y);else if(x==3) send_command(0x98+y);if(style==0){for(hi=0;hi<how;hi++){send_data(*(stri+hi*2));send_data(*(stri+hi*2+1));}}elsefor(hi=0;hi<how;hi++) send_data(*(stri+hi));}float LvBo(void)//复合滤波{unsigned char max,min,i;unsigned int sum=0;float U1;max=GetAdData[0];min=GetAdData[0];for(i=0;i<10;i++){sum=sum+GetAdData[i];if(max<GetAdData[i]) max=GetAdData[i];if(min>GetAdData[i]) min=GetAdData[i];}sum=sum-max-min;U1=(float)sum/8;U1=10.0*((U1*5.0)/255); //换成mvreturn U1;}void search (void)//查表子函数{unsigned int da=0,max,min,mid,j;unsigned int var;da=LvBo()*1000; //u1扩大1000倍da=da+798; //20度max=71;min=0;var=0;while(1){mid=(max+min)/2; //中心元素位置if(K_TABLE[mid]==da) {var=mid*10;break;} //中心元素等于查表元素,计算相应温度else if(K_TABLE[mid]>da) max=mid-1;else min=mid+1;if(max-min==1) /*线性插值计算温度值*/{j=(K_TABLE[max]-K_TABLE[min])/10; /*表中相邻两值对应温度相差10°C*/j=(da-K_TABLE[min])/j;var=10*min+j;break;}if(max==min){if(da>=K_TABLE[min]){j=(K_TABLE[min+1]-K_TABLE[min])/10;j=(da-K_TABLE[min])/j;}else if(da<K_TABLE[min]){j=(K_TABLE[min]-K_TABLE[min-1])/10;j=(da-K_TABLE[min-1])/j;min=min-1;}var=10*min+j;break;}}var=var+500;ViewTemperature[0]=var/1000+0x30;ViewTemperature[1]=var/100%10+0x30;ViewTemperature[2]=var/10%10+0x30;ViewTemperature[3]=var%10+0x30;}void LcdDisplay(void){unsigned char ViewMODESelect,ViewTongDao[5]={"0 "},ViewChangeTime[5]={"00(S)"};ViewMODESelect=MODESelect+0x30;ViewTongDao[0]=TongDao+0x30;if(MODESelect==1||MODESelect==2){if(MODESelect==1) Display(0,3,5,0,":自动切换");else if(MODESelect==2) Display(0,3,5,0,":手动切换");Display(0,0,2,0,"模式"); //液晶显示Display(0,2,1,1,&V iewMODESelect);Display(1,0,5,0,"温度通道:");Display(1,5,5,1,V iewTongDao);Display(2,0,4,0,"温度值:");Display(2,4,4,1,V iewTemperature);Display(2,6,2,1,"℃");}else if(MODESelect==3){ViewChangeTime[0]=ChangeTime/10+0x30;ViewChangeTime[1]=ChangeTime%10+0x30;Display(0,0,2,0,"模式");Display(0,2,1,1,&V iewMODESelect);Display(0,3,5,0,":设置时间");Display(1,0,5,0,"切换时间:");Display(1,5,5,1,V iewChangeTime);Display(2,0,14,1," "); //本行清屏}}void TDSelect(void) //AD通道设置{if(TongDao>=5) TongDao=1;if(TongDao<=0) TongDao=4;if(TongDao==1) {ADC=0;ADB=0;ADA=0;}else if(TongDao==2) {ADC=0;ADB=0;ADA=1;}else if(TongDao==3) {ADC=0;ADB=1;ADA=0;}else if(TongDao==4) {ADC=0;ADB=1;ADA=1;}}main(){unsigned char AdCount=0; //用来存放AD采集次数InitLCD();TMOD=0x11; //定时器0初始化TH0=THC0;TL0=TLC0;TR0=1;ET0=1;EA=1;P2|=0x07; //按键初始为高while(1){ADWR=1; /************/ADCS=0; /************/ADWR=0; /**AD初始化**/ADWR=1; /************/while(!EOC); //等待转换结束ADRD=0;GetAdData[AdCount]=P0; //读取转换结果AdCount++;if(AdCount>=10) //连续采集10次值{AdCount=0;search(); //查表LED1=!LED1;LcdDisplay(); //显示}}}void Timer0() interrupt 1{static unsigned char count=0,UPFlag=1,DOWNFlag=1; //按键标志位static unsigned int TimeCount=0;TH0=THC0;TL0=TLC0;if(MODE==0||UP==0||DOWN==0){count++;if(count>=30) //消抖处理{count=0;if(MODE==0) //按键按下{MODESelect++;if(MODESelect>=4) MODESelect=1;}else if(UP==0){UPFlag=0;if(MODESelect==2){TongDao++;TDSelect();}}else if(DOWN==0){DOWNFlag=0;if(MODESelect==2){TongDao--;TDSelect();}}}}else count=0;if(MODESelect==1){TimeCount++;if(TimeCount>=(ChangeTime*1000/5)){TimeCount=0;TongDao++;TDSelect();}}else if(MODESelect==3){if(UPFlag==0) {UPFlag=1;ChangeTime++;}else if(DOWNFlag==0){DOWNFlag=1;ChangeTime--;if(ChangeTime<=0) ChangeTime=1;}}}。

虚拟仪器实验指导书

虚拟仪器实验指导书

虚拟仪器实验指导书一、实验目的本实验旨在通过使用虚拟仪器软件,使学生能够掌握虚拟仪器的基本操作和应用,以及了解虚拟仪器在科学研究和实验中的重要性。

二、实验原理虚拟仪器是一种基于计算机软件的仿真工具,可以模拟各种实际仪器的功能和操作。

通过虚拟仪器软件,我们能够进行各种实验操作,获取数据,并进行数据分析和处理。

三、实验器材与软件1. 个人计算机2. 虚拟仪器软件(例如LabVIEW、VirtualBench等)四、实验步骤1. 安装虚拟仪器软件a. 下载虚拟仪器软件安装包并运行安装程序。

b. 按照安装向导的指示完成软件的安装。

2. 打开虚拟仪器软件a. 双击桌面上的虚拟仪器软件图标。

b. 等待软件加载完成,进入软件的主界面。

3. 创建新的虚拟仪器实验项目a. 在软件主界面上,点击“新建实验”按钮。

b. 输入实验名称和实验目的,并选择实验类型。

c. 点击“确定”按钮,创建新的虚拟仪器实验项目。

4. 配置虚拟仪器a. 在实验项目界面上,点击“配置仪器”按钮。

b. 选择需要使用的虚拟仪器设备,并进行连接和配置。

c. 确认仪器配置无误后,点击“确定”按钮。

5. 进行实验操作a. 在实验项目界面上,选择需要进行的实验操作。

b. 按照实验指导书或实验要求,进行相应的操作。

c. 注意观察仪器显示和数据采集情况,并记录实验数据。

6. 数据分析与处理a. 在实验项目界面上,点击“数据分析”按钮。

b. 使用软件提供的数据分析工具,对实验数据进行处理和分析。

c. 根据实验要求,生成相应的数据图表或报告。

7. 实验结果与讨论a. 在实验项目界面上,点击“实验结果”按钮。

b. 总结实验结果,进行结果讨论,并提出相应的结论。

c. 可以将实验结果导出为文件,保存到本地或共享给他人。

五、实验注意事项1. 在进行虚拟仪器实验前,务必阅读实验指导书或实验要求,并了解实验目的和操作步骤。

2. 在进行实验操作时,要注意仪器的正确使用方法和安全操作规范。

智能压缩试验仪作业指导书

智能压缩试验仪作业指导书

**********机械制造有限公司实验室设备作业指导书设备名称 智能压缩试验仪 设备编号 SYS-YSY-01 文件号 SYS-SBZY-01技术指标:a. 测量范围:60~3000N ;b. 示值准确度:误差±1%,变动性≤1%;c. 试验速度:12.5±2.5mm/min;d. 上下压板平行度:<0.05mm 。

设备位置 品质部实验室 设备型号ZB-HY3000共 1 页 第 1 页操作程序及步骤:1、开机:接通电源,打开电源开关,仪器自校后进入待测状态,预热30min 。

2、试验选择:仪器默认的试验项目为环压试验,按动“试验选择”键,在环压试验、粘合试验、边压试验和纸管测试之间进行切换。

3、定量设置:按“设置”键,选择“定量设置”,按“”和“ ”键,设置定量。

3、测试:①按“上升”或“下降”键,至上下压板间距离适当时按“停止”键,设置下压板初始位置;②根据所选试验项目,用相应的辅具将式样安放在下压板中部;③按“测试”键,仪器自动完成一次工作循环,测试结果显示在显示屏上;④更换试样进行下一次试验,直至一组试验完毕;⑤当试样强度较低,仪器不能自动判别峰值时,可采用手动测试。

4、数据统计:一组试验完毕,按“统计”键,可对改组试验数据进行统计计算,并显示出相关计算结果。

5、打印输出:统计完毕后,按“打印”键,可打印该组试验数据及相关结果和参数。

6、维护保养: 保持仪器清洁,长期不用时应加罩防尘;运行一段时间后,应在升降正面的加油孔内注入适量润滑油,升降套表面应涂适量润滑脂。

基本工作结构1传感器2上下压板 3打印机 4操作控制面板注意事项:1. 工作环境:20℃±10;2. 连续做不同的试验项目或试验不同的纸板,应及时清除内存数据,以免影响结果计算;3. 做环压试验时应进行定量设置,并及时修改;4. 压差推荐使用80N ,10mm 以上厚的纸板采用120N 的压差。

实验室仪器设备作业指导书

实验室仪器设备作业指导书

实验室仪器设备作业指导书1. 引言实验室仪器设备是科研工作中必不可少的重要工具。

为了确保实验室仪器设备的正常运行以及保证实验数据的准确性,需要进行操作规范的指导。

本指导书旨在提供实验室仪器设备作业的详细指导,并介绍使用常见的仪器设备的操作步骤和注意事项。

2. 实验室仪器设备操作流程2.1. 开启仪器设备•确保仪器设备已经连接电源,并检查电源是否正常。

•打开仪器设备的电源开关,等待仪器设备启动。

•检查仪器设备的显示屏,确保设备正常工作。

2.2. 设置仪器设备参数•根据实验的需求,设置仪器设备的参数。

•仔细阅读仪器设备使用手册,了解设备参数设置的方法和注意事项。

•注意对于长时间未使用的设备,需要进行预热操作。

2.3. 校准仪器设备•定期校准仪器设备,确保测量结果的准确性。

•根据仪器设备的使用手册,进行校准操作。

•注意校准操作过程中的安全事项,避免对自己和他人造成伤害。

2.4. 进行样品处理•准备好实验所需的样品,并按照实验要求进行处理。

•根据实验要求,将样品放入仪器设备中进行测量。

•确保样品处理操作的准确性和合理性,避免对实验结果的干扰。

2.5. 记录实验数据•在进行实验过程中,及时记录实验数据。

•确保实验数据的准确性和完整性,方便后续的数据分析和处理。

•注意实验数据的保密性和安全性,避免数据外泄。

2.6. 关闭仪器设备•在实验结束后,及时关闭仪器设备。

•关闭仪器设备的电源开关,并拔掉电源插头。

•清理仪器设备,确保设备的整洁和安全。

3. 常见仪器设备的操作指导3.1. 分光光度计3.1.1. 操作步骤1.打开分光光度计电源开关,等待仪器启动。

2.调整光程为适当的数值,根据实验要求选择合适的光源。

3.将标准溶液注入比色池中,将比色池放入分光光度计。

4.设置波长为实验所需的数值,并调整样品宽度。

5.点击测量按钮,开始测量。

6.等待仪器完成测量,记录测量结果。

3.1.2. 注意事项•在操作分光光度计时,避免直接观察光源以免对眼睛造成伤害。

人工智能技术实验指导书

人工智能技术实验指导书

人工智能技术实验指导书实验背景本实验指导书旨在帮助学生深入了解人工智能技术的基础原理及应用方法。

通过本实验,学生将能掌握人工智能技术的基本概念、算法和编程技能,为未来在人工智能领域的研究和研究打下坚实基础。

实验目的本实验旨在培养学生的人工智能算法设计和编程能力,提高学生对人工智能技术的理解和应用能力。

实验内容实验一:人工智能算法基础- 研究人工智能算法的基本概念和分类;- 掌握常见的人工智能算法原理和实现方法;- 利用Python编程语言实现简单的人工智能算法。

实验二:机器研究算法实践- 掌握机器研究算法的基本原理和应用方法;- 研究使用机器研究库进行数据预处理和算法训练;- 利用已有数据集,实现一个简单的机器研究算法模型。

实验三:深度研究算法应用- 理解深度研究算法的基本原理和结构;- 研究使用深度研究框架进行神经网络模型的设计和训练;- 实现一个简单的深度研究算法应用案例。

实验要求- 学生应具备基本的编程能力,熟悉Python编程语言;- 学生应具备基本的数学和统计知识,对概率和线性代数有一定了解;- 学生应具备良好的逻辑思维能力和问题解决能力。

实验评估- 实验报告:学生需按要求书写并提交实验报告,内容包括实验目的、方法、实验结果和分析等;- 实验成绩:根据实验报告和实验结果,对学生的实验成果进行综合评估。

实验资源- 教材:提供相关的教材和参考书籍,供学生参考和研究;- 软件工具:提供相应的编程环境和开发工具,供学生进行实验操作和编程实现。

实验安排- 实验时间:本实验预计需要3周的时间完成;- 实验地点:学生可以自行选择合适的实验地点进行实验。

注意事项- 学生在进行实验时,应遵守实验室规定和安全操作流程;- 学生在编写实验报告时,应保证报告内容真实可信。

参考资料- 《人工智能导论》- 《机器研究实战》- 《深度学习》。

34 崂应2030D型智能小流量TSP采样仪作业指导书

34 崂应2030D型智能小流量TSP采样仪作业指导书

崂应2030D型智能小流量 TSP/PM10/PM2.5采样仪作业指导书文件编号:编制人:审核人:批准人:持有人:分发号:2018年5月15日发布 2018年5月20日实施1.目的规范崂应2030D型智能小流量TSP/PM10/PM2.5采样仪的操作程序,正确使用仪器,保证检测工作的顺利进行,操作人员的人身安全和设备安全。

2.适用范围适用于2030D型智能小流量TSP/PM10/PM2.5采样仪的使用操作。

3.职责3.1 操作人员按照本规程操作仪器,对仪器进行日常的维护和使用登记。

3.2 设备管理员负责监督仪器的操作是否符合规程,对仪器进行定期维护、保养。

4.操作程序4.1.1对监测项目基本情况进行调查现场检测人员认真了解监测对象的生产设备、工艺流程,清楚主要污染源、主要污染物及其排放规律,查看环保措施落实和环保设施运行情况,监控生产负荷,调查现场环境(如:气象、水文、污染源)有关参数和周边环境敏感点,检查检测点位符合性及安全性,搜集与编制技术(监测)报告有关的各种技术资料并做好相关记录。

4.1.2 采样前准备安装滤膜夹并压紧。

然后将滤膜夹放置与机器的滤膜夹仓位4.2操作说明4.2.1开机开机进入开机画面,运行2-5s后自动进入主页或断电续采界面。

4.2.2主菜单主页会实时更新电池电量、日期时间、2G信号强度和外插电标志,按下相应的文字按钮会进入相应的界面。

4.2.3子菜单操作设置界面可以设置日期时间,按返回返回界面。

4.2.4 采样按采样进入采样画面,按定时采样进入定时采样设置界面,按自动采样进入自动采样界面。

定时采样可以设置标况温度,采样流量,滤膜号,开始时间和采样时长,(注意开始时间不能是过去时间),按启动采样进入定时采样等待界面。

自动采样可以设置标况温度、滤膜号、采样时长、采样次数和采样间隔,按启动采样进入自动采样界面。

自动采样界面会更行实时采样的数据和系统时间,采样过程如果过载会提示保护过载5.日常维护与保养a)在日常使用过程中,必须严格按作业指导书执行,并按照期间核查计划、设备维护计划进行设备的维护及期间核查,并详细填写期间核查记录、设备维护记录。

智能仪器自动量程切换

智能仪器自动量程切换

《智能仪器》实验报告实验项目自动量程切换实验时间同组同学班级 111学号 1111姓名瓜瓜2014年4月实验四自动量程切换一、实验目的1. 了解仪器量程的概念,量程切换原理。

2. 了解多路开关在模拟量输入通道中的应用。

3. 掌握实现自动量程切换的硬件电路和编程方法。

二、实验原理与要求用电位器调整输入电压值,利用实验板上的AD774 A/D转换器、多路模拟开关MPC508和可编程增益放大器AD526和C8051单片机构成单路电压测量系统,对输入电压进行测量。

图4-1 自动量程切换实验原理图对输入电压的量程判断是通过不断改变可编程增益放大器AD526的增益实现的。

AD526通过编程可输出1、2、4、8、16五档不同的增益,本实验取其增益为1。

实验中AD774输入电压为10V那么经衰减后的电压应该在0-10。

取衰减电阻网络中的电阻分别为1K、1K、2K,可以实现三个量程的切换。

假设输入信号在0-40V 内(根据实验台条件提供),则0-10V范围的电压不需要衰减,10-20V范围的电压需要衰减一半,20-40V范围内的输入电压需要衰减为原值的1/4。

实验中,我们假设输入电压分别为6V、12V、24V,编写具有自动量程切换功能的电压测量程序,将采集的电压值以数字量形式存于内存中。

来观察内存中相应的量程和AD转换结果。

三、实验内容及说明实验电路图请参考实验指导书附录中的“12位并行AD模块”部分(图4-2所示),1. 8通道多路开关MPC508在此模块中,MPC508(U1)为8通道多路开关,其引脚图如图8-2及主要功能说明如下:INn(n=1~8)为8通道模拟量输入端,A0、A1、A2为通道选择控制端,EN为使能端,它们之间的关系见真值表8-1所示。

要访问MPC508多路开关,只要对端口地址(8C00H~8CFFH范围中的一个地址)写入相应的数据,从而选通相应的通道。

表4-1 MPC508通道选择2.可编程增益放大器AD526AD526(U2)为可编程增益放大器, A2、A1、A0、B四端为控制增益的代码输入端,、为使能端,VIN端为信号输入端,VOUT端为信号输出端,它们之间的关系见真值表4-2,通过编程可以很方便的设置1、2、4、8、16不同的增益。

PLC实验指导书THPFSM-1.2型

PLC实验指导书THPFSM-1.2型

第二章实训项目PLC基本技能实操实训一 PLC认知实训一、实训目的1.了解PLC软硬件结构及系统组成2.掌握PLC外围直流控制及负载线路的接法及上位计算机与PLC通信参数的设置二、实训设备序号名称型号与规格数量备注1可编程控制器实训装置THPFSM-1/2 12实训导线3号若干3PC/PPI通讯电缆 1 西门子4计算机 1 自备三、PLC外形图四、控制要求1.认知西门子S7-200系列PLC的硬件结构,详细记录其各硬件部件的结构及作用;2.打开编程软件,编译基本的与、或、非程序段,并下载至PLC中;3.能正确完成PLC端子与开关、指示灯接线端子之间的连接操作;4.拨动K0、K1,指示灯能正确显示;五、功能指令使用及程序流程图1.常用位逻辑指令使用标准触点常开触点指令(LD、A和O)与常闭触点(LDN、AN、ON)从存储器或过程映像寄存器中得到参考值。

当该位为1时,常开触点闭合;当该位为0时,常闭触点为1;输出输出指令(=)将新值写入输出点的过程映像寄存器。

当输出指令执行时,S7-200将输出过程映像寄存器中的位接通或断开。

与逻辑:如上所示:I0.0、I0.1状态均为1时,Q0.0有输出;当I0.0、I0.1两者有任何一个状态为0,Q0.0输出立即为0。

或逻辑:如上所示:I0.0、I0.1状态有任意一个为1时,Q0.1即有输出;当I0.0、I0.1状态均为0,Q0.1输出为0。

与逻辑:如上所示:I0.0、I0.1状态均为0时,Q0.2有输出;当I0.0、I0.1两者有任何一个状态为1,Q0.2输出立即为0。

2.程序流程图六、端口分配及接线图1.I/O端口分配功能表序号PLC地址(PLC端子)电气符号(面板端子)功能说明1.I0.0 K0 常开触点012.I0.1 K1 常开触点023.Q0.0 L0 “与”逻辑输出指示4.Q0.1 L1 “或”逻辑输出指示5.Q0.2 L2 “非”逻辑输出指示6.主机1M、面板V+接电源+24V 电源正端7.主机1L、2L、3L、面板COM接电源GND电源地端2.控制接线图七、操作步骤1.按下图连接上位计算机与PLC;2.按“控制接线图”连接PLC外围电路;打开软件,点击,在弹出的对话框中选择“PC/PPI 通信方式”,点击,设置PC/PPI属性;3.点击,在弹出的对话框中,双击,搜寻PLC,寻找到PLC后,选择该PLC;至此,PLC与上位计算机通信参数设置完成;4.编译实训程序,确认无误后,点击,将程序下载至PLC中,下载完毕后,将PLC模式选择开关拨至RUN状态。

KY·CSY10G型实验指导书(10版本)

KY·CSY10G型实验指导书(10版本)

浙大科仪简介浙江大学仪器系(科仪系)在全国高校中最早开设“电子测量技术与仪器”专业课程,并开发出CSY传感器系统实验仪应用于实验教学。

杭州浙大科仪电子技术有限公司依托浙江大学电子、光电信息专业的雄厚技术实力,多年来研制了KY²CSY系列传感器与检测技术实验仪器、在全国领先的激光、光电测试、光通讯实验系统、KZ SY系列自动化教学实验仪器,已经装备了全国1000多所高等院校的物理、机电、电子电气、光学、光电、自动化、生物医学工程、信息工程等专业实验室。

“浙大科仪”秉承浙江大学“求是创新”的校风,遵循“服务教学不断超越”的宗旨,根据自身专业实验课程的教学实践,在保持自己产品专业特色的同时,紧跟科学技术发展与相对应的高等院校实验教学设备的更新,不断开发出科技含量高、实验内容新颖深受高等院校欢迎的实验设备,“浙大科仪”教学仪器已经成为高教实验设备中的品牌产品。

“浙大科仪”不断加强现代企业管理,通过GB/T19001-2000-I SO9001:2000质量体系认证,建立了现代质量管理体系和以用户满意为标准的售后技术服务制度,“浙大科仪”将始终伴随中国教育事业“继往开来、开拓创新、与时俱进、再创辉煌”!- 0 -目录Ⅰ仪器说明(仪器使用前请详阅本章) (3)一实验工作台部分 (3)二信号源及仪表显示部分 (3)三处理电路部分 (4)四数据采集及实验软件部分 (5)五CCD应用软件 (7)六实验操作须知 (15)Ⅱ实验内容 (16)实验一光敏电阻特性实验 (16)实验二光敏电阻的应用——暗灯控制 (21)实验三光敏二极管特性实验 (22)实验四光敏三极管特性实验 (27)实验五光敏管的应用——光控电路 (31)实验六红外光敏管特性实验 (32)实验七红外光敏管的应用——红外检测 (35)实验八光电池特性实验 (35)实验九光电池的应用——光强计 (39)实验十光纤位移传感器特性实验 (40)实验十一光纤位移传感器——位移测量 (42)实验十二光纤位移传感器——测温实验 (43)实验十三光纤位移传感器——转速测量 (44)实验十四光电耦合式传感器——转速测量 (45)实验十五菲涅尔透镜特性实验 (46)实验十六热释电红外传感器特性实验 (46)实验十七热释电红外传感器——人体探测 (48)实验十八PSD光电位置传感器——位移测量 (48)- 1 -实验十九PSD光电位置传感器——光电特性 (51)实验二十光栅传感器——光栅距的测定 (52)实验二十一光栅传感器——测距实验 (53)实验二十二光栅莫尔条纹特性实验 (54)实验二十三CCD电荷耦合传感器——莫尔条纹计数 (56)实验二十四CCD电荷耦合传感器——测径实验 (57)Ⅲ附录资料 (59)附录一实验接线直观图 (59)附录二仪器工作台布局图 (68)附录三实验电路原理图 (68)附录四数据分析相关知识 (73)附录五光电传感实验原理 (77)- 2 -仪器说明(仪器使用前请详阅本章)KY²CSY10G型光电传感器系统实验仪是为了满足现代光电传感器实验教学课程所需而研制的实验仪器,它集各经典与新型光电传感器件、被测体、信号源、仪表显示、处理电路、信号采集与处理及实验所需的温度源、位移、光源、旋转装置等机构中于一体,可以方便地对各光电器件进行光电特性、光照特性、温度特性、光频特性、伏安特性及应用演示等二十四种实验,并可根据实验原理自主开发出更多的实验内容。

KH-MHC 型 使用说明书

KH-MHC 型 使用说明书

KH-MHC型智能磁滞回线实验组合仪使用说明书(磁滞回线实验组合仪分为实验仪和测试仪两大部分)一、实验仪配合示波器,即可观察铁磁性材料的基本磁化曲线和磁滞回线。

它由励磁电源、铁磁材料样品、电路板以及实验接线图等部分组成。

1.励磁电源由220V,50Hz的市电经变压器隔离、降压后供试样磁化。

电源输出电压共分10档,即0.5、1.0、1.2、1.5、1.8、2.0、2.2、2.5、2.8和3.0V,各档电压通过安置在电路板上的波段开关实现切换。

2.铁磁材料样品样品1和样品2为尺寸(平均磁路长度L和截面积S)相同而磁性不同的两只EI型铁芯,两者的励磁绕组匝数N和磁感应强度B的测量绕组匝数n亦相同,参数如下,N=50,n=150,L=60mm,S=80mm2。

3.电路板该印刷电路板上装有电源开关、样品1和样品2、励磁电源“U选择”和测量励磁电流(即磁场强度H)的取样电阻“R1选择”、以及为测量磁感应强度B所设定的积分电路元件R2、C2等。

以上各元器件(除电源开关)均已通过电路板与其对应的锁紧插孔连接,只需采用专用导线,便可实现电路连接。

此外,设有电压U B(正比于磁感应强度B的信号电压)和U H(正比于磁场强度H的信号电压)的输出插孔,用以连接示波器,观察磁滞回线波形和连接测试仪作定量测试用。

4.实验接线示意图如图1所示。

图 1 实验接线示意图二、测试仪图2所示为智能磁滞回线测试仪原理框图,测试仪与实验仪配合使用,能定量、快速测定铁磁性材料在反复磁化过程中的H 和B 之值,并能给出其剩磁、矫顽力、磁滞损耗等多种参数。

图2 智能磁滞回线测试仪原理框图智能磁滞回线测试仪面板如图3所示,下面对测试仪使用说明作介绍1. 参数L 待测样品平均磁路长度 L =60mm 。

S 待测样品横截面积 S =80mm 2。

N 待测样品励磁绕组匝数 N =50。

n 待测样品磁感应强度B 的测量绕组匝数n =150。

R 1 励磁电流i H 取样电阻,阻值0.5~5Ω。

CSY实验指导书24页word文档

CSY实验指导书24页word文档

CYS传感器系统实验仪使用说明CSY系列传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。

其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。

通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。

通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。

实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。

各款实验仪的传感器配置及布局是:一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁,梁上装有应变式、热敏式、P-N结温度式、热电式和压电加速度五种传感器。

平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符号和表示。

其中六片为金属箔式片(BHF-350)。

横向所贴的两片为温度补偿片,用符号和表示。

片上标有“BY”字样的为半导体式应变片,灵敏系数130。

(CSY10B型应变梁上只贴有半导体应变计。

)热电式(热电偶):串接工作的两个铜一康铜热电偶分别装在上、下梁表面,冷端温度为环境温度。

分度表见实验指导书。

(CSY10B 型上梁表面安装一支K分度标准热电偶。

)热敏式:上梁表面装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。

P-N结温度式:根据半导体P-N结温度特性所制成的具有良好线性范围的集成温度传感器。

压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。

实验工作台左边是由装于机内的另一副平行梁带动的圆盘式工作台。

圆盘周围一圈安装有(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。

电感式(差动变压器):由初级线圈Li和两个次级线圈L。

绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能仪器实验指导书Revised on November 25, 2020《智能仪器》实验报告实验项目实验时间同组同学班级学号姓名2014年4月实验一多路巡回数据数据采集系统一、实验目的1.学习模/数(A/D)转换的工作原理。

2.掌握芯片ADC0809与微控制器接口电路的设计方法。

3.掌握芯片ADC0809的程序设计方法。

二、实验设备1.实验用到的模块有“SMP-201 8051模块”、“SMP-204 译码模块”、“SMP-101 8位A/D模块”、“SMP-401 静态显示模块”。

2.短的20P、40P数据线各一根。

3.长的一号导线3根,转接线一根。

三、实验原理ADC0809芯片是一种8位采用逐次逼近式工作的转换器件。

它带有8路模拟开关,可进行8路模/数转换,通过内部3-8译码电路进行选通。

启动ADC0809的工作过程:先送信道号地址到A、B、C三端,由ALE信号锁存信道号地址,选中的信道的模拟量送到A/D转换器,执行语句 MOVX @DPTR,A产生写信号,启动A/D转换。

当A/D转换结束时,ADC0809的EOC端将上升为高电平,执行语句MOVX A,@DPTR产生读信号,使OE有效,打开锁存器三态门,8位数据就读到CPU中,A/D转换结果送显示单元。

编程时可以把EOC信号作为中断请求信号,对它进行测试,用中断请求或查询法读取转换结果。

实验原理参考图1-1。

图1-1 多路巡回数据数据采集系统实验原理图本实验中ADC0809的8位模拟开关译码地址为:IN0= 8800H IN1= 8801HIN2= 8802H IN3= 8803HIN4= 8804H IN5= 8805HIN6= 8806H IN7= 8807H四、实验内容步骤1.将“SMP-201 8051模块”和“SMP-204 译码模块”分别插放到“SMP-2 主控制器单元”挂箱的CPU模块接口和译码模块接口上,将“SMP-101 8位并行AD模块”插放到“SMP-1 信号转换单元”挂箱的A/D转换模块接口上,将“SMP-401 静态显示模块”插放到“SMP-4键盘与显示单元”的显示模块接口上。

2.用20p的数据线将“SMP-2 控制器单元”挂箱的J7和“SMP-1 信号转换单元”挂箱的J1相连,用40P的数据线将“SMP-2 控制器单元”挂箱的J8和“SMP-1 信号转换单元”挂箱的J2相连,再用一号导线将“SMP-201 8051模块”上的、分别和“SMP-401 静态显示模块”的DATA、CLK相连,“SMP-201 8051模块”上的和“SMP-101 8位并行A/D模块”的/0809INT相连。

3.用短路帽端接“SMP-204 译码模块”的J1的2、3端,J2的2、3端,J3的1、2端,用短路帽短接“SMP-101 8位并行AD转换模块”中的J1的2、3端。

4.将实验屏上的0-30V直流稳压电源(调节旁边的“调节电位器”,使其幅度为零)接入到“SMP-101 8位AD转换模块”的CH0;5.安装好仿真器,用串行数据通信线连接计算机与仿真器,把仿真头插到“SMP-201 8051模块”的单片机插座中;6.检查上述模块及接线无误后,打开电源开关,打开仿真器电源;7.启动计算机,打开伟福仿真软件,进入仿真环境。

选择仿真器型号、仿真头型号、CPU类型;选择计算机通信端口,测试串行口。

8.打开文件夹“实验程序”下的“8051程序”中的“0809显示.c”源程序,运行程序,通过调节电位器改变直流稳压电源的输出幅度0~5V(最大值为+5V),则显示的数值为模拟信号经CH0通道AD转换后所得数值(范围为00H~0FFH)9.将实验屏上的0-30V直流稳压电源(调节旁边的“调节电位器”,使其幅度为零)并联接入到“SMP-101 8位AD转换模块”的CH0—CH7,修改程序,进行标度变换使其显示值和实验屏上的0-30V直流稳压电源一致,编译无误后,使其分时按下述格式显示各路数据。

格式为:A—,其中A为第几路通道,为所测电压值。

五、实验参考程序(见“实验程序”下的“8051程序”中的“0809显示.c”源程序六、实验报告1.画出程序流程图。

2.用c语言编制实验程序。

3.调试结果分析实验二温度测量一、实验目的了解常用的集成温度传感器(AD590)基本原理、性能;掌握测温方法以及数据采集和线性标度变换程序的编程方法。

二、实验仪器智能调节仪、PT100、AD590、温度源、温度传感器模块,传感器实验箱(一);“SMP-201 8051模块”、“SMP-204 译码模块”、“SMP-101 8位A/D模块”、“SMP-401 静态显示模块”。

三、实验原理集成温度传感器AD590是把温敏器件、偏置电路、放大电路及线性化电路集成在同一芯片上的温度传感器。

其特点是使用方便、外围电路简单、性能稳定可靠;不足的是测温范围较小、使用环境有一定的限制。

AD590能直接给出正比于绝对温度的理想线性输出,在一定温度下,相当于一个恒流源,一般用于-50℃-+150℃之间温度测量。

温敏晶体管的集电极电流恒定时,晶体管的基极-发射极电压与温度成线性关系。

为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。

本实验仪采用电流输出型集成温度传感器AD590,在一定温度下,相当于一个恒流源。

因此不易受接触电阻、引线电阻、电压噪声的干扰,具有很好的线性特性。

AD590的灵敏度(标定系数)为1 A/K,只需要一种+4V~+30V电源(本实验仪用+5V),即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验中为传感器调理电路单元中R2=100Ω)即可实现电流到电压的转换,使用十分方便。

电流输出型比电压输出型的测量精度更高。

在实验一的基础上进行电压测量、标定、线性变换,最后显示出对应温度。

图2-1 温度传感器模块原理图四、实验内容与步骤1.参考“附录实验 PT100温度控制实验”,将温度控制在500C,在另一个温度传感器插孔中插入集成温度传感器AD590。

2.将±15V直流稳压电源接至实验箱(一)上,温度传感器实验模块的输出Uo2接实验台上直流电压表。

3.按图2-1接线,并将AD590引线的红色端接“温度传感器模块”的a1,蓝色端接“温度传感器模块”的b1,并从实验台上接+5V电源到a1端。

调节RW2大约在中间位置,用实验台上“直流电压表”的20V档测量“温度传感器模块”的“Uo2”端,再调节电位器Rw1使直流电压表显示为零。

5.按照图将信号引到差动放大器的输入Ui,记下模块输出Uo2的电压值。

6.升高温度源的温度每隔50C记下Uo2的输出值。

直到温度升至1200C。

并将实验结果填入表2-1。

7.按照实验1的1-5步骤搭建单片机AD转换电路,将模块输出电压Uo2接入到“SMP-101 8位AD转换模块”的CH0;8.编写数据采集程序及标度变换程序,并进行调试,检验程序的测量结果是否与温度源给定的温度一致。

(数据采集程序及硬件电路参考“实验一”的结果,线性标度变换公式参考教材中的“标度变换”一节)五、实验报告1.由记录的数据数据计算在此范围内整个测温系统的灵敏度,并画出标定出的拟合直线。

(端基法)2.由表2-1记录的数据计算在此范围内集成温度传感器的非线性误差。

3.画出程序流程图。

4.用c语言编制实验程序。

5.调试结果分析实验三转速测量(霍尔测速实验)一、实验目的了解霍尔组件的应用—测量转速;掌握用单片机测量转速的编程方法。

二、实验仪器传感器实验箱(一)、霍尔传感器、+5V、0-30V直流电源、转动源、频率/转速表;“SMP-201 8051模块”、“SMP-401 静态显示模块”。

三、实验原理利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,转盘每转一周磁场变化N次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。

利用实验仪上电位器输出可调电压,控制直流电机。

调节输出电压值,改变电机转速,用单片机内的计数器测量转速传感器——霍尔传感器的输出脉冲信号频率,计算电机转速。

四、实验内容与步骤1.安装根据图3-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。

图3-12.将+5V电源接到传感器实验箱(一)上“霍尔转速传感器”的“+5V输入”插座中,“霍尔”输出接到频率/转速表(切换到测转速位置)。

“0-30V”直流稳压电源接到“转动源”的“转动电源”输入端(输出电压调到零)。

3.合上实验台上电源,调节0-30V输出,可以观察到转动源转速的变化。

4. 频率测量用到的模块有“SMP-201 8051模块”,将“霍尔”输出接至8051的T0端,编写频率测量程序,并调试程序,检查测量结果是否与频率/转速表结果一致。

(借鉴实验一相关电路和编程)五、实验报告1.分析霍尔组件产生脉冲的原理。

2.画出程序流程图。

3.用c语言编制实验程序。

4.调试结果分析实验四自动量程切换一、实验目的1.了解仪器量程的概念,量程切换原理。

2.了解多路开关在模拟量输入通道中的应用。

3.掌握实现自动量程切换的硬件电路和编程方法。

二、实验原理与要求用电位器调整输入电压值,利用实验板上的AD774 A/D转换器、多路模拟开关MPC508和可编程增益放大器AD526和C8051单片机构成单路电压测量系统,对输入电压进行测量。

图4-1 自动量程切换实验原理图对输入电压的量程判断是通过不断改变可编程增益放大器AD526的增益实现的。

AD526通过编程可输出1、2、4、8、16五档不同的增益,本实验取其增益为1。

实验中AD774输入电压为10V 那么经衰减后的电压应该在0-10。

取衰减电阻网络中的电阻分别为1K 、1K 、2K ,可以实现三个量程的切换。

假设输入信号在0-40V 内(根据实验台条件提供),则0-10V 范围的电压不需要衰减,10-20V 范围的电压需要衰减一半,20-40V 范围内的输入电压需要衰减为原值的1/4。

实验中,我们假设输入电压分别为6V 、12V 、24V ,编写具有自动量程切换功能的电压测量程序,将采集的电压值以数字量形式存于内存中。

来观察内存中相应的量程和AD 转换结果。

三、实验内容及说明实验电路图请参考实验指导书附录中的“12位并行AD 模块”部分(图4-2所示),1. 8通道多路开关MPC508在此模块中,MPC508(U1)为8通道多路开关,其引脚图如图8-2及主要功能说明如下:INn(n=1~8)为8通道模拟量输入端,A0、A1、A2为通道选择控制端,EN 为使能端,它们之间的关系见真值表8-1所示。

要访问MPC508多路开关,只要对端口地址(8C00H ~8CFFH 范围中的一个地址)写入相应的数据,从而选通相应的通道。

相关文档
最新文档