化工原理实验报告

合集下载

化工原理实验实验报告

化工原理实验实验报告

篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数kya.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量l0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z?p值较小时为恒持z折线位置越向左移动,图中l2>l1。

每条折线分为三个区段,液区,?p?p?p~uo关系曲线斜率与干塔的相同。

值为中间时叫截液区,~uo曲zzz?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。

姓名专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。

在液泛区塔已z无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

图2-2-7-1 填料塔层的?p~uo关系图 z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2]h——填料层高度[m]?ym——气相对数平均推动力kya——气相体积吸收系数[kmolnh3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h]l——吸收剂(水)的流量[kmolh20/h]y1——塔底气相浓度[kmolnh3/kmol空气]y2——塔顶气相浓度[kmolnh3/kmol空气]x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20]由式(1)和式(2)联解得:kya?v(y1?y2)(3) ??h??ym为求得kya必须先求出y1、y2和?ym之值。

化工原理实验报告_连续进料精馏

化工原理实验报告_连续进料精馏

筛板精馏塔塔板效率的测定一、实验目的了解精馏塔的构造,熟悉精馏工艺流程; 熟悉精馏塔操作方法;测定在全回流状况下的单板效率及部分回流状况下的全塔效率; 二、实验原理1.全回流状况下的单板效率对第n 板而言,按其相组成变化表示的单板效率(Murphree efficiency)为1*1++--=n n n n MV y y y y E (1) 全回流时R=∞,操作线与对角线重合。

因此有:y n+1=x n1-=n n x y于是式(1)可写成nn nn MV x y x x E --=-*1 (2) 这是,欲测定第n 块塔板的单板效率,只需测取该板(n 板)及其上一板(n-1板)的液相组成x n 和x n-1值。

由x n 值根据平衡曲线找出y n *,在代入(2)式即可求出该板的单板效率。

2.全塔效率E T全塔效率又称总板效率。

可表示为NN E TT =式中:T N :理论板数(不包括再沸器),通过作图法得到N :实际板数(不包括再沸器),共有15块 对于二元物系已知气液平衡数据,可根据馏出液组成x D ,料液组成x F ,釜残液组成x W ,回流比R ,进料温度t F 可求出理论板数。

三、实验装置实验装置为电加热筛板塔,主要技术参数如下所示 塔内径:Φ80mm实际塔板数:15块(不包括再沸器) 板间距:100mm 加料板位置: 孔径:Φ2mm 开孔率:6%再沸器加热功率:3kW塔顶冷凝器面积(双程列管式)0.4m2塔内物系:乙醇和水的混合物四、实验步骤1.检查整套装置管路系统及控制系统是否正常;2.向蒸馏釜中加入料液,维持液面在2/3处。

料液组成在15%(体积分率)左右;3.启动电源(或蒸汽)加热,打开冷却水(适当)。

4.调节加热电压至100V左右,使塔操作正常,全回流至塔顶、塔底温度基本不变,全塔稳定后取样(测单板效率)。

测定x n和x n-1值。

取样及分析方法:用锥形瓶分别接取一定量的塔顶回流液、塔釜残液,冷却到40℃以下。

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力实验目的:通过测量不同条件下流体的流动阻力,并对结果进行分析,了解流体流动的基本特性及其影响因素。

实验原理:1. 流动阻力:当流体通过管道或孔隙时,会受到管道或孔隙壁面的阻力而产生阻碍,这种阻碍就被称为流动阻力。

流动阻力与管道长度、管道直径、流速和流体黏度有关。

2. 流量:单位时间内流体通过管道或孔隙的量称为流量,单位是立方米/秒。

3. 流速:流体通过管道或孔隙时,在单位时间内被运动到的体积与管道截面积的比值,称为流速,单位是米/秒。

4. 压力损失:流体流动时被阻碍形成的压差称为压力损失,即高压端压力减低压端压力差。

压力损失随着管道长度的增加而增加,随着管道内径的减小而增加,而随着粘度的增加而减小。

实验器材:1. 倾斜漏斗2. 液压流量表3. 钢尺4. 塑料软管实验步骤:1. 将倾斜漏斗放置在流量计上方,开启阀门,记录液位高度和流量计读数。

2. 改变管道长度(截面积不变),分别记录不同长度下的压力损失和流速。

3. 改变管道截面积(长度不变),分别记录不同截面积下的压力损失和流速。

4. 改变流体黏度(管道长度和截面积均恒定),分别记录不同粘度下的压力损失和流速。

实验结果:实验数据记录:试验条件管道长度(m)管道直径(mm)流量(L/min)流速(m/s)压力损失(Pa):: :: :: :: :-: ::1 2 8 12.81.28 2002 4 8 12.0 0.60 4003 6 8 10.5 0.35 6004 2 6 10.7 1.07 1755 2 4 9.5 1.58 1506 2 8 12.8 1.28 2007 2 8 10.4 1.04 1608 2 8 9.3 0.93 1209 2 8 12.8 1.28 20010 2 8 6.70.67 24011 2 8 12.8 1.28 20012 2 8 7.2 0.72 20013 2 8 12.8 1.28 20014 2 8 8.5 0.85 200根据数据可得,流量和流速随着管道长度、管道截面积和流体黏度的增大而减小,压力损失随着这三个因素的增大而增大。

化工原理含实验报告(3篇)

化工原理含实验报告(3篇)

第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。

2. 通过实验验证理论知识,提高实验技能。

3. 熟悉化工原理实验装置的操作方法,培养动手能力。

4. 学会运用实验数据进行分析,提高数据处理能力。

二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。

1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。

实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。

阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。

实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。

实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。

2. 将水从高位水槽引入粗糙管,调节流量,记录压差。

3. 改变流量,重复步骤1和2,得到一系列数据。

4. 根据数据计算摩擦系数和局部阻力系数。

实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。

2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。

2. 了解板式塔的结构,观察塔板上汽-液接触状况。

3. 测定全回流时的全塔效率及单板效率。

4. 测定部分回流时的全塔效率。

5. 测定全塔的浓度分布。

6. 测定塔釜再沸器的沸腾给热系数。

实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。

精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。

实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。

2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。

3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。

4. 绘制浓度分布曲线。

实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。

化工原理实验实验报告

化工原理实验实验报告

一、实验目的1. 理解并掌握化工原理的基本概念和原理。

2. 学习化工实验的基本操作技能和数据处理方法。

3. 通过实验,验证化工原理的理论知识,加深对化工工艺过程的理解。

4. 培养严谨的科学态度和良好的实验习惯。

二、实验内容及步骤1. 实验一:流体力学实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,测定流体在不同流量流经全开闸阀时的局部阻力系数。

实验步骤:(1)根据实验装置流程图,连接实验装置,包括光滑管、粗糙管、倒U形压差计、1151压差传感器、铂电阻温度传感器、流量计等。

(2)调整进水阀,使水从高位水槽流入光滑管,调节球阀,使水分别流经光滑管和粗糙管。

(3)记录不同流量下的压差值和温度值。

(4)计算摩擦系数和局部阻力系数。

2. 实验二:精馏实验实验目的:熟悉精馏的工艺流程,掌握精馏实验的操作方法,测定全回流时的全塔效率及单板效率。

实验步骤:(1)根据实验装置流程图,连接实验装置,包括精馏塔、回流液收集器、塔顶冷凝器、塔釜加热器等。

(2)调整塔釜加热器,使塔釜温度达到设定值。

(3)调整回流液收集器,使回流液流量达到设定值。

(4)记录塔顶和塔釜的液相折光度,计算液相浓度。

(5)根据数据绘出x-y图,用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。

3. 实验三:流化床干燥实验实验目的:熟悉流化床干燥器的基本流程及操作方法,掌握流化床流化曲线的测定方法,测定物料含水量及床层温度随时间变化的关系曲线。

实验步骤:(1)根据实验装置流程图,连接实验装置,包括流化床干燥器、物料进料装置、温度传感器、流量计等。

(2)将物料放入流化床干燥器中,调整进料量和空气流量。

(3)记录不同时间下的物料含水量和床层温度。

(4)绘制物料含水量和床层温度随时间变化的关系曲线。

三、实验结果与分析1. 流体力学实验:根据实验数据,绘制摩擦系数与雷诺数Re的关系曲线,与理论公式进行比较,分析实验误差产生的原因。

化工原理实验报告

化工原理实验报告

实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解;2、观察各项能量或压头随流速的变化规律;二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件如位置高低、管径大小等的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换;对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的机械能守恒定律;2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失;故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失;3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头;当测压直管中的小孔即测压孔与水流方向垂直时,测压管内液柱高度位压头则为静压头与动压头之和;任意两截面间位压头、静压头、动压头总和的差值,则为损失压头;4、柏努利方程式式中:1Z 、2Z ——各截面间距基准面的距离 m1u 、2u ——各截面中心点处的平均速度可通过流量与其截面积求得m/s1P 、2p ——各截面中心点处的静压力可由U 型压差计的液位差可知Pa对于没有能量损失且无外加功的理想流体,上式可简化为ρρ2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头;三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm;四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系;2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平开关几次;3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况;4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h1…△h4;要注意其变化情况;继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h1…△h4;5、实验完毕停泵,将原始数据整理;实验二离心泵性能曲线测定一、实验目的1.了解离心泵的构造和操作方法2.学习和掌握离心泵特性曲线的测定方法二、实验原理离心泵的主要性能参数有流量Q也叫送液能力、扬程H也叫压头、轴功率 N和效率η;离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线;泵的扬程用下式计算:He=H压力表+H真空表+H+u出2-u入2/2g式中:H压力表——泵出口处压力H真空表——泵入口处真空度H——压力表和真空表测压口之间的垂直距离泵的总效率为:其中,Ne为泵的有效功率:Ne=ρ●g●Q●He 式中:ρ——液体密度g——重力加速度常数Q——泵的流量Na为输入离心泵的功率:Na=K●N电●η电●η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N电——电机的输入功率η电——电机的效率η转——传动装置的传动效率三、实验设备及流程:设备参数:泵的转速:2900转/分额定扬程:20m水温:25℃泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m四、实验操作1.灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵;2.开泵注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故;3.建立流动4.读取数据等涡轮流量计的示数稳定后,即可读数;注意:务必要等到流量稳定时再读数,否则会引起数据不准;五、作业以一组数据计算实验三过滤实验一、实验目的1.了解板框过滤机的构造和操作方法;2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时间;二、基本原理对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:V+Ve2=KS2t+te上式也可写成:q+qe 2=Kt+te微分后得到:dt / dq= 2q / K+2qe/ K该微分式为一直线方程,其斜率为2/K,截距为2qe/K;实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K,虚拟滤液体积qe;只考虑介质阻力时:qe2=Kte将qe 代入上式可求出虚拟过滤时间te;三、实验设备板框过滤机的过滤面积为0.12m2;由空压机提供压力,并恒压可调;以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验;孔板孔口径:8mm,文丘里管喉径:8mm,φ20×2不锈钢管;四、实验步骤1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净;2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通;3、安装时应从左至右进行,装好一块,用手压紧一块;请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板带奇数点,3块框带偶数点,以确保流道的畅通;4、装完以后即可紧固手柄至人力转不动为止;5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌;6、约5min后,检查所有阀门看是否已关紧确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在~范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节;(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作;2、注意看看板框是否泄漏大量液体冲出,少量漏液无妨确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据;3、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要;读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验;(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀;然后关闭进水阀,打开进气阀,恒压在~范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验;(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验;实验四传热实验一、实验目的测定对流传热系数的准数关联式;二、实验原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:对于强制湍流而言,Gr准数可以忽略,故用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归;本实验简化上式,即取n=流体被加热;这样,上式即变为单变量方程,再两边取对数,即得到直线方程:在双对数坐标中作图,找出直线斜率,即为方程的指数m;在直线上任取一点的函数值代入方程中,则可得到系数A,即:对于方程的关联,首先要有Nu、Re、Pr的数据组;其准数定义式分别为:牛顿冷却定律:传热量Q可由下式求得:三、实验设备流程设备参数:孔板流量计:流量计算关联式:V=●O式中:R——孔板压差,mmH2V——水流量,m3 /h换热套管:套管外管为玻璃管,内管为黄铜管;套管有效长度:1.25m,内管内径:0.022m四、实验操作1.启动水泵2.打开进水阀3.打开蒸汽发生器4.打开放汽阀5.读取水的流量6.读取温度7.实验结束后,先停蒸汽发生器,再关进水阀;实验五精馏实验一、试验目的1.掌握精馏塔的结构2.测定精馏塔的理论板数及塔效率二、实验原理1.理论板2.作图法求理论板数3.精馏塔的全塔效率Et为理论塔板数与实际塔板数N之比,即:E t =Nt/ N精馏塔的单板效率Em可以根据气相或液相通过测定塔板的浓度变化进行计算; 若以液相浓度变化计算,则为:Eml =Xn-1-Xn/ Xn-1- Xn若以气相浓度变化计算,则为:Emv =Yn-Yn+1/ Yn-Yn+1式中:Xn-1-----第n-1块板下降的液体组成,摩尔分率;Xn-------第n块板下降的液体组成,摩尔分率;Xn ------第n块板上与升蒸汽Yn相平衡的液相组成,摩尔分率;Yn+1-----第n+1块板上升蒸汽组成,摩尔分率;Yn-------第n块板上升蒸汽组成,摩尔分率;Yn ------第n块板上与下降液体Xn相平衡的气相组成,摩尔分率;三、实验设备及流程简介本实验进料的溶液为乙醇—水体系,其中乙醇占20%摩尔百分比;精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是10mm;四、实验步骤1.全回流进料打开泵开关,再打开进料的管线;2.塔釜加热升温全回流进料完成后,开始加热;3.建立全回流注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果;4.读取全回流数据5.逐步进料,开始部分回流逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物料平衡、塔釜液位和回流比;6.记录部分回流数据五、作业写出精馏段操作线方程、提馏段操作线方程、加料线方程;实验六、吸收实验一、实验原理本实验是用水吸收空气-氨混合气体中的氨;混合气体中氨的浓度很低;吸收所得的溶液浓度也不高;气液两相的平衡关系可以认为服从亨利定律即平衡线在x-y 坐标系为直线;故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: 所以 )/(m p A a Y Y V G K ∆•= 其中 式中G A —单位时间内氨的吸收量kmol/h; K Ya —总体积传质系数kmol/m 3·h ; V p —填料层体积m 3;△Y m —气相对数平均浓度差; Y 1—气体进塔时的摩尔比;Y e1—与出塔液体相平衡的气相摩尔比; Y 2—气体出塔时的摩尔比;Y e2—与进塔液体相平衡的气相摩尔比; 3、计算方法、公式:1氨液相浓度小于5%时气液两相的平衡关系:温度 ℃:***********亨利系数Eatm :2总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤 a 、标准状态下的空气流量V 0:21210010T T PP P T V V ••••= m 3/h 式中:V 1——空气转子流量计示值 m 3/hT 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强b 、标准状态下的氨气流量V 0’210221010010''T T P P P T V V ••••••=ρρ m 3/h 式中:V 1’——氨气转子流量计示值 m 3 / h ρ01——标准状态下氨气的密度 kg / m 3 ρ02——标定状态下氨气的密度 kg / m 3如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:V 0’’=●V 0’c 、惰性气体的摩尔流量G :G=V 0 /d 、单位时间氨的吸收量G A :G A =G ●Y 1-Y 2e 、进气浓度Y 1:f 、尾气浓度Y 2:式中:Ns——加入分析盒中的硫酸当量浓度 NVs——加入分析盒中的硫酸溶液体积 mlV——湿式气体流量计所测得的空气体积 mlT——标准状态下的空气温度 KT——空气流经湿式气体流量计时的温度 Kg、对数平均浓度差ΔYm:Ye2=0Ye1=mx1P=大气压+塔顶表压+填料层压差/2m=E / Px1=GA/ Ls式中:E——亨利常数Ls——单位时间喷淋水量 kmol / hP——系统总压强h、气相总传质单元高度:式中:G’——混合体气通过塔截面的摩尔流速二、实验设备及流程设备参数:基本数据:塔径Φ0.10m,填料层高0.75m填料参数:12×12×mm瓷拉西环,a1—403m-1,ε—,a1/ε3—903m-1尾气分析所用硫酸体积:1ml,浓度:上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂水从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质;从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成;稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色;三、实验步骤建议的实验条件:水流量:80 l/h 空气流量:20 m3/h 氨气流量:0.5 m3/h 注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离;1、通入氨气打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量实验建议流量: 0.5 m3/h;2、进行尾气分析通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积;当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度;3、读取数据实验七干燥实验一、实验目的1.了解气流干燥设备基本流程和工作原理2.测定物料在一定干燥条件下的干燥速率曲线及传质系数二、实验原理1.干燥特性曲线干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段; 式中:x平—某干燥速率下湿物料的平均含水量 kgGsi ,Gsi+1—分别为△τ时间间隔内开始和终了时湿物料重量 kg;Gc—湿物料中绝对干物料的重量 kg;2.传质系数恒速阶段:恒速阶段的干燥速率u仅由外部干燥条件决定,物料表面温度近于空气湿球温度tw;在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含水量x-x成正比时干燥速率曲线可简化为直线;即为:u=kxx-xkx=u / x-x式中:kx—以含水量差△x为推动力的比例系数 kg/m2·s·△x;u—物料含水量为x时的干燥速率 kg/m2·s;x—在τ时的物料含水量 kg/kg绝干物料;x—物料的平衡含水量 kg/kg绝干物料;三、实验装置及流程简介主要设备规格:孔板流量计:管径D=106mm,孔径d=68.46mm孔流系数 C=干燥室尺寸:m×m四、实验步骤1.启动风机注意:禁止在启动风机以前加热,这样会烧坏加热器;2.开始加热3.进行干燥实验。

化工原理实验报告一流体阻力

化工原理实验报告一流体阻力

实验一、管路阻力的测定一、实验目的1.学习直管阻力与局部阻力的测定方法。

2.学习计算并绘制直管摩擦系数λ与R e 的关系曲线的方法。

3.学习确定局部阻力系数ζ的方法。

二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。

直管阻力也称为表皮阻力,是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力, (m ) (1)gu d L g p H f 22⋅⋅=∆-=λρ局部阻力也称为形体阻力,是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方,由于边界层分离而产生旋涡所引起的能量损失, (m)(2) gu g p H f22'⋅=∆-=ζρ管路的总能量损失等于管路中所有以上两种阻力的加和∑∑+=∑'ff f H H H 本实验所用的装置流程图如图1所示,实验装置由并联的两个支路组成,一个支路用于测定直管阻力,另一个用于测定局部阻力。

图1. 管路阻力测定实验装置流程图1-底阀2-入口真空表3-离心泵4-出口压力表5-充水阀6-差压变送器7-涡轮流量计8-差压变送器9-水箱测定直管阻力所用管子的规格:1#~2#实验装置:直管内径为27.1mm,直管管长1m。

3#~8#实验装置:直管内径为35.75mm,直管管长1m局部阻力的测定对象是两个阀门,一个闸阀,一个截止阀。

三、实验步骤1.打开充水阀向离心泵泵壳内充水。

2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。

3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。

4.调节出口阀,流量从大到小测取8次,再由小到大测取8次,记录各次实验数据,包括涡轮流量计的读数、直管压差指示值。

5.关闭直管阻力直路的球阀,打开局部阻力的球阀,测定在三个流量下的局部压差指示值。

6.测取实验用水的温度。

7.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。

注意事项:离心泵禁止在未冲满水的情况下空转。

化工原理实验报告精选范文

化工原理实验报告精选范文

化工原理实验报告化工原理实验报告精选范文化工原理实验报告一、实验目的1 测定流体在圆直等径管内流动时的摩擦系数λ与雷诺数Re的关系,将测得的λ~Re曲线与由经验公式描出的曲线比较;2 测定流体在不同流量流经全开闸阀时的局部阻力系数ξ3 掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律4 学会倒U形差压计 1151差压传感器 Pt温度传感器和转子流量计的使用方法5 观察组成管路的各种管件阀门,并了解其作用。

6 掌握化工原理实验软件库的使用二、实验装置流程示意图及实验流程简述来自高位水槽的.水从进水阀1首先流经光滑管11上游的均压环,均压环分别与光滑管的倒U形压差计和1151压差传感器15的一端相连,光滑管11下游的均压环也分别与倒U形压差计和1151压差传感器的另一端相连。

当球阀3关闭且球阀2开启时,光滑管的水进入粗糙管12,粗糙管上下游的均压环分别同时与粗糙管的倒U形压差计和1151压差传感器的两端相连。

当球阀5关闭时,从粗糙管下来的水流经铂电阻温度传感器18,然后经流量调节阀6及流量计16后,排入地沟。

当球阀2关闭且球阀3打开时,从光滑管来的水就流入装有闸阀4的不锈钢管13,闸阀两端的均压环分别与一倒U形压差计的两端相连,最后水流经流量计,再排入地沟。

三、简述实验操作步骤及安全注意事项1 操作步骤(1)排管路中的气泡。

打开阀1、2、3、6,排除管路中的气泡,直至流量计中的水不含气泡为至,然后关闭阀6。

(2)1151压差传感器排气及调零。

排除两个1151压差传感器内气泡时,只要打开压差传感器下面的考克7、8、9、10,当软管内水无气泡时,排气结束,此过程可反复多次,直至无气泡为至。

压差传感器排气结束后,用螺丝刀调节压差传感器背后Z旋扭,使相应的仪表数字显示在0左右,压差传感器即可进入实验状态。

(3)U形压差计内及它们连接管内的气泡的排除。

关闭倒U形压差计上方的放空阀,打开U形压差计下方的排水考克,再打开U形压差计下方与软管相连的左右阀,关闭左右阀中间的平衡阀,直到玻璃管中水不出现气泡,然后关闭U形压差计下方与软管相连的左右阀,打开上方的放空阀和下方的排水考克,令玻璃管内水位下降到适当高度,再打开左右阀中间的平衡阀,倒U形压差计两玻璃管内的水位会相平,否则重复上过排汽过程,直至两玻璃管内的水位相平。

化工原理雷诺实验报告doc

化工原理雷诺实验报告doc

化工原理雷诺实验报告篇一:化工原理实验报告(流体阻力)摘要:本实验通过测定流体在不同管路中流动时的流量qv、测压点之间的压强差ΔP,结合已知的管路的内径、长度等数据,应用机械能守恒式算出不同管路的λ‐Re变化关系及突然扩大管的?-Re关系。

从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis关系式:?? 。

突然扩大管的局部阻力系数随Re的变化而变化。

一、目的及任务①掌握测定流体流动阻力实验的一般实验方法。

②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

③验证湍流区内摩擦系数λ为雷诺数Re 和相对粗糙度的函数。

④将所得光滑管λ-Re方程与Blasius方程相比较。

二、基本原理1. 直管摩擦阻力不可压缩流体,在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态相关,可表示为:△p=?(d,l,u,ρ, μ, ε) 引入下列无量纲数群。

雷诺数 Re?相对粗糙度管子长径比从而得到lddu???d??(du??l,,) ?dd?p?u2令???(Re,)d??p??ld?(Re,?ud)22可得到摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。

hf??p???ld?u22式中hf——直管阻力,J/kg;——被测管长,m; d——被测管内径,m; u——平均流速,m/s; ?——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。

化工原理实验报告_吸收

化工原理实验报告_吸收

化工原理实验报告_吸收
实验名称:吸收实验
实验目的:
1. 掌握吸收塔的操作方法;
2. 熟悉吸收塔的工作原理;
3. 了解吸收塔在化工过程中的应用。

实验原理:
吸收是指将气体中的某种成分溶解在液体中的过程。

在工业生产中,吸收常用于气体分离和净化。

吸收塔是常用的吸收装置,常见的吸收塔有塔板吸收塔和填料吸收塔两种类型。

实验仪器及材料:
1. 塔式吸收塔;
2. 气源;
3. 转子流量计;
4. 吸收液;
5. 相应的连接管道。

实验步骤:
1. 将吸收液倒入吸收塔中,注意液位不要过高;
2. 连接气源至吸收塔的底部,控制气源流量;
3. 打开气源,调节气源流量;
4. 连接转子流量计并调节流量;
5. 观察吸收液的变化并记录实验数据。

实验数据记录和分析:
根据实验步骤所得到的数据,可以计算出气体吸收的效率和吸收塔的传质系数。

根据数据分析,可以得到吸收塔的工作效果和适用范围。

实验结果和结论:
通过实验可以得到气体吸收的效率和吸收塔的传质系数,进而评估吸收塔的性能。

根据实验结果,可以判断吸收塔是否适用于化工过程中的气体分离和净化。

根据实验结果和结论,可以调整吸收塔的操作方法和参数,进一步优化吸收塔的性能。

实验注意事项:
1. 操作吸收塔时需注意安全,避免发生意外事故;
2. 控制气源流量时需谨慎,避免发生压力过大或流量过大的情况;
3. 实验结束后,及时清洗吸收塔和相关设备。

化工原理实验报告册

化工原理实验报告册

一、前言化工原理实验是化学工程与工艺专业学生的重要实践环节,通过实验,学生可以加深对化工原理理论知识的理解,提高动手能力和分析问题的能力。

本实验报告册旨在记录学生在实验过程中的观察、数据记录、实验结果分析等内容,为今后的学习和研究提供参考。

二、实验内容本实验报告册涵盖了以下实验内容:1. 流体流动阻力测定实验2. 精馏实验3. 干燥实验4. 化工原理实验软件库的使用三、实验一:流体流动阻力测定实验1. 实验目的- 测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系;- 测定流体在不同流量流经全开闸阀时的局部阻力系数;- 掌握流体流经直管和阀门时阻力损失的测定方法;- 通过实验了解流体流动中能量损失的变化规律;- 学会倒U形差压计、1151差压传感器、Pt温度传感器和转子流量计的使用方法;- 观察组成管路的各种管件、阀门,并了解其作用;- 掌握化工原理实验软件库的使用。

2. 实验原理- 直管沿程阻力:流体在圆直等径管内流动时,由于流体与管壁之间的摩擦,会产生沿程阻力,导致能量损失。

阻力损失可由直管的上、下游截面列机械能守恒方程求得。

- 局部阻力:当流体流经某一定开启度的阀门时,由于流道截面变化,使流体的流线发生改变,形成边界层分离及旋涡,产生局部阻力。

3. 实验步骤- 按照实验装置流程图连接实验装置;- 设置实验参数,包括流量、阀门开启度等;- 测量流体在不同流量和阀门开启度下的压差、温度等数据;- 计算摩擦系数、雷诺数、局部阻力系数等参数;- 利用化工原理实验软件库进行数据处理和分析。

4. 实验结果与分析- 根据实验数据,绘制摩擦系数与雷诺数Re的关系曲线;- 分析实验结果,验证理论公式;- 探讨流体流动阻力损失的变化规律。

四、实验二:精馏实验1. 实验目的- 熟悉精馏的工艺流程;- 掌握精馏实验的操作方法;- 了解板式塔的结构;- 观察塔板上汽-液接触状况;- 测定全回流时的全塔效率及单板效率;- 测定部分回流时的全塔效率;- 测定全塔的浓度分布;- 测定塔釜再沸器的沸腾给热系数。

化工原理_实验报告

化工原理_实验报告

一、实验目的1. 理解并掌握化工原理中基本的热力学、流体力学和传质原理。

2. 通过实验验证理论知识,加深对化工过程的理解。

3. 培养实验操作技能和数据处理能力。

二、实验内容1. 热力学实验:测定饱和蒸汽压、汽液平衡数据。

2. 流体力学实验:测定管道摩擦系数、局部阻力系数。

3. 传质实验:测定精馏塔效率、吸收塔效率。

三、实验原理1. 热力学实验:根据热力学定律,通过测定饱和蒸汽压和汽液平衡数据,计算不同温度下的饱和蒸汽压,验证相平衡关系。

2. 流体力学实验:根据流体力学原理,通过测定管道摩擦系数和局部阻力系数,计算管道的阻力损失,验证摩擦系数与雷诺数的关系。

3. 传质实验:根据传质原理,通过测定精馏塔和吸收塔的效率,计算理论塔板数和操作塔板数,验证传质过程。

四、实验装置与仪器1. 热力学实验:饱和蒸汽压测定仪、温度计、压力计、量筒。

2. 流体力学实验:U型管压差计、流量计、管道、阀门。

3. 传质实验:精馏塔、吸收塔、温度计、压力计、液面计。

五、实验步骤1. 热力学实验:a. 将饱和蒸汽压测定仪放入恒温槽中,调整温度。

b. 记录温度和对应的饱和蒸汽压。

c. 改变温度,重复步骤b,得到一系列的饱和蒸汽压数据。

2. 流体力学实验:a. 将U型管压差计连接到管道上,调整阀门开度,使流体稳定流动。

b. 记录不同流量下的压差值。

c. 计算摩擦系数和局部阻力系数。

3. 传质实验:a. 将精馏塔和吸收塔安装好,调整温度、压力等参数。

b. 记录不同塔板处的温度、压力、液面等数据。

c. 计算理论塔板数和操作塔板数。

六、实验结果与讨论1. 热力学实验:a. 通过实验数据绘制饱和蒸汽压与温度的关系曲线,与理论曲线进行比较,验证相平衡关系。

b. 计算不同温度下的饱和蒸汽压,与理论值进行比较,分析误差原因。

2. 流体力学实验:a. 根据实验数据绘制摩擦系数与雷诺数的关系曲线,与理论曲线进行比较,验证摩擦系数与雷诺数的关系。

b. 计算不同流量下的阻力损失,分析管道的阻力特性。

化工原理_流体实验报告

化工原理_流体实验报告

一、实验目的1. 理解流体力学的基本原理,掌握流体流动的基本规律。

2. 学习流体阻力计算方法,了解流体流动中的能量损失。

3. 掌握实验装置的操作方法,提高实验技能。

4. 分析实验数据,验证流体力学理论。

二、实验原理流体阻力是流体在流动过程中受到的阻碍作用,主要分为直管沿程阻力和局部阻力。

直管沿程阻力主要与流体的粘度、流速、管径和管长有关;局部阻力主要与流体的流速、管件形状和尺寸有关。

三、实验装置与流程1. 实验装置:流体阻力实验装置包括进水阀、光滑管、粗糙管、阀门、流量计、压力计等。

2. 实验流程:(1)打开进水阀,调节流量,使流体在光滑管中流动。

(2)测量光滑管上下游的压力差,计算直管沿程阻力。

(3)关闭进水阀,打开阀门,使流体流经粗糙管。

(4)测量粗糙管上下游的压力差,计算局部阻力。

(5)改变流量,重复上述步骤,得到不同流量下的阻力数据。

四、实验步骤1. 准备实验装置,连接好各部分管道。

2. 调节进水阀,使流体在光滑管中流动,测量光滑管上下游的压力差。

3. 记录实验数据,包括流量、压力差、温度等。

4. 关闭进水阀,打开阀门,使流体流经粗糙管。

5. 测量粗糙管上下游的压力差,记录实验数据。

6. 改变流量,重复步骤2-5,得到不同流量下的阻力数据。

五、实验数据与分析1. 光滑管沿程阻力计算:根据实验数据,计算不同流量下的摩擦系数和雷诺数,绘制摩擦系数与雷诺数的关系曲线。

通过对比实验数据与理论公式,验证流体力学理论。

2. 局部阻力计算:根据实验数据,计算不同流量下的局部阻力系数,分析局部阻力系数与流量的关系。

通过对比实验数据与理论公式,验证流体力学理论。

六、实验结果与讨论1. 光滑管沿程阻力实验结果:实验结果表明,摩擦系数与雷诺数呈线性关系,验证了流体力学理论。

随着雷诺数的增加,摩擦系数逐渐减小,符合流体力学理论。

2. 局部阻力实验结果:实验结果表明,局部阻力系数与流量呈非线性关系,随着流量的增加,局部阻力系数逐渐减小。

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。

二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。

而解吸则是指气体从液体中逸出或分离出来的过程。

在化工生产过程中,常用于气体分离、纯化和回收等方面。

2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。

其主要结构包括进料口、出料口、填料层等。

填料层可以增加气液接触面积,提高传质效率。

3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。

三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。

2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。

3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。

4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。

四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。

2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。

五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。

2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。

六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。

同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。

化工原理实验报告_空气总传热

化工原理实验报告_空气总传热

总传热系数与对流传热系数的测定一、实验目的1.了解间壁式换热器的结构与操作原理; 2.学习测定套管换热器总传热系数的方法; 3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。

二、实验原理本实验采用套管式换热器,热流体走管间,为蒸汽冷凝,冷流体走内管,为空气。

该传热过程由水蒸气到不锈钢管外管壁的对流传热、从外管壁到内管壁的传导传热、内管壁到冷水的对流传热三个串联步骤组成。

实验流程如图1所示。

图1. 传热实验装置流程图1-空气流量调节阀 2-转子流量计 3-蒸汽调节阀 4-蒸汽压力表 5-套管换热器 6-冷凝水排放筒 7-旋塞 8-空气进口温度计 9-空气出口温度计 10-不凝气排放口套管换热器5由不锈钢管(或紫铜管)内管和无缝钢外管组成。

内管的进出口端各装有热电阻温度计一支,用于测量空气的进出口温度。

内管的进、出口端及中间截面外壁表面上,各焊有三对热电偶,型号为WRNK-192。

不锈钢管规格Φ21.25⨯2.75,长1.10米 S=πd o L=0.0734m 2 紫铜管Φ16⨯2,长1.20米 S=πd o L=0.0603m 2 转子流量计(空气,0~20m 3/h ,20℃) 数字显示表SWP-C40此设备的总传热系数可由下式计算:mt S QK ∆⋅=其中 ()()出进出进t T t T t T t T t m -----=∆ln式中:Q ——传热速率,W ;S ——传热面积,m 2;S=πd o Lm t ∆——对数平均温度差,℃T ——饱和蒸汽温度,℃,根据饱和蒸汽压力查表求得;出进、t t ——分别为空气进、出口温度,℃。

通过套管换热器间壁的传热速率,即空气通过换热器被加热的速率,用下式求得:()进出t t c m Q p s -⋅⋅=, W其中,C p 应取进、出口平均温度下空气的比热容。

W=V s ⋅ρ,其中ρ为进口温度下空气的密度。

对流传热系数的计算公式为m t S Q ∆⋅⋅=α式中S ─内管的内表面积,m 2;α─空气侧的对流传热系数,W/(m 2⋅︒C);∆t m ─空气与管壁的对数平均温度差,︒C 。

化工原理实验报告_阻力

化工原理实验报告_阻力

管路阻力的测定一、实验目的1.学习直管阻力与局部阻力的测定方法。

2.学习计算并绘制直管摩擦系数λ与R e 的关系曲线的方法。

3.学习确定局部阻力系数ζ的方法。

二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。

直管阻力也称为表皮阻力,是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力gu d L g p H f 22⋅⋅=∆-=λρ, (m ) (1) 局部阻力也称为形体阻力,是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方,由于边界层分离而产生旋涡所引起的能量损失gu g p H f22'⋅=∆-=ζρ, (m) (2) 管路的总能量损失等于管路中所有以上两种阻力的加和∑∑+=∑'f f f H H H本实验所用的装置流程图如图1所示,实验装置由并联的两个支路组成,一个支路用于测定直管阻力,另一个用于测定局部阻力。

图1. 管路阻力测定实验装置流程图1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱测定直管阻力所用管子的规格:1#~2#实验装置:直管内径为27.1mm ,直管管长1m 。

3#~8#实验装置:直管内径为35.75mm,直管管长1m局部阻力的测定对象是两个阀门,一个闸阀,一个截止阀。

三、实验步骤1.打开充水阀向离心泵泵壳内充水。

2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。

3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。

4.调节出口阀,流量从大到小测取8次,再由小到大测取8次,记录各次实验数据,包括涡轮流量计的读数、直管压差指示值。

5.关闭直管阻力直路的球阀,打开局部阻力的球阀,测定在三个流量下的局部压差指示值。

6.测取实验用水的温度。

7.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。

注意事项:离心泵禁止在未冲满水的情况下空转。

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力

化工原理实验报告流体流动阻力化工原理实验报告:流体流动阻力一、实验目的通过实验,探究流体在管道中流动时所产生的阻力,并了解阻力与流量、管道直径、管道长度等因素之间的关系。

二、实验原理当流体在管道中流动时,其流动速度会受到管道壁面的阻力而减慢,从而导致管道内部流体的流动速度不均匀。

当流体流动速度较慢时,流体之间的黏性力占据主导地位,阻力主要来自于黏性力;当流体流动速度较快时,流体之间的惯性力占据主导地位,阻力主要来自于惯性力。

流体流动阻力的大小与流体黏度、流量、管道直径和管道长度等因素有关,其中黏度和管道长度是恒定的,因此阻力的大小主要取决于流量和管道直径。

三、实验步骤及数据处理1.将实验装置搭建好,包括水箱、流量计、压力计、进出水口等部分。

2.设置不同流量下的实验参数,包括流量计刻度、压力计读数等。

3.记录每组实验的流量、压力差等数据,并计算出每组实验的阻力系数。

4.进行数据处理,绘制出阻力系数与雷诺数之间的关系图,分析其规律。

四、实验结果及分析通过实验数据的处理,我们得到了每组实验的阻力系数,并绘制出了阻力系数与雷诺数之间的关系图。

从图中可以看出,阻力系数随着雷诺数的增加而增加,但增长趋势逐渐减缓。

这说明,当管道内部流体的流动速度较慢时,阻力主要来自于黏性力,而当流速增加时,惯性力开始起主导作用,阻力逐渐增大。

但随着流速的增加,管道内部流体的流动趋向稳定,惯性力的影响逐渐减弱,因此阻力增长趋势逐渐缓和。

我们还得到了不同流量下的阻力系数,发现阻力系数随着流量的增加而增加。

这是因为当流量增加时,流体在管道内部的流动速度也随之增加,从而使得管道内部的阻力增加。

五、实验结论通过实验,我们得到了流体流动阻力与流量、管道直径、管道长度等因素之间的关系。

实验结果表明,阻力系数随着雷诺数和流量的增加而增加,但增长趋势逐渐缓和。

这一结论可以为工程设计提供参考,使得管道布置时可以更加合理地选择管道直径和长度,从而降低管道系统的能耗。

化工原理雷诺实验报告(3篇)

化工原理雷诺实验报告(3篇)

第1篇一、实验目的1. 观察流体在管内流动的两种不同流型(层流和湍流)。

2. 测定临界雷诺数(Re)。

3. 掌握流体流动状态判别准则。

4. 学习应用无量纲参数进行实验研究的方法,并了解其实际意义。

二、实验原理流体在管道中流动时,存在两种流动状态:层流和湍流。

层流是指流体质点沿流动方向做有序、稳定的运动,质点之间无相互混合。

湍流是指流体质点做无序、复杂的运动,质点之间发生相互混合。

层流和湍流的转变与雷诺数(Re)有关,当雷诺数小于一定值时,流体为层流;当雷诺数大于一定值时,流体为湍流。

雷诺数计算公式如下:\[ Re = \frac{\rho v d}{\mu} \]其中,ρ为流体密度,v为流速,d为管道直径,μ为流体粘度。

三、实验装置本实验采用自循环雷诺实验装置,主要包括以下部分:1. 自循环供水器:用于提供恒定的供水流量。

2. 实验台:用于放置实验装置。

3. 可控硅无级调速器:用于调节供水流量。

4. 恒压水箱:用于维持恒定的供水压力。

5. 有色水水管:用于注入有色水,观察流体流动状态。

6. 稳水隔板:用于提高进口前水体稳定度。

7. 溢流板:用于维持水箱水位稳定。

8. 实验管道:用于观察流体流动状态。

9. 实验流量调节阀:用于调节实验流量。

1. 调整实验装置,确保各部分连接牢固。

2. 将有色水注入有色水水管,观察流体流动状态。

3. 调节可控硅无级调速器,改变供水流量。

4. 观察流体流动状态,记录层流和湍流的临界流速。

5. 计算临界雷诺数。

6. 重复实验,验证实验结果的准确性。

五、实验结果与分析1. 观察到当供水流量较小时,流体呈层流状态,流体质点沿流动方向做有序、稳定的运动,有色水沿管道中心线流动,无明显涡流。

2. 当供水流量增大到一定程度时,流体呈湍流状态,流体质点做无序、复杂的运动,有色水在管道中形成涡流,流体流动状态不稳定。

3. 通过计算,得到临界雷诺数为2000。

4. 实验结果表明,当雷诺数小于2000时,流体为层流;当雷诺数大于2000时,流体为湍流。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告实验名称:玻璃加热传热实验实验目的:1.了解传热的基本概念和传热方式。

2.通过实验验证导热性质和传热规律。

3.了解传热实验仪器操作。

实验仪器和材料:1.导热材料:玻璃棒、铝棒、铜棒。

2.温度计。

3.实验容器:玻璃试管。

实验原理:传热是指热量由高温物体自动传递到低温物体的过程。

传热有三种基本方式:传导、对流和辐射。

在本实验中,我们将研究导热的过程。

导热是指在物质内部,热量由高温区域通过分子的碰撞传递到低温区域的过程。

导热性质与物质的热传导系数有关,热传导系数越大,导热性能越好。

实验步骤:1.准备实验仪器和材料。

2.将玻璃棒、铝棒和铜棒分别放入烧杯中加热,使其温度升高。

3.同时用温度计分别测量烧杯中的水温和棒材的温度。

4.记录每分钟棒材温度的变化,并计算热传导速率。

5.测量完毕后,关闭加热装置,等待温度恢复到室温。

6.重复以上步骤,更换不同材料的棒材,并记录实验数据。

实验数据与结果:根据实验测得的数据,可以计算出每种不同材料的导热系数和传热速率。

通过对比不同材料的数据,可以得出导热性能较好的材料。

实验讨论与结论:通过本实验,我们可以了解到不同材料的导热性能是不同的,其中热传导系数较大的材料具有较好的导热性能。

导热系数的大小对于传热的速率有着重要的影响。

在实验过程中还发现,导热材料的初始温度与实验结果也有关系,初始温度越高,热传导速率也越大。

这是因为初始温度高的材料,在接触水温较低的容器时,热量能更快地传递到水中。

综上所述,本实验通过对导热性质的研究,使我们更好地了解了传热的基本概念和传热方式,并验证了导热性质和传热规律。

同时,也提高了我们对于化工原理的理解和实验操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一伯努利实验、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。

2、观察各项能量(或压头)随流速的变化规律。

二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能一一位能、动能、静压能的相应改变及相互转换。

对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。

2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。

故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。

3、以上几种机械能均可用U型压差计中的液位差来表示,分别称为位压头、动压头、静压头。

当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。

任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。

4、柏努利方程式2 2gz 1 -pι We = gz 2 l h f1 2 2式中:乙、Z2 —各截面间距基准面的距离(mU1、U2 ――各截面中心点处的平均速度(可通过流量与其截面积求得)(m∕s)R、P2——各截面中心点处的静压力(可由U型压差计的液位差可知)(Pa)对于没有能量损失且无外加功的理想流体,上式可简化为2 2gz 1 ∙ u「•也=gz 2 • 4 •卫丄测出通过管路的流量,即可计2 P 2 PV2算出截面平均流速V及动压2g ,从而可得到各截面测管水头和总水头。

三、实验流程图5 8 7 6泵额定流量为10L∕min,扬程为8m,输入功率为80W.实验管:内径15mm 四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2 、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测 压管水面是否齐平,若不平则进行排气调平(开关几次)。

3 、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头 之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方 向的液位差△ h ι∙∙∙A h4。

要注意其变化情况。

继续开大流量调节阀,测压孔正对 水流方向,观察并记录各测压管中液位差△ h ι∙∙∙A h4。

5、实验完毕停泵,将原始数据整理。

实验二离心泵性能曲线测定、实验目的1. 了解离心泵的构造和操作方法2.学习和掌握离心泵特性曲线的测定方法 实验原理离心泵的主要 功率N 和效率η 泵的扬程用下性能参数有流量 Q (也叫送液能力)、扬程H (也叫压头)、轴 。

离心泵的特性曲线是 Q-H 、Q-N 及Q- η之间的关系曲线。

式计算:2 2He=H 压力表+H 真空表+H o +(u 岀-U 入)∕2g式中:H压力表——泵出口处压力H真空表—空度H o――压力表和真空表测压口之间的垂直距离泵的总效率为:Na其中,Ne为泵的有效功率:Ne= P ^ggle式中:P——液体密度g 重力加速度常数Q――泵的流量Na为输入离心泵的功率:Na=K •N 电∙η电∙η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N电电机的输入功率η电——电机的效率η转传动装置的传动效率三、实验设备及流程:设备参数:泵的转速:2900转/分水温:25C泵出口管内径:35.78mm四、实验操作1灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵2•开泵注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故。

3. 建立流动4. 读取数据等涡轮流量计的示数稳定后,即可读数。

注意:务必要等到流量稳定时再读数,否额定扬程:20m泵进口管内径:41mm两测压口之间的垂直距离:0.35m则会引起数据不准。

五、作业以一组数据计算QHeNe n实验三过滤实验一、实验目的1. 了解板框过滤机的构造和操作方法。

2. 掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时间。

二、基本原理对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:(V+Ve) 2=κS(t+te)上式也可写成:2(q+q e) =K(t+t e)微分后得到:dt / dq= 2q / K+2q e / K该微分式为一直线方程,其斜率为2/K ,截距为2q e∕K。

实验中厶t/△ q代替dt/dq,通过实验测定一系列的厶t与厶q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K ,虚拟滤液体积q e。

2只考虑介质阻力时:qe=Kte将q e代入上式可求出虚拟过滤时间t e o三、实验设备板框过滤机的过滤面积为0.12m2。

由空压机提供压力,并恒压可调。

以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验。

孔板孔口径:8mm文丘里管喉径:8mm φ20× 2不锈钢管。

四、实验步骤1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净。

2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通3、安装时应从左至右进行,装好一块,用手压紧一块。

请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板(带奇数点),3块框(带偶数点),以确保流道的畅通。

4、装完以后即可紧固手柄至人力转不动为止。

5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg ,任其自行搅拌。

6约5min后,检查所有阀门看是否已关紧?确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在0.1〜0.2MPa范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节。

(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作。

(2)、注意看看板框是否泄漏(大量液体冲出,少量漏液无妨)?确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据。

(3)、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要。

读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验。

(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀。

然后关闭进水阀,打开进气阀,恒压在0.16〜0.2MPa范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验。

(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验。

实验四传热实验一、实验目的测定对流传热系数的准数关联式。

二、实验原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:½ = j4∙Re w∙Prκ∙6f√对于强制湍流而言,Gr准数可以忽略,故m nNu = A ・ Re * Pr用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。

本实验简化上式,即取n=0.4 (流体被加热)。

这样,上式即变为单变量方程,再两 边取对数,即得到直线方程:函数值代入方程中,则可得到系数 A ,即:A = - ------Pr 04∙Re w对于方程的关联,首先要有 NU Re Pr 的数据组。

其准数定义式分别为:Re = 土IPr=C ^”,μλ λ牛顿冷却定律:Q=*∙∕∙∆ς传热量Q 可由下式求得:Q =W ∙C p *(t 2 -t 1)∕3600 = :: ∙V ∙C p-t 1)∕3600三、实验设备流程设备参数:孔板流量计:流量计算关联式:V=4.49∙ R λ5式中:R ----- 孔板压差,[mmHO]V ——水流量,[m /h] 换热套管:套管外管为玻璃管,内管为黄铜管。

套管有效长度:1.25m ,内管内径:0.022m四、实验操作1. 启动水泵2. 打开进水阀3. 打开蒸汽发生器在双对数坐标中作图,找出直线斜率,即为方程的指数 m 。

在直线上任取一点的4. 打开放汽阀5. 读取水的流量6. 读取温度7. 实验结束后,先停蒸汽发生器,再关进水阀五、数据处理实验五精馏实验一、试验目的1. 掌握精馏塔的结构2. 测定精馏塔的理论板数及塔效率二、实验原理1.理论板2•作图法求理论板数3. 精馏塔的全塔效率E t为理论塔板数与实际塔板数N之比,即:E=N/ N精馏塔的单板效率E m可以根据气相(或液相)通过测定塔板的浓度变化进行计算。

若以液相浓度变化计算,则为:E ml = (X n-1-X n) / (X n-1- X n*)若以气相浓度变化计算,则为:式中:X n-1——第n-1块板下降的液体组成,摩尔分率;X n ----------------------- 第n块板下降的液体组成,摩尔分率;X n*------第n块板上与升蒸汽Y n相平衡的液相组成,摩尔分率;Y n+1-----第n+1块板上升蒸汽组成,摩尔分率;Y n——第n块板上升蒸汽组成,摩尔分率;Y n*------第n块板上与下降液体X相平衡的气相组成,摩尔分率二、实验设备及流程简介本实验进料的溶液为乙醇一水体系,其中乙醇占20% (摩尔百分比)。

精馏塔:采用筛板结构,塔身用直径①57X3.5m m的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度Imn t勺不锈钢板,板间距为10cm;板上开孔率为4%孔径是2mm 孔数为21;孔按正三角形排列;降液管为①14X2mr⅛勺不锈钢管;堰高是10mm四、实验步骤1. 全回流进料打开泵开关,再打开进料的管线。

2. 塔釜加热升温全回流进料完成后,开始加热。

3. 建立全回流注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果。

4. 读取全回流数据5. 逐步进料,开始部分回流逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物mF(Y n-Y n+l) / ( Y n*-Y n+l)料平衡、塔釜液位和回流比。

6. 记录部分回流数据五、作业写出精馏段操作线方程、提馏段操作线方程、加料线方程。

实验六、吸收实验一、实验原理本实验是用水吸收空气-氨混合气体中的氨。

混合气体中氨的浓度很低。

吸收所得的溶液浓度也不高。

气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y坐标系为直线)。

故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:G A = K Ya 叫八Y m所以K Ya=G A/(V p-Y m)其中Y(Y^Y eI^(Y^-Y e2)Ym=In Y3 -Y e2式中G A—单位时间内氨的吸收量[kmol∕h]。

相关文档
最新文档