2018-2019年北京市密云区七年级上数学期末试卷+答案
北京密云区2018-2019学度初一上年末考试数学试题含解析.doc
北京密云区2018-2019学度初一上年末考试数学试题含解析初一数学试卷2016、1考生须知1、本试卷共5页,共五道大题,25道小题,总分值100分、考试时刻120分钟、2、在试卷和答题卡上准确填写学校名称、姓名、班级和考号、3、试题【答案】一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用2B 铅笔.4、考试结束,请将本试卷和答题纸一并交回、【一】选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个..选项是符合题意旳. 1.如下图,在数轴上有四个点A 、B 、C 、D ,其中表示-2旳相反数旳是D C B A -3-2-1123A.点AB.点BC.点CD.点D2.2018年12月北京市中小学雾霾停课期间,学生通过“北京数字学校”等方式实现“停课不停学”.调查结果数据显示,仅8日一天,北京数字学校日访问量达1010000次.1010000用科学记数法可表示为A.51.0110⨯B.61.0110⨯C.410110⨯D.610110⨯ 3.以下运算结果为负数旳是A.|2|-B.2(2)- C.(2)-- D.2(2)--4.将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为 A 、两点确定一条直线B 、两点确定一条线段 C 、两点之间,直线最短D 、两点之间,线段最短5.《庄子.天下篇》讲到:“一尺之棰,日取其半,万世不竭.”,意思是说一尺长旳木棍,每天截去它旳一半,千秋万代也截不完.一天之后“一尺之棰”剩12尺,两天之后剩14尺,那么,3天之后,那个“一尺之棰”还剩A.12尺B.14尺C.18尺D.78尺 6.方程511ax +=旳解是2x =,那么a 旳值为A.3B.4C.5D.67.用一副三角板拼成旳图形如下图,其中B 、C 、D 三点在同一条直线上.那么图中ACE ∠旳大小为 A.45︒B.60︒C.75︒D.105︒8.假设2|3|(2)0x y -++=,那么xy 旳值为A.-6B.-3C.-2D.69.一个正方体旳六个面上分别写有六个字“建”、“设”、“生”、“态”、“密”、“云”.将那个正方体展开后如下图,那么该正方体在展开前,与“建”字所在面相对旳面上旳字是云密态生设建A.生B.态C.密D.云10.张老师到移动公司办理下个月旳手机套餐业务,有以下四种套餐可供选择.通过统计,张老师每月使用手机国内数据流量约800M ,国内电话约150分钟,为使下月手机付费额最少,张老师应选择旳套餐是套餐内包含内容套餐外资费 月费〔元/月〕 国内数据流量 国内电话〔分钟〕流量国内电话58 500M 50 0.29元/M0.19元/分钟88 700M 200 128 1G 420 1582G510注:1G=1024M.A.50元/月B.88元/月C.128元/月D.158元/月 【二】填空题〔此题共18分,每题3分〕11.比较大小:-2﹏﹏﹏﹏﹏-5〔填“>”或“<”或“=”〕.12.写出一个绝对值大于2旳负整数﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.13.北斗导航是中国自行研制旳全球卫星导航系统,可为用户提供高精度、高可靠定位、导航、授时服务.据预测,北斗导航2020年产值将比2018年产值旳1.5倍还多625亿元.假设2018年北斗导航旳产值为a 亿元,那么2020年旳产值能够表示为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔用含a 旳代数式表示〕14.12.13︒=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏度﹏﹏﹏﹏﹏﹏﹏分﹏﹏﹏﹏﹏﹏﹏秒. 15.如图,A 、B 、C 、D 在同一条直线上,AB=6,AD=13AB ,1CD =,那么BC=﹏﹏﹏﹏﹏.D C BA16.如图,在2016年3月旳日历中用方框圈住3行3列旳九个数中,左上角旳数是1,右下角旳数是17,可求出被圈住旳九个数旳和是:1+2+3+8+9+10+15+16+17=81.假如方框圈住旳3行3列旳九个数左上角旳数是2,右下角旳数是18,那么可求出被圈住旳九个数旳和是:2+3+4+9+10+11+16+17+18=90.假如方框圈住旳3行3列旳九个数左上角旳数是4,那么可求出被圈住旳九个数旳和是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;假如用方框圈住旳3行3列旳九个数旳和是162,那么右下角旳数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏. 【三】计算题〔此题共15分,每题3分〕17.〔1〕(12)78(9)--+--〔2〕()211()8(3)()43-⨯-+-÷-〔3〕211()233---+〔4〕235()124346-+⨯-〔5〕2222x y x y +--【四】解答题〔此题共27分,其中18题3分,19题共8分,20-23题每题4分〕 18.21n m -=,求(3)(3)n m n ---旳值. 19.解方程〔1〕63(4)x x +=-〔2〕311123x x +--= 20.先化简再求值:22(27)(232)m m m m -+-+-,2m =- 21.线段AB=4,点C 是AB 旳中点,点D 在AB 上,CD=1,求线段DB 长.22.平面上有四个点A 、B 、C 、D ,按照以下要求完成问题: 〔1〕连接AB 并延长AB 至E ,使BE=AB ; 〔2〕作射线BC ;〔3〕过点C 作直线AD 旳垂线,垂足为F ; 〔4〕在直线BD 上确定点G ,使得AG+GC 最短. 23.阅读学习:给定一列数,我们把这列数中旳第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,依次类推,第n 个数记为n a ,(n 为正整数〕,如下面这列数1,3,5,7,9中,121,3,a a ==35,a =457,9a a ==.规定运算sum 1123(:)....n n a a a a a a =++++即从这列数旳第一个数开始依次加到第n 个数.如在上面旳一列数中,sum 13123(:)1359a a a a a =++=++=.〔1〕一列数1,-2,3,-4,5,-6,7,-8,9,-10.那么3a =﹏﹏﹏﹏﹏﹏,sum 110(:)a a =﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.〔2〕一列有规律旳数:1234(1)1,(1)2,(1)3,(1)4,-⨯-⨯-⨯-⨯……,按照规律,这列数能够无限旳写下去.①sum 12016(:)a a =﹏﹏﹏﹏﹏﹏﹏﹏﹏.②是否有正整数n 满足等式sum 1(:)50n a a =-成立?假如有,写出n 值,假如没有,说明理由. 【五】解答题〔此题共10分,每题5分〕 24.列方程解应用题甲班有40人,乙班有38人.在纪念抗日战争胜利70周年演出活动中,甲班参加演出旳人数比乙班参加演出旳人数多12人,乙班没有参加演出旳人数是甲班没有参加演出旳人数旳2倍.求甲班有多少人参加了演出?25.如图AOB α∠=,OC 是一条射线,OM 平分AOC ∠,ON 平分BOC ∠.〔1〕当15,45MOC NOC ∠=︒∠=︒时,求α旳大小.〔2〕将射线OC 绕点O 按逆时针方向旋转一周.试用含α旳代数式表示MON ∠.密云区2018-2016学年度第一学期期末初一数学试卷参考【答案】2016、1【一】选择题题号 1 2 3 4 5 6 7 8 9 10 【答案】CBDACACADB【二】填空题〔此题共18分,每题3分〕11.>12.如:3-13.1.5625a + 14.12748度分秒15.316.99,26【三】17.〔1〕原式=-19+8+9……………………………2分 =-11+9=-2…………………………………3分〔2〕原式=12(3)9+-÷………………………2分 =2(3)9+-⨯=-25……………………………………3分〔3〕原式=211233-++………………..1分 =21()(12)33++-+ (2)分=1+1=2………………………………………..3分〔4〕原式=2351212124346⨯-⨯+⨯-…1分 =8-9+10-4…………………………………2分=5……………………………………………3分 〔5〕2222x y x y +--原式=22(2)(2)x x y y -+-…………2分=2x y -……………………………………3分18.解:由,原式=3n-m-n+3=2n-m+3………………………………………………………………………..2分 将21n m -=代入,得到原式=1+3=4…………………………………………………………………………………3分 19.(1)解:6312x x +=-…………1分3612x x -=-- (2)〔2〕解:3(31)2(1)6x x ⨯+--= (1)分 218x -=-……………………………….3分9x =………………………………………..4分分93226x x +-+=…………….2分71x =…………………………………3分17x =……………………………………4分20.解:原式=2227232m m m m -+--+……………………………………………………….1分 =259m m --+……………………………………………………………………………………….2分当m=-2时,原式=2(2)5(2)9---⨯-+=15…………………………………………4分 21.解:线段AB=4,点C 是AB 旳中点∴AC=BC=2…………………………………………………………………………………………2分 〔1〕当D 在C 左侧时,BD=CD+BC=2+1=3………………………………………………………3分〔2〕当D 在C 右侧时,BD=BC-CD=1………………………………………………………………….4分〔只画出一种情况旳图形给1分,分类讨论两种结果都正确未画图不扣分〕 22.(每问1分)23.〔1〕3,-5〔2〕①1008.②99.〔每空1分〕 【五】24.解:设甲班有x 人参加了演出. ……………………………………………………………..1分 据题意,38(12)2(40)x x --=-……………………………………………………………..3分 解得:30x =答:甲班有30人参加了演出.…………………………………………………………………………..5分. 25. 解:OM 平分AOC ∠,ON 平分BOC ∠,15,45MOC NOC ∠=︒∠=︒∴30AOC ∠=︒,90BOC ∠=︒……………………………………………………….2分∴120α=︒ (3)分〔3〕2MON α∠=或1802MON α∠=︒-………………………………………………2分.。
2018-2019学年北京市密云区七年级(上)期末数学试卷(解析版)
2018-2019学年北京市密云区七年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.下列四个几何体中,是三棱柱的为()A.B.C.D.2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示参加本届赛事的所有参赛选手和志愿者的总人数为()A. B. C. D.3.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是()A. 点AB. 点BC. 点CD. 点D4.下列变形正确的是()A. 由,得B. 由,得C. 由,得D. 由,得5.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A. ①③B. ②④C. ①④D. ②③6.若x=是关于x的方程7x+m=0的解,则m的值为()A. B. C. 3 D.7.下列选项中,结论正确的一项是()A. 与互为相反数B.C. D.8.观察下列图形:它们是按一定规律排列的,依照此规律,第n(n为正整数)个图形中共有的点数是()A. B. C. D.二、填空题(本大题共7小题,共14.0分)9.请写出单项式-b的系数为______,次数为______.10.用四舍五入法将2.896精确到0.01,所得到的近似数为______.11.用一个x的值说明“|x|=x”是错误的,这个值可以是x=______.12.把16.42°用度分秒表示为______.13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革--庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.小芳参展之后打算设计一个正方体装饰品,她在正方体的一个平面展开图上写下了“全面深化改革”几个字(如图所示),如果正方体上“深”所对的面为“改”,则“革”所对的面是______.14.如果-2a m b2与3a5b n+1是同类项,那么m+n的值为______.15.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x天可以追上慢马,则可以列方程为______.三、计算题(本大题共7小题,共37.0分)16.计算:17.计算:18.计算:19.解关于x的方程:15x+9=8x-520.先化简,再求值:(6a2-16a)-5(a2-3a+2),其中a2-a-7=021.已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.请你补全下面的解题过程:解:∵AC=2BC,BC=3∴AC=______.∴AB=AC+BC=______.∵______.∴BD=______=______.∴CD=BD-BC=______.22.本学期学习了一元一次方程的解法,下面是林林同学的解题过程:解方程=1解:方程两边同时乘以6,得:×6=1×6…………第①步去分母,得:2(2x+1)-x+2=6………………第②步去括号,得:4x+2-x+2=6…………………第③步移项,得:4x-x=6-2-2…………………第④步合并同类项,得:3x=2…………………………第⑤步系数化1,得:x=…………………………第⑥步上述林林的解题过程从第______步开始出现错误,错误的原因是______.请你帮林林改正错误,写出完整的解题过程.四、解答题(本大题共5小题,共31.0分)23.计算:(+5)-(-3)+(-7)-(+12)24. 如图,点A 、B 、P 是同一平面内的三个点,请你借助刻度尺、三角板、量角器完成下列问题: (1)画图:①画直线AB ;②过点P 画直线AB 的垂线交AB 于点C ; ③画射线PA ;④取AB 中点D ,连接PD ;(2)测量:①∠PAB 的度数约为______°(精确到1°); ②点P 到直线AB 的距离约为______cm (精确到0.1cm ).25. 列方程解应用题:丹丹的父母因工作原因,早晨不能送丹丹去学校上学.于是,她的父母每月会给丹丹100元钱作为早晨上学的乘车费.平时丹丹会选择乘坐公共汽车上学,但时间紧张的时候,她也会选择“滴滴打车”的方式上学.其中,两种不同乘车方式的价格如表所示:已知丹丹10月份早晨上学共计乘车22次,恰好把100元乘车费全部用完,求丹丹10月份早晨上学乘坐公共汽车的次数和滴滴打车的次数各是多少?26. 如图,OA ⊥OB ,引射线OC (点C 在∠AOB 外),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC =40°,请依题意补全图,并求∠BOE 的度数;(2)若∠BOC =α(0°<α<180°),请直接写出∠BOE 的度数(用含α的代数式表示).27. 已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC +BC =n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC +BC =2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D是数轴上点A、B 的“5节点”,请你直接写出点D 表示的数为______;(3)若点E 在数轴上(不与A 、B 重合),满足BE =AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.答案和解析1.【答案】D【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为圆柱,不符合题意;D、该几何体为三棱柱,符合题意;故选:D.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】A【解析】解:∵5000+1200=6200(人),∴将6200用科学记数法表示为:6.2×103.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵A,B,C,D四个点,点B离原点最近,∴点B所对应的数的绝对值最小.故选:B.A,B,C,D四个点,哪个点离原点最近,则哪个点所对应的数的绝对值最小,据此判断即可.此题主要考查了有理数大小比较的方法,数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.4.【答案】D【解析】解:A.-3+2x=1,等式两边同时加上3得:2x=1+3,即A项错误,B.3y=-4,等式两边同时除以3得:y=-,即B项错误,C.3=x+2,等式两边同时减去2得:x=3-2,即C项错误,D.x-4=9,等式两边同时加上4得:x=9+4,即D项正确,故选:D.根据等式的性质,依次分析各个选项,选出正确的选项即可.本题考查了等式的性质,正确掌握等式的性质是解题的关键.5.【答案】C【解析】解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.直接利用直线的性质以及线段的性质分析得出答案.此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.6.【答案】A【解析】解:把x=代入方程7x+m=0得:3+m=0,解得:m=-3,故选:A.把x=代入方程7x+m=0得到关于m的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.7.【答案】C【解析】解:A、和-和我相反数,故此选项错误;B、-<-,故此选项错误;C、∵-(-2)2=-4,-|-22|=-4,∴-(-2)2=-|-22|,故此选项正确;D、=-3,故此选项错误;故选:C.根据有理数大小的比较的方法,相反数的定义,有理数的乘法的法则进行计算即可.本题考查了有理数大小,相反数,有理数的乘法,熟记法则和定义是解题的关键.8.【答案】B【解析】解:设第n个图形共有a n个点(n为正整数),观察图形,可知:a1=10=6+4,a2=16=6×2+4,a3=22=6×3+4,a4=28=6×4+4,…,∴a n=6n+4(n为正整数).故选:B.设第n个图形共有a n个点,观察图形,根据各图形点的个数的变化可找出变化规律“a n=6n+4(n 为正整数)”,此题得解.本题考查了规律型:图形的变化类,根据各图形点的个数的变化找出变化规律“a n=6n+4(n为正整数)”是解题的关键.9.【答案】- 4【解析】解:单项式-b的系数为-,次数为4.故答案为:-,4.根据单项式次数和系数的定义解答即可.本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.10.【答案】2.90【解析】解:2.896精确到0.01,所得到的近似数为2.90.故答案为2.90.把千分位上的数字6进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.11.【答案】-1(任意负数都可以)【解析】解:∵用一个x的值说明“|x|=x”是错误的,∴这个值可以是x=-1(任意负数都可以).故答案为:-1(任意负数都可以).直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.12.【答案】16°25′12″【解析】解:把16.42°用度分秒表示为16°25′12″.故答案为:16°25′12″.根据不到1度的转化成分,根据不到1分的转化成秒,可得答案.本题考查了度分秒的转化,度转化成分乘60,分转化成秒乘60.13.【答案】全【解析】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与字母“革”所对的面是全.故答案为:全.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题,难度适中.14.【答案】6【解析】解:∵-2a m b2与3a5b n+1是同类项,∴m=5,2=n+1,即n=1,则m+n=5+1=6,故答案为:6.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此求得m、n的值,代入计算可得.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.15.【答案】240x-150x=150×12【解析】解:设快马x天可以追上慢马,由题意,得240x-150x=150×12.故答案是:240x-150x=150×12.设快马x天可以追上慢马,根据慢马先行的路程=快慢马速度之差×快马行走天数,即可列出关于x的一元一次方程,解之即可得出结论.考查了由实际问题抽象出一元一次方程,根据数量关系列出关于x的一元一次方程是解题的关键.16.【答案】解:原式=-16÷5=-.【解析】先计算乘法,再计算除法即可得.本题主要考查有理数的乘除运算,解题的关键是掌握有理数的乘除运算法则和运算顺序.17.【答案】解:=(-28)+18+(-14)=-24.【解析】根据乘法分配律可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】解:====-3.【解析】根据有理数的乘法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.【答案】解:移项得:15x-8x=-5-9,合并得:7x=-14,解得:x=-2.【解析】方程移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】解:原式=6a2-16a-5a2+15a-10=a2-a-10,∵a2-a-7=0,∴a2-a=7,则原式=7-10=-3.【解析】先去括号,合并同类项化简原式,再由a2-a-7=0得出a2-a=7,代入计算可得.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.21.【答案】6 9 D为AB中点AB 4.5 1.5【解析】解:∵AC=2BC,BC=3∴AC=6,∴AB=AC+BC=9,又∵D为AB中点∴BD=AB=4.5,∴CD=BD-BC=1.5.故答案为6,9,D为AB中点,AB,4.5,1.5.根据图形,CD=BD-BC=AB-BC,依据条件求出AB,再代入数值即可得出CD的长.本题考查的是线段的长度计算,利用线段的和、差、倍、分进行计算是解题的关键.22.【答案】②去括号没变号【解析】解:上述林林解题过程从第②步开始出现错误,错误的原因是去括号没变号;故答案为:②;去括号没变号;正确解题过程为:去分母得:2(2x+1)-(x+2)=6,去括号得:4x+2-x-2=6,移项合并得:3x=6,解得:x=2.找出林林错误的步骤,分析原因,写出正确的解题过程即可.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【答案】解:原式=5+3-7-12,=-11.【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的加减混合运算,正确掌握运算法则是解题关键.24.【答案】40 2.4【解析】解:(1)如图所示,直线AB、垂线PB、射线PA及线段PD即为所求.(2)①∠PAB的度数约为40°(精确到1°);②点P到直线AB的距离约为2.4cm(精确到0.1cm).故答案为:40,2.4.(1)根据直线、垂线、射线及线段的概念作图可得;(2)测量即可得.本题主要考查作图-复杂作图,解题的关键是掌握线段、射线、直线的概念及垂线的定义.25.【答案】解:设乘坐公共汽车x次,则滴滴打车(22-x)次,依题意,得:2x+10(22-x)=100,解得:x=15,∴22-x=7.答:乘坐公共汽车15次,滴滴打车7次.【解析】设乘坐公共汽车x次,则滴滴打车(22-x)次,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.【答案】解:(1)如图,∵OD是∠BOC的平分线,∴∠COD=∠BOD=20°,∴∠AOD=∠BOD+∠AOB=20°+90°=110°,又∵OE是∠AOD的平分线,∴∠DOE=∠AOD=55°,∴∠BOE=∠DOE-∠BOD=55°-20°=35°;(2)同(1)可得∠COD=∠BOD=,∠AOD=α+90°,∠DOE=∠AOD=(+90°)=α+45°,则∠BOE=α+45°-α=45°-α.【解析】(1)首先根据角平分线的定义求得∠BOD的度数,然后求得∠AOD的度数,根据角平分线的定义求得∠DOE,然后根据∠BOE=∠DOE-∠BOD;(2)与(1)解法相同.本题考查了角度的计算,理解角平分线的定义是关键.27.【答案】-2.5或2.5【解析】解:(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为:-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.本题考查了数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.。
2018_2019学年七年级数学上学期期末复习检测试卷 (6)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.24.(3分)三棱锥有()个面.A.3 B.4 C.5 D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A. B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3 B.4 C.5 D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断①正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断②正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断③错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断④正确.【解答】解:∵∠AOB=120°,∠COD=60°,∴∠AOC+∠BOD=∠AOB﹣∠COD=60°.①∵∠AOC=∠BOD,∠AOC+∠BOD=60°,∴∠AOC=∠BOD=30°,∴∠AOD=∠COB=90°,∴∠AOD+∠COB=180°,又∵∠AOB+∠COD=180°,∴图中有两对互补的角,故①正确;②设∠AOC=x,则∠BOD=60°﹣x,∴∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∵OE平分∠BOC,∴∠BOE=∠BOC=60°﹣x,∴∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=60°﹣x,∵OM平分∠AOC,∴∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∴∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∴∠DON=∠BON,∴ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∴∠AOP+∠BOQ=90°﹣x+30°+x=120°,∵∠COD=60°,∴=2,故④正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= 6 cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= 2 .【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10 小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为: =10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30 .【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∵x2﹣xy=﹣3,2xy﹣y2=﹣8,∴2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∴2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD= 16或4 cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∵线段AD的中点为M、线段BC的中点为N,∴点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积 1 分,胜一场积 2 分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知 2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∵M为AC中点,∴,①当D在线段BC上时,CD=n,MD=MC﹣CD==;②当D在l上且在点C的右侧时,CD=n,∴=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)∴甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∴若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧∵∠AOM=3∠A′OB∴设∠A′OB=x,∠AOM=3x∵OP⊥M∴∠AON=180°﹣3x∠AOP=90°﹣3x∴∵∠AOP=∠A′OP∴∠AOP=∠A′OP=∴OP⊥MN∴∴∴②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∵∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∴∠AOP=∠A′OP=∴OP⊥MN∴3x+=90∴x=24°∴(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∵∠AOP=∠A'OP∴∠AOP=45°∴∠BOP=60°+45°=105°②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∵∠AOP=∠A'OP∴∠AOP=75°∴∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP= 11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分①当A′在线段BC上,②当A′在l上且在C的右侧,进行讨论即可求解;(3)分①当8<x<12,此时,A′在C的左侧,②当x>12 此时,A′在C的右侧,③当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)①当A′在线段BC上,由题知PA=PA′,∵M为AC中点,∴MA′=MC,∴PM=PA′+A′M====12;②当A′在l上且在C的右侧,∵M为A′C中点,∴MA′=MC,∴PM=PA′﹣A′M====12,综上:PM=12;(3)①当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∵N为BP中点,∴,∵A′C=24﹣2x,∵M为A′C中点,∴,∴=;②当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∵M为A′C中点,∴,∴=;③当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∴.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。
人教版2018-2019学年第一学期七年级数学期末测试题(含答案)
2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
北师大版2018-2019学年七年级数学上册期末考试试卷及答案
28 .一张长方形桌子可坐 6 人,按下图方式将桌子拼在一起。
2018-2019 七年级上册期末试题参考答案
一、选择题(本大题共 10 小题,每题 3 分,共 30 分)
1 . B 2 .A 3. D 4 .D 5 .C 6 .D 7 .A 8 .C 9 .C 10 .D
二 、填空题 (本大题共 10 小题,每题 3 分,共 30 分)
班
5.下列调查中,适宜采用普查方式的是(
)
A 。了解一批圆珠笔芯的使用寿命。
B 。了解全国中学生的节水意识。
C.了解你们班学生早餐是否有喝奶的习惯。
D 。了解全省七年级学生的视力。
6.如图是某个几何体的三视图,则该几何体是(
)
二、填空题 (本大题共 10 小题,每题 3 分,共 30 分)
11.-2 的倒数是 12. 计算: -(-2) 3 =
三 、解答题
。
1
等于
49 50
21. 计算:( - 1)4 ( - 1)3
。
;若 x 3 ( y 2)2 0 ,则 5x2 (x 3 y) =
。
号
考
7.下列说法中,正确的是(
)
A.两点确定一条直线 .
B 。顶点在圆上的角叫做圆心角 .
C.两条射线组成的图形叫做角 . D.三角形不是多边形 .
22. 化简: (2x 3y) 2( x 2 y)
(2)请你改用扇形统计图来表示我校七年级(
2)班同学喜欢的球类运动。
(3)从统计图中你可以获得哪些信息?
( 1)2 张桌子拼在一起可坐 (
)人。3 张桌子拼在一起可坐 (
)人。,, ,n 张桌子拼在一起可坐 (
)
人。
2018-2019学年北京市密云区七年级上学期期末考试数学试卷(解析版)
2018-2019学年北京市密云区七年级上学期期末考试数学试卷一、选择题(本大题共8小题,共16.0分)1.下列四个几何体中,是三棱柱的为()A.B.C.D.2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示参加本届赛事的所有参赛选手和志愿者的总人数为()A. B. C. D.3.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是()A. 点AB. 点BC. 点CD. 点D4.下列变形正确的是()A. 由,得B. 由,得C. 由,得D. 由,得5.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A. ①③B. ②④C. ①④D. ②③6.若x=是关于x的方程7x+m=0的解,则m的值为()A. B. C. 3 D.7.下列选项中,结论正确的一项是()A. 与互为相反数B.C. D. 8.观察下列图形:它们是按一定规律排列的,依照此规律,第n(n为正整数)个图形中共有的点数是()A. B. C. D.二、填空题(本大题共7小题,共14.0分)9.请写出单项式-b的系数为______,次数为______.10.用四舍五入法将2.896精确到0.01,所得到的近似数为______.11.用一个x的值说明“|x|=x”是错误的,这个值可以是x=______.12.把16.42°用度分秒表示为______.13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革--庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.小芳参展之后打算设计一个正方体装饰品,她在正方体的一个平面展开图上写下了“全面深化改革”几个字(如图所示),如果正方体上“深”所对的面为“改”,则“革”所对的面是______.14.如果-2a m b2与3a5b n+1是同类项,那么m+n的值为______.15.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x天可以追上慢马,则可以列方程为______.三、计算题(本大题共7小题,共37.0分)16.计算:17.计算:18.计算:19.解关于x的方程:15x+9=8x-520.先化简,再求值:(6a2-16a)-5(a2-3a+2),其中a2-a-7=021.已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.请你补全下面的解题过程:解:∵AC=2BC,BC=3∴AC=______.∴AB=AC+BC=______.∵______.∴BD=______=______.∴CD=BD-BC=______.22.本学期学习了一元一次方程的解法,下面是林林同学的解题过程:解方程=1解:方程两边同时乘以6,得:×6=1×6…………第①步去分母,得:2(2x+1)-x+2=6………………第②步去括号,得:4x+2-x+2=6…………………第③步移项,得:4x-x=6-2-2…………………第④步合并同类项,得:3x=2…………………………第⑤步系数化1,得:x=…………………………第⑥步上述林林的解题过程从第______步开始出现错误,错误的原因是______.请你帮林林改正错误,写出完整的解题过程.四、解答题(本大题共5小题,共31.0分)23.计算:(+5)-(-3)+(-7)-(+12)24.如图,点A、B、P是同一平面内的三个点,请你借助刻度尺、三角板、量角器完成下列问题:(1)画图:①画直线AB;②过点P画直线AB的垂线交AB于点C;③画射线PA;④取AB中点D,连接PD;(2)测量:①∠PAB的度数约为______°(精确到1°);②点P到直线AB的距离约为______cm(精确到0.1cm).25.列方程解应用题:丹丹的父母因工作原因,早晨不能送丹丹去学校上学.于是,她的父母每月会给丹丹100元钱作为早晨上学的乘车费.平时丹丹会选择乘坐公共汽车上学,但时间紧张的时候,她也会选择“滴滴打车”的方式上学.其中,两种不同乘车方式的价格如表所示:已知丹丹10月份早晨上学共计乘车22次,恰好把100元乘车费全部用完,求丹丹10月份早晨上学乘坐公共汽车的次数和滴滴打车的次数各是多少?26.如图,OA⊥OB,引射线OC(点C在∠AOB外),OD平分∠BOC,OE平分∠AOD.(1)若∠BOC=40°,请依题意补全图,并求∠BOE的度数;(2)若∠BOC=α(0°<α<180°),请直接写出∠BOE的度数(用含α的代数式表示).27.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=AE,且此时点E为点A、B的“n节点”,求n 的值.答案和解析1.【答案】D【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为圆柱,不符合题意;D、该几何体为三棱柱,符合题意;故选:D.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】A【解析】解:∵5000+1200=6200(人),∴将6200用科学记数法表示为:6.2×103.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵A,B,C,D四个点,点B离原点最近,∴点B所对应的数的绝对值最小.故选:B.A,B,C,D四个点,哪个点离原点最近,则哪个点所对应的数的绝对值最小,据此判断即可.此题主要考查了有理数大小比较的方法,数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.4.【答案】D【解析】解:A.-3+2x=1,等式两边同时加上3得:2x=1+3,即A项错误,B.3y=-4,等式两边同时除以3得:y=-,即B项错误,C.3=x+2,等式两边同时减去2得:x=3-2,即C项错误,D.x-4=9,等式两边同时加上4得:x=9+4,即D项正确,故选:D.根据等式的性质,依次分析各个选项,选出正确的选项即可.本题考查了等式的性质,正确掌握等式的性质是解题的关键.5.【答案】C【解析】解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.直接利用直线的性质以及线段的性质分析得出答案.此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.6.【答案】A【解析】解:把x=代入方程7x+m=0得:3+m=0,解得:m=-3,故选:A.把x=代入方程7x+m=0得到关于m的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.7.【答案】C【解析】解:A 、和-和我相反数,故此选项错误;B、-<-,故此选项错误;C、∵-(-2)2=-4,-|-22|=-4,∴-(-2)2=-|-22|,故此选项正确;D、=-3,故此选项错误;故选:C.根据有理数大小的比较的方法,相反数的定义,有理数的乘法的法则进行计算即可.本题考查了有理数大小,相反数,有理数的乘法,熟记法则和定义是解题的关键.8.【答案】B【解析】解:设第n个图形共有a n个点(n为正整数),观察图形,可知:a1=10=6+4,a2=16=6×2+4,a3=22=6×3+4,a4=28=6×4+4,…,∴a n=6n+4(n为正整数).故选:B.设第n个图形共有a n个点,观察图形,根据各图形点的个数的变化可找出变化规律“a n=6n+4(n 为正整数)”,此题得解.本题考查了规律型:图形的变化类,根据各图形点的个数的变化找出变化规律“a n=6n+4(n为正整数)”是解题的关键.9.【答案】- 4【解析】解:单项式-b的系数为-,次数为4.故答案为:-,4.根据单项式次数和系数的定义解答即可.本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.10.【答案】2.90【解析】解:2.896精确到0.01,所得到的近似数为2.90.故答案为2.90.把千分位上的数字6进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.11.【答案】-1(任意负数都可以)【解析】解:∵用一个x的值说明“|x|=x”是错误的,∴这个值可以是x=-1(任意负数都可以).故答案为:-1(任意负数都可以).直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.12.【答案】16°25′12″【解析】解:把16.42°用度分秒表示为16°25′12″.故答案为:16°25′12″.根据不到1度的转化成分,根据不到1分的转化成秒,可得答案.本题考查了度分秒的转化,度转化成分乘60,分转化成秒乘60.13.【答案】全【解析】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与字母“革”所对的面是全.故答案为:全.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题,难度适中.14.【答案】6【解析】解:∵-2a m b2与3a5b n+1是同类项,∴m=5,2=n+1,即n=1,则m+n=5+1=6,故答案为:6.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此求得m、n的值,代入计算可得.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.15.【答案】240x-150x=150×12【解析】解:设快马x天可以追上慢马,由题意,得240x-150x=150×12.故答案是:240x-150x=150×12.设快马x天可以追上慢马,根据慢马先行的路程=快慢马速度之差×快马行走天数,即可列出关于x的一元一次方程,解之即可得出结论.考查了由实际问题抽象出一元一次方程,根据数量关系列出关于x的一元一次方程是解题的关键.16.【答案】解:原式=-16÷5=-.【解析】先计算乘法,再计算除法即可得.本题主要考查有理数的乘除运算,解题的关键是掌握有理数的乘除运算法则和运算顺序.17.【答案】解:=(-28)+18+(-14)=-24.【解析】根据乘法分配律可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】解:====-3.【解析】根据有理数的乘法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.【答案】解:移项得:15x-8x=-5-9,合并得:7x=-14,解得:x=-2.【解析】方程移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】解:原式=6a2-16a-5a2+15a-10=a2-a-10,∵a2-a-7=0,∴a2-a=7,则原式=7-10=-3.【解析】先去括号,合并同类项化简原式,再由a2-a-7=0得出a2-a=7,代入计算可得.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.21.【答案】6 9 D为AB中点AB 4.5 1.5 【解析】解:∵AC=2BC,BC=3∴AC=6,∴AB=AC+BC=9,又∵D为AB中点∴BD=AB=4.5,∴CD=BD-BC=1.5.故答案为6,9,D为AB中点,AB,4.5,1.5.根据图形,CD=BD-BC=AB-BC,依据条件求出AB,再代入数值即可得出CD的长.本题考查的是线段的长度计算,利用线段的和、差、倍、分进行计算是解题的关键.22.【答案】②去括号没变号【解析】解:上述林林解题过程从第②步开始出现错误,错误的原因是去括号没变号;故答案为:②;去括号没变号;正确解题过程为:去分母得:2(2x+1)-(x+2)=6,去括号得:4x+2-x-2=6,移项合并得:3x=6,解得:x=2.找出林林错误的步骤,分析原因,写出正确的解题过程即可.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【答案】解:原式=5+3-7-12,=-11.【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的加减混合运算,正确掌握运算法则是解题关键.24.【答案】40 2.4【解析】解:(1)如图所示,直线AB、垂线PB、射线PA及线段PD即为所求.(2)①∠PAB的度数约为40°(精确到1°);②点P到直线AB的距离约为2.4cm(精确到0.1cm).故答案为:40,2.4.(1)根据直线、垂线、射线及线段的概念作图可得;(2)测量即可得.本题主要考查作图-复杂作图,解题的关键是掌握线段、射线、直线的概念及垂线的定义.25.【答案】解:设乘坐公共汽车x次,则滴滴打车(22-x)次,依题意,得:2x+10(22-x)=100,解得:x=15,∴22-x=7.答:乘坐公共汽车15次,滴滴打车7次.【解析】设乘坐公共汽车x次,则滴滴打车(22-x)次,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.【答案】解:(1)如图,∵OD是∠BOC的平分线,∴∠COD=∠BOD=20°,∴∠AOD=∠BOD+∠AOB=20°+90°=110°,又∵OE是∠AOD的平分线,∴∠DOE=∠AOD=55°,∴∠BOE=∠DOE-∠BOD=55°-20°=35°;(2)同(1)可得∠COD=∠BOD=,∠AOD=α+90°,∠DOE=∠AOD=(+90°)=α+45°,则∠BOE=α+45°-α=45°-α.【解析】(1)首先根据角平分线的定义求得∠BOD的度数,然后求得∠AOD的度数,根据角平分线的定义求得∠DOE,然后根据∠BOE=∠DOE-∠BOD;(2)与(1)解法相同.本题考查了角度的计算,理解角平分线的定义是关键.27.【答案】-2.5或2.5【解析】解:(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为:-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.本题考查了数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.。
北京密云区2018-2019学年度第一学期期末七年级数学试题及答案(WORD版)
密云区2018-2019学年度第一学期期末2019.1一、选择题 (本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个..选项是符合题意的. 1.下列四个几何体中,是三棱柱的为 ( )A B CD2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示........参加本届赛事的所有参赛....选手..和.志愿者的总.....人数..为( ) A. 6.2⨯103 B. 0.62⨯104 C. 5.0⨯103 D. 1.2⨯1033.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最小的点是( ) A .点A B .点B C .点C D .点D4.下列变形正确的是( )A. 由321x -+=,得213x =-;B. 由34y =-,得34y =-; C. 由32x =+,得32x =+; D. 由49x -=,得94x =+.5. 在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①用两颗钉子就可以把木条固定在墙上; ②把笔尖看成一个点,当这个点运动时便得到 一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把 同一行树栽在同一条直线上.A .① ③B .② ④C .① ④D .② ③D B C A–1–21236.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A. 3- B. 31-C. 3D. 317. 下列选项中,结论正确的一项是( )A . 与 互为相反数B .1123->-C. 22-(-2)= --2 D.1836-=--8. 观察下列图形:……第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形中共有的点数是( )A. B. C. D.二、填空题(本题共16分,每小题2分) 9.请写出单项式312a b -的系数为 ,次数为 .13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革——庆 祝改革开放40周年大型展览》多角度、全景式集中展示中国 改革开放40年的光辉历程、伟大成就和宝贵经验。
2019-2020上学期1密云区七年级期末数学试卷
密云区2018-2019学年度第一学期期末初一数学试卷 考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B ..铅笔... 4.考试结束,请将本试卷和答题纸一并交回.一、选择题 (本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个..选项是符合题意的. 1.下列四个几何体中,是三棱柱的为 ( )A B C D2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示........参加本届赛事的所有参赛....选手..和.志愿者的总.....人数..为( ) A. 6.2⨯103 B. 0.62⨯104 C. 5.0⨯103 D. 1.2⨯1033.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最小的点是( ) A .点A B .点B C .点C D .点D4.下列变形正确的是( )A. 由321x -+=,得213x =-;B. 由34y =-,得34y =-; C. 由32x =+,得32x =+; D. 由49x -=,得94x =+.5. 在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①用两颗钉子就可以把木条固定在墙上; ②把笔尖看成一个点,当这个点运动时便得到 一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把 同一行树栽在同一条直线上.A .① ③B .② ④C .① ④D .② ③D B C A–1–21236.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A. 3- B. 31-C. 3D. 317. 下列选项中,结论正确的一项是( )A . 与 互为相反数B .1123->-C. 22-(-2)= --2 D.1836-=--8. 观察下列图形:……第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形中共有的点数是( )A. B. C. D.二、填空题(本题共16分,每小题2分) 9.请写出单项式312a b -的系数为 ,次数为 .3553-61n -64n +54n +51n -13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革——庆祝改革开放40周年大型展览》多角度、全景式集中展示中国 改革开放40年的光辉历程、伟大成就和宝贵经验。
(人教版)北京市2018-2019学年七年级上期末数学考试题(有答案)
2018—2019学年第一学期初一期末试卷数 学一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.绝对值是2的数是A .2-B .2C .2或2-D .21 2.据中新网报道,“神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有40960块处理器.其中40960用科学记数法表示应为 A .5104096.0⨯ B .410096.4⨯C .3100960.4⨯D .31096.40⨯3. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是A .1m <-B .3n >C .m n <-D .m n >- 4.若3x =是关于x 的方程21x a -=的解,则a 的值为A .5B .4C .5-D .4-5.下列判断正确的是A .近似数0.35与0.350的精确度相同B .a 的相反数为a -C .m 的倒数为1mD .m m =6.点C 在射线AB 上,若AB=3,BC =2,则AC 为A .5B .1C .1或5D .不能确定7.同一平面内,两条直线的位置关系可能是A .相交或平行B .相交或垂直C .平行或垂直D .平行、相交或垂直 8.如图,点C 为线段AB 的中点,延长线段AB 到D ,使得AB BD 31=.若8=AD ,则CD 的长为 A .2B .3C .5D .79.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是A .用两个钉子就可以把木条固定在墙上B .如果把A ,B 两地间弯曲的河道改直,那么就能缩短原来河道的长度C .植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线D .测量运动员的跳远成绩时,皮尺与起跳线保持垂直 10.按下图方式摆放餐桌和椅子:…1张餐桌坐6人,2张餐桌坐8人,…,n 张餐桌可坐的人数为 A .5+nB .62+nC .n 2D .42+n二、填空题(本大题共6个小题,每小题3分,共18分)11.请结合实例解释3a 的意义,你的举例: . 12.如图是某几何体的表面展开图,则这个几何体是 . 13.如图,OC 为AOB ∠内部的一条射线, 若︒=∠100AOB ,84261'︒=∠, 则2∠= ︒.14.解方程m m 253=-时,移项将其变形为523=-m m 的依据是 . 15.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.16.规定:用{}m 表示大于m 的最小整数,例如235=⎭⎬⎫⎩⎨⎧,{}54=,{}15.1-=-等;用[m ]表示不大于m 的最大整数,例如327=⎥⎦⎤⎢⎣⎡,[]22=,[]42.3-=-,(1){}4.2= ;[]8-= ;(2)如果整数..x 满足关系式:{}[]1823=+x x ,则=x __________. 三、计算题(本大题共3个小题,17、18题各4分, 19题5分,共13分) 17.75513434--+. 18.()()5428110-⨯+-÷--.21OBC A19. 32323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.四、解方程(本大题共2个小题,20题4分,21题5分,共9分) 20. ()34523x x -+= 21.2531162x x -+-=. 五、解答题(本大题共6个小题,每小题5分,共30分)22.2017年京津冀旅游年卡包含了京津冀众多名胜文化、自然景区等,与2016年卡相比新增了29家景区,年卡分为四类,其中三类年卡及相应费用如下表所示:北京某公园年卡代售点在某日上午卖出上述三种年卡共30张,其中畅游版年卡5张,30张年卡费用总计2750元.(1)该日上午共卖出优惠版和乐享版的年卡 张; (2)卖出的30张年卡中,乐享版年卡有多少张?23.如图,平面上有三个点A ,O ,B . (1)根据下列语句顺次画图.①画射线OA ,OB ;②画AOB ∠的角平分线OC , 并在OC 上任取一点P (点P 不与点O 重合);③过点P 画OA PM ⊥,垂足为M ; ④画出点P 到射线OB 距离最短的线段PN ;(2)请回答:通过测量图中的线段,猜想相等的线段有 (写出一对即可). 24.若单项式122mxy --与45m x y -是同类项,求12322-+--m m m m 的值.25.先化简再求值: ()ab b b a ab +-⎪⎭⎫⎝⎛+-3212,其中52-=+b a .A26.已知:∠AOC =146︒,OD 为∠AOC 的平分线,射线OB ⊥OA 于O ,部分图形如图所示.请补全图形,并求∠BOD 的度数.27.观察下列两个等式:1312312+⨯=-,1325325+⨯=-,给出定义如下:我们称使等式1+=-ab b a 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,31),(5,32),都是“共生有理数对”. (1)数对(2-,1),(3,21)中是“共生有理数对”的是 ; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -) “共生有理数对”(填“是”或“不是”);(4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).2018-2019学年第一学期初一期末数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。
2018-2019学年北京市海淀区七年级(上)期末数学试卷-普通用卷
2018-2019学年北京市海淀区七年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A. B.C. D. 没有刻度尺,无法确定2.-5的绝对值是()A. 5B.C.D.3.2018年10月23日,世界上最长的跨海大桥-港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A. B. C. D.4.下列计算正确的是()A. B.C. D.5.若x=-1是关于x的方程2x+3=a的解,则a的值为()A. B. 5 C. D. 16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.B.C.D.7.已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A. B. C. D.8.若x=2时x4+mx2-n的值为6,则当x=-2时x4+mx2-n的值为()A. B. 0 C. 6 D. 269.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A. B. C. D.10.数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A. B. C. ab D.二、填空题(本大题共8小题,共16.0分)11.比较大小:-3______-2.1(填“>”,“<”或“=”).12.图中A,B两点之间的距离是______厘米(精确到厘米),点B在点A的南偏西______°(精确到度).13.如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:______.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为______(用含a,b的式子表示).15.如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有______(请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______.17.已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是______.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变.(1)a=______;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为-1,则x=______.三、计算题(本大题共4小题,共25.0分)19.计算:(1)5-32÷(-3);(2)-8×(+1-1).20.解方程:(1)5x+8=1-2x;(2).21.已知2a-b=-2,求代数式3(2ab2-4a+b)-2(3ab2-2a)+b的值.22.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=______;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.四、解答题(本大题共5小题,共29.0分)23.如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:______.24.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.25.已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=-4时,方程◇的解为______;(2)若方程◇的解为x=-3,写出一组满足条件的k,b值:k=______,b=______;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)-b=0的解.26.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=______;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为______;若2*3=2*x,则x的值为______;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:______(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:由图可知,A′B′<AB;故选:C.根据比较线段的长短进行解答即可.本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【答案】A【解析】解:-5的绝对值是:|-5|=5.故选:A.根据绝对值的含义和求法,可得-5的绝对值是:|-5|=5,据此解答即可.此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【答案】C【解析】解:55000=5.5×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵3a+2b不能合并,故选项A错误;∵3a-(-2a)=3a+2a=5a,故选项B正确;∵3a2-2a不能合并,故选项C错误;∵(3-a)-(2-a)=3-a-2+a=1,故选项D错误,故选:B.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】D【解析】解:把x=-1代入方程得:-2+3=a,解得:a=1,则a的值为1,故选:D.把x=-1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【答案】B【解析】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°20′=57°40′;故选:B.根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【答案】B【解析】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【答案】C【解析】解:把x=2代入得:16+4m-n=6,解得:4m-n=-10,则当x=-2时,原式=16+4m-n=16-10=6,故选:C.把x=2代入求出4m-n的值,再将x=-2代入计算即可求出所求.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】解:从正面看是,故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a-b<0,ab<0,|a|-b<0,故运算结果一定是正数的是a+b.故选:A.数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.11.【答案】<【解析】解:∵|-3|>|-2.1|,∴-3<-2.1,故答案为:<.直接根据负数比较大小的法则进行比较即可.本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【答案】2 58【解析】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A 的南偏西58°(精确到度).故答案为:2,58.根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B 的方向.考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【答案】答案不唯一,如:2x3【解析】解:可以写成:2x3+xy-5,故答案为:2x3.根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【答案】4b-2a【解析】解:剩余白色长方形的长为b,宽为(b-a),所以剩余白色长方形的周长=2b+2(b-a)=4b-2a.故答案为4b-2a.利用矩形的性质得到剩余白色长方形的长为b,宽为(b-a),然后计算它的周长.本题考查了矩形的性质:平行四边形的性质矩形都具有;矩形的四个角都是直角;邻边垂直;矩形的对角线相等;15.【答案】∠COD,∠EOF【解析】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【答案】(2x-700)+x=5900【解析】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据题意得:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】-2或18【解析】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是-2或18,故答案为:-2或18根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B表示的数在点A表示的数的右边,于是得到结论.本题考查了数轴,正确的理解题意是解题的关键.18.【答案】-2 2【解析】解:(1)(2x-1)+3+ax=2x-1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=-2,故答案为:-2;(2)当y=2x-1+3=2x+2时,令y=-1,则-1=2x+2,得x=-1.5(舍去),当y=3+(-2x)=-2x+3时,令y=-1,则-1=-2x+3,得x=-2,故答案为:-2.(1)根据题意得到y=2x-1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=-1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.19.【答案】解:(1)原式=5-9÷(-3),=5+3,=8;(2)原式=,=-4-8+10,=-2.【解析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【答案】解:(1)移项得:5x+2x=1-8,合并得:7x=-7,解得:x=-1;(2)去分母得:3(x+1)=2(2-3x),去括号得:3x+3=4-6x,移项合并得:9x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:3(2ab2-4a+b)-2(3ab2-2a)+b=6ab2-12a+3b-6ab2+4a+b=-8a+4b,∵2a-b=-2,∴原式=-8a+4b=-4(2a-b)=-4×(-2)=8.【解析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a-b 的值,即可求得所求式子的值,本题得以解决.本题考查整式的加减-化简求值,解答本题的关键是明确整式化简求值的方法.22.【答案】15【解析】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15-3x=45,解得:x=5.故中间数x的值为5.(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.23.【答案】两点之间,线段最短【解析】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【答案】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM-CB=5-2=3.或方法二:∴CM=AC-AM=8-5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB-MB=8-5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC-DC=BD-DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM-AD=MB-CB,∴DM=MC∴由图可知,点M是线段CD的中点.【解析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM-CB或方法二:CM=AC-AM即可求解;(2)方法一:由(1)可知,DM=DB-MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.25.【答案】x=2 1 3【解析】解:(1)当k=2,b=-4时,方程◇为:2x-4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=-4.解得:y=-2.方法二:依题意:4k+b=0,∴b=-4k.解关于y的方程:k(3y+2)-(-4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=-2.(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=-4k,整体代入即可;本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【答案】50°【解析】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【答案】2 1,2,3 是【解析】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。
七年级(上)期末数学试卷(含答案) (3)
北京市丰台区2018-2019学年七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)在﹣3,﹣1,2,0这四个数中,最小的数是()A.﹣3 B.﹣1 C.2 D.02.(3分)如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.3.(3分)北京某天的最高气温是6℃,最低气温是﹣1℃,则这天的温差是()A.﹣7℃B.﹣5℃C.5℃D.7℃4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离6.(3分)下列运算正确的是()A.4m﹣m=3 B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=07.(3分)2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为()A.7.4×104吨B.7.4×105吨C.2.4×105吨D.2.4×106吨8.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b9.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是()A.B.C.D.10.(3分)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.96 D.105二、填空题(本题共16分,每小题2分)11.(2分)绝对值等于3的数是.12.(2分)单项式﹣x2y3的系数是,次数是.13.(2分)若a,b互为相反数,则5a+5b的值为.14.(2分)若∠α=47°30′,则∠α的补角的度数为.15.(2分)若x=4是关于x的一元一次方程ax=x﹣1的解,则a=.16.(2分)学习直线、射线、线段时,老师请同学们交流这样一个问题:直线上有三点A,B,C,若AB=6,BC=2,点D是线段AB的中点,请你求出线段CD的长.小华同学通过计算得到CD的长是5.你认为小华的答案是否正确(填“是”或“否”).你的理由是.17.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x里,依题意可列方程为.18.(2分)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.集合中的元素是互不相同的,如一组数1,2,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数可以进行加法运算,集合也可以“相加”.我们规定:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若已知A={﹣2,0,1,4,6},B={﹣1,0,4},则A+B.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.(3分)计算:﹣7﹣(﹣13)+(﹣9).20.(4分)计算:﹣8×(+﹣)21.(4分)计算:(﹣1)2019+|﹣|÷(﹣4)×822.(5分)解方程:2x+3(5﹣x)=4.23.(5分)=1﹣.24.(5分)如图,平面上有三个点A,O,B.(1)画直线OA,射线OB;(2)连接AB,用圆规在射线OB上截取OC=AB(保留作图痕迹);(3)用量角器测量∠AOB的大小(精确到度).25.(5分)先化简,再求值:3(a2b+ab2)﹣(3a2b﹣1)﹣ab2﹣1,其中a=1,b=﹣3.26.(5分)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC 边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.27.(6分)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,两班学生共104人,其中初一(1)班有40多人,不足50人,教育基地门票价格如下:原计划两班都以班为单位购票,则一共应付1136元,请回答下列问题:(1)初一(1)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?28.(6分)如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分別是,,PQ=;(2)当PQ=8时,求t的值.29.(6分)阅读下面一段文字:问题:0.能化为分数形式吗?探求:步骤①设x=0.,步骤②10x=10×,步骤③10x=7.,则10x=7×,步骤④10x=7+x,解得:x=.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把0.化为分数形式:步骤①设x=0.,步骤②100x=100×,步骤③;步骤④,解得x=;(3)请你将0.3化为分数形式,并说明理由.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.解:如图所示,,由图可知,四个数中﹣3最小.故选:A.2.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.3.解:这天的温差为6﹣(﹣1)=6+1=7(℃),故选:D.4.解:观察图形可知,这个几何体是三棱柱.故选:A.5.解:小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是两点之间,线段最短,故选:B.6.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.7.解:74000×33=2442000(吨),2442000吨≈2.4×106吨.故选:D.8.解:∵由图可知a<0<b,且|a|>|b|,∴a<﹣b.故选:D.9.解:A、∠α=∠β=90°﹣45°=90°,能判断∠α和∠β相等,故本选项错误;B、∠α和∠β都等于90°减去重合的角,故本选项错误;C、不能判断∠α和∠β相等,故本选项正确;D、∠α=∠β=180°﹣45°=135°,能判断∠α和∠β相等,故本选项错误.故选:C.10.解:设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.二、填空题(本题共16分,每小题2分)11.解:绝对值等于3的数是±3.12.解:单项式﹣x2y3的系数为﹣,次数为5.故答案为:﹣,5.13.解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.14.解:180°﹣47°30′=132°30′,故答案为:132°30′.15.解:把x=4代入方程ax=x﹣1得:4a=4﹣1,解得:a=,故答案为:.16.解:如图1,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=5;如图2,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=1,∴小华的答案不正确,因为线段DC的长为1或5,故答案为:否;当点C在线段AB上时,CD=1或5.17.解:设此人第一天走的路程为x里,根据题意得:x+++++=378.故答案为:x+++++=378.18.解:∵A={﹣2,0,1,4,6},B={﹣1,0,4},∴由集合的定义,可得A+B={﹣2,﹣1,0,1,4,6}.故答案为:={﹣2,﹣1,0,1,4,6}.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.解:原式=﹣7+13﹣9=﹣3.20.解:原式=﹣1﹣2+12=9.21.解:原式=﹣1﹣××8=﹣1﹣1=﹣2.22.解:去括号得:2x+15﹣3x=4,移项合并得:﹣x=﹣11,解得:x=11.23.解:去分母得:4x﹣1=6﹣6x+2,移项合并得:10x=9,解得:x=0.9.24.解:(1)如图所示,直线OA和射线OB即为所求;(2)如图所示,线段OC即为所求;(3)∠AOB约为40°.25.解:原式=3a2b+3ab2﹣3a2b+1﹣ab2﹣1=2ab2,当a=1,b=﹣3时,原式=2×1×(﹣3)2=2×9=18.26.解:(1)补全图形,并猜想∠DAB+∠EBA的度数等于45°;(2)证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=∠CBA.(理由:角平分线的定义)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠CAB+∠ABC)=45°.故答案为:45°,∠CAB,角平分线的定义,,∠CAB,∠ABC,45°.27.解:(1)设初一(1)班有x人,则初一(2)班有(104﹣x)人,12x+10(104﹣x)=1136,解得,x =48,答:初一(1)有48人; (2)两个班一起购票最省钱,1136﹣8×104=1136﹣832=304(元), 即可以节省304元.28.解:(1)∵10+2×1=12,3×2=6,∴当t =2时,P ,Q 两点对应的有理数分别是12,6, ∴PQ =12﹣6=6. 故答案为:12;6;6;(2)运动t 秒时,P ,Q 两点对应的有理数分别是10+t ,3t . ①当点P 在点Q 右侧时, ∵PQ =8,∴(10+t )﹣3t =8, 解得:t =1;②当点P 在点Q 左侧时, ∵PQ =8,∴3t ﹣(10+t )=8, 解得:t =9.综上所述,t 的值为1秒或9秒.29.解:(1)步骤①到步骤②的依据是等式的基本性质2. 故答案为等式的基本性质2;(2)把0.化为分数形式:步骤①设x =0.,步骤②100x =100×,步骤③100x =37.,则100x =37+0.;步骤④100x =37+x ,解得x =.故答案为100x =37.,则100x =37+0.;100x =37+x ,;11(3)设x =0.,10x =10×0.,10x =8.,10x =8+0.,10x =8+x ,解得:x =.设m =0.3,10m =3.=3+=,m =. 即0.3=.。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
北京版2018-2019学年上学期期末考试七年级数学试 (4)
北京版2018-2019学年第一学期期末考试七年级数学试卷(时间:120分钟 分值:100分)一、选择题:(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 选项1、-8绝对值的相反数 ( ) A -8 B 8 C 81-D 812.山东省某市某天的最低气温是-5℃,最高企稳是3℃,那么遮天的温差是 ( ) A .5 B . 3 C .-8 D . 83、下列方程为一元一次方程的是 ( ) A .z +3= 0B .x +2y =3C .x 2=2xD .21=+y y4、长城总长约为6700000米,用科学计数法表示为 ( )A .6.7510⨯米B .6.7610⨯米C .6.7710⨯米D .6.7810⨯米5下列各组整式中不是同类项的是 ( ) A .3m 2n 与3nm 2 B .31xy 2与31x 2y 2 C .-5ab 与-5×103ab D .35与-12 6、钟表上的时间为8点,这时时针和分针之间的夹角(小于平角)的度数是(A)120°.(B)105°. (C)100°.(D)90°.7.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8 人无座位;每排坐31人,则空26个座位.则下列方程正确的是 ( )(A)3083126x x -=+ . (B)3083126x x +=+. (C)3083126x x -=-. (D)3083126x x +=-. 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2 10.如图,由四个正方体组成的几何体的正视图是( )二、填空题(本题共5小题,每小题3分,共15分。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
北京市2018-2019学年七年级上期末数学调研试卷(含答案)
1 C
2 B
3 A
4 D
5 B
6 D
7 A
8 C
9 C
10 B
12. 4a 10b ; 17.2 或 10;
13.9; 18.不会; 2n 3 a .
14. 59 ;
15.1;
4 36 …………………………………..2 分 40 …………………………………..3 分
1 (2) 14 2 9 3
.
.
18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长 为 4a,将每边四等分,作一凸一凹的两个边长为 a 的小正方形,得到图形如图(2)所示,称为第一 次 变化,再对图(2)的每个边做相同的变化, 得到图形如图(3) ,称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第 n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”) ,图形的周长为. 三、解答题(本题共 54 分,第 19,20 题每题 6 分,第 21 题 4 分,第 22~25 题每题 6 分,第 26,27 题 每题 7 分) 19.计算:
1 __________=__________° 2
.
.
24. 如图 1, 线段 AB=10,点 C, E, F 在线段 AB 上. (1)如图 2, 当点 E, 点 F 是线段 AC 和线段 BC 的中点时, 求线段 EF 的长; (2)当点 E, 点 F 是线段 AB 和线段 BC 的中点时,请你 写出线段 EF 与线段 AC 之间的数量关系并简要说明理由.
3a 7b= 3
∴原式= 9a 21b 2 = 3(3a 7b) 2 = 3 (3) 2 = 9 2 = 11 …………………………………..4 分
2018-2019学年度第一学期七年级数学期末考试试卷(解析版)
2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。
密云区2018-2019学年七年级第一学期数学期末考试试题及答案
密云区2018-2019学年度第一学期期末初一数学试卷 2019.1考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B ..铅笔... 4.考试结束,请将本试卷和答题纸一并交回.一、选择题 (本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个..选项是符合题意的. 1.下列四个几何体中,是三棱柱的为 ( )A B C D2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示........参加本届赛事的所有参赛....选手..和.志愿者的总.....人数..为( ) A. 6.2⨯103 B. 0.62⨯104 C. 5.0⨯103 D. 1.2⨯1033.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最小的点是( ) A .点A B .点B C .点C D .点D4.下列变形正确的是( )A. 由321x -+=,得213x =-;B. 由34y =-,得34y =-; C. 由32x =+,得32x =+; D. 由49x -=,得94x =+.5. 在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①用两颗钉子就可以把木条固定在墙上; ②把笔尖看成一个点,当这个点运动时便得到 一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把 同一行树栽在同一条直线上.A .① ③B .② ④C .① ④D .② ③D B C A–1–21236.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A. 3- B. 31-C. 3D. 317. 下列选项中,结论正确的一项是( )A . 与 互为相反数B .1123->-C. 22-(-2)= --2 D. 1836-=--8. 观察下列图形:……第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形中共有的点数是( )A. B. C. D.二、填空题(本题共16分,每小题2分) 9.请写出单项式312a b -的系数为 ,次数为 .13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革——庆 祝改革开放40周年大型展览》多角度、全景式集中展示中国 改革开放40年的光辉历程、伟大成就和宝贵经验。
2019北京密云区初一数学(上)期末试题和答案
2019北京密云区初一(上)期末数学2019.1考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.下面各题均有四个选项,其中只有一个..选项是符合题意的.1.下列四个几何体中,是三棱柱的为()A B C D2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法......表示..参加本届赛事的所有参赛....选手..和.志愿者的总人数.......为()A. 6.2⨯103B. 0.62⨯104C. 5.0⨯103D. 1.2⨯1033.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是()A.点A B.点BC.点C D.点D4.下列变形正确的是()A. 由321x-+=,得213x=-; B. 由34y=-,得34y=-;C. 由32x=+,得32x=+; D. 由49x-=,得94x=+.5. 在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.① ③ B.② ④ C.① ④ D.② ③DB CA–1–21236.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A. 3- B. 31-C. 3D. 31 7. 下列选项中,结论正确的一项是( )A .与 互为相反数 B .1123->- C. 22-(-2)= --2 D.1836-=-- 8. 观察下列图形:……第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形中共有的点数是( )A. B. C. D. 二、填空题(本题共16分,每小题2分) 9.请写出单项式312a b -的系数为 ,次数为 .13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革——庆 祝改革开放40周年大型展览》多角度、全景式集中展示中国 改革开放40年的光辉历程、伟大成就和宝贵经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是()
A.点AB.点B
C.点CD.点D
4.下列变形正确的是()
A.由 ,得 ;B.由 ,得 ;
C.由 ,得 ;D.由 ,得 .
5.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()
图上写下了“全面深化改革”几个字(如图所示),如果正方体
上“深”所对的面为“改”,则“革”所对的面是.
14.如果 与 是同类项,那么的值为.
15.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x天可以追上慢马,则可以列方程为.
丹丹的父母因工作原因,早晨不能送丹丹去学校上学.于是,她的父母每月会给丹丹100元钱作为早晨上学的乘车费.平时丹丹会选择乘坐公共汽车上学,但时间紧张的时候,她也会选择“滴滴打车”的方式上学.其中,两种不同乘车方式的价格如下表所示:
乘车方式
公共汽车
滴滴打车
价格(元/次)
2
10
已知丹丹10月份早晨上学共计乘车22次,恰好把100元乘车费全部用完,求丹丹10月份早晨上学乘坐公共汽车的次数和滴滴打车的次数各是多少?
25.如图,点A、B、P是同一平面内的三个点,请你借助刻度尺、三角板、量角器完成下列问题:
(1)画图:①画直线AB;
②过点P画直线AB的垂线交AB于点C;
③画射线PA;
④取AB中点D,连接PD;
(2)测量:①∠PAB的度数约为°(精确到1°);
②点P到直线AB的距离约为cm(精确到0.1cm).
26.列方程解应用题:
一、选择题(本题共16分,每小题2分)
下面各题均有四个选项,其中只有一个选项是符合题意的.
1.下列四个几何体中,是三棱柱的为()
ABCD
2.2018密云生态半程马拉松于6月10日鸣枪开跑.本届赛事设有半程马拉松和迷你马拉松两个参赛项目,涉及参赛选手5000人;另外,还有将近1200名医护和社会志愿者参与本届大赛的志愿服务活动.请你用科学记数法表示参加本届赛事的所有参赛选手和志愿者的总人数为()
A.与互为相反数B.
C. D.
8.观察下列图形:
……
第1个图形第2个图形第3个图形第4个图形
它们是按一定规律排列的,依照此规律,第n(n为正整数)个图形中共有的点数是()
A.B.C.D.
二、填空题(本题共16分,每小题2分)
9.请写出单项式 的系数为,次数为.
10.用四舍五入法将2.896精确到0.01,所得到的近似数为.
16.
则 __________________(用含a,b的式子表示).
三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)
17.计算:
18.计算:
19.计算:
20.计算:
21.解关于x的方程:
22.先化简,再求值: ,其中
23.已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.
①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到
一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把
同一行树栽在同一条直线上.
A.①③B.②④C.①④D.பைடு நூலகம் ③
6.若 是关于 的方程 的解,则m的值为()
A. B. C. D.
7.下列选项中,结论正确的一项是()
11.用一个x的值说明“”是错误的,这个值可以是x=.
12.把用度分秒表示为.
全
面
深
化
改
革
13.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革——庆
祝改革开放40周年大型展览》多角度、全景式集中展示中国
改革开放40年的光辉历程、伟大成就和宝贵经验。小芳参展
之后打算设计一个正方体装饰品,她在正方体的一个平面展开
初一数学试卷参考答案及评分标准2019.01
说明:与参考答案不同,但解答正确相应给分.
一、选择题(本题共16分,每小题2分)
题号
1
2
3
4
5
6
7
8
选项
D
A
B
D
C
A
C
B
二、填空题(本题共16分,每小题2分)
9. ;10.2.90;11. (任意负数都可以);12. ;
13.全;14.6;15.150(x+12)=240x; 16. .
密云区2018-2019学年度第一学期期末
初一数学试卷2019.1
考生须知
1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.
2.在试卷和答题卡上准确填写学校、班级、姓名和考号.
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用2B铅笔.
4.考试结束,请将本试卷和答题纸一并交回.
27.已知:如图,∠AOB=90°,从点O出发引射线OC(点C在∠AOB的外部),OD平分∠BOC,OE平分∠AOD.
(1) 若∠BOC=40°,请依题意补全图形,并求∠BOE的度数;
(2)若∠BOC=α(0°<α <180°),请直接写出∠BOE的度数(用含α的代数式表示).
(备用图)
28.已知数轴上两点A、B,其中A表示的数为 ,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请你补全下面的解题过程:
解:∵AC=2BC,BC=3
∴AC=.
∴AB=AC+BC=.
∵.
∴ =.
∴ .
24.本学期学习了一元一次方程的解法,下面是林林同学的解题过程:
上述林林的解题过程从第_____步开始出现错误,错误的原因是_________________.
请你帮林林改正错误,写出完整的解题过程.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为 ,求n的值;
(2) 若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为;
(3)若点E在数轴上(不与A、B重合),满足 ,且此时点E为点A、B的“n节点”,求n的值.
密云区2018—2019学年度第一学期期末考试