人教版七年级数学上册第四章直线、射线、线段课件
《直线射线线段》优秀ppt课件
知识点三:线段 7.如图,下列说法正确的是( C )
A.射线AB B.延长线段AB C.延长线段BA D.反向延长线段BA 8.如图,点C,D在直线AB上.
(1)图中射线CD与射线_C__B_表示同一条射线; (2)图中共有__1__条直线,__8__条射线,__6__条线段.
9.已知不在同一条直线上的三点A,B,C,请按下列要求画图. (1)作直线AB; (2)作射线AC; (3)作线段BC. 解:图略
13.同一平面内的三条直线两两相交最多有m个交点,最少有n个交点,则m -n的值为( C ) A.0 B.1 C.2 D.3
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
14.如图,完成下列填空: (1)直线a经过点__A__、点__C__,但不经过点_B___、点__D__; (2)点B在直线__b__上,在直线__a__外; (3)点A既在直线_a___上,又在直线__b__上.
D.2个
3.下列关于直线的说法:①直线是直的,向两端无限伸展;②直线 的长是可以量出来的;③直线有粗细之分;④直线只能向一个方向伸 展.其中正确的有( A ) A.1句 B.2句 C.3句 D.4句
知识点二:射线 4.关于射线的说法正确的是( B ) A.射线是直线的一半 B.射线是直线的一部分,只能向一个方向伸展 C.射线没有端点 D.射线比直线短
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
(1)5条直线相交,最多有_1_0__个交点,平面最多被分成_1_6__块; (2)n条直线相交,最多有n_(__n_2-__1_)_个交点,平面最多被分成_n_(__n_2+__1)__+__1_块; (3)一张圆饼切10刀(不许重叠),最多可得到多少块饼? 解:将圆饼切 10 刀,即 n=10,则10×2 11+1=56,所以最多可得到 56 块饼
人教版七年级数学上册《几何图形初步——直线、射线、线段》教学PPT课件(4篇)
4.2 直线、射线、线段
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量
无
不能
一个
不能
两个
能
探究一
如果你想将一根细木条固定在墙上, 至少需要几个钉子?
探究四 由直线可以得到线段、 射线
线段是直线上两个点和它们之间的部分
●
●
射线是直线上的一点和它一旁的部分
●
射线、线段、都是直线的一部分.
探究四
试着描述下图中点与直线的位置关系.
l P· O·
a 点 O 在直线 l 上;点 P不在直线 l 上. b 直线 l 经过点 O;直线 l 不经过点 P.
探究四
两点确定一条直线可以用来说明生活中的现象: 2. 植树时,只要定出两个树坑的位置,就能使同一行 树坑在一条直线上.
两点确定一条直线可以用来说明生活中的现象: 3. 射击的时候,你知道是如何瞄准目标的吗?
如图,有哪些方法可以表示下列直线? m
CE 直线 m、直线 CE、直线 EC
表示直线的方法 ①用一个小写字母表示,如直线m; ②用两个大写字母表示,注:这两个大写字
·A ·O
·B
经过两点有一条直线,并且只有一条直线. 简述为:两点确定一条直线.
如果你想将一根木条固定在墙上并使其不能转动,至少 需要几个钉子?你知道这样做的依据是什么吗?
两点 依据:两点确定一条直线
两点确定一条直线可以用来说明生活中的现象: 1. 建筑工人砌墙时,会在两个墙角的位置分别插一根 木桩,然后拉一条直的参考线.
七年级数学上册《直线、射线、线段》课件PPT
看谁反应快?
判断正误: 1.射线比直线短一半.( )
2.在直线上取一点可得两条射线.(√)
3.数轴是一条射线,因为它有方向.( )
连一连
请你把左边对图形的描述和右 边相应的图形用线连起来:
以A为端点,经过点B的射线
A
B
连结A,B两点的线段
A
B
经过A,B两点的直线
A
B
数一数
指出下图中线段、射线、直线分别有 多少条?
a 表示:直线 a
看图说话
点A在直线 l 上
A
l
A点A在直线 l 外 l
点与直线的位置关系:
1.一个点在一条直线上,也可以说这条直线经过这 个点.
2.一个点在一条直线外,也可以说这条直线不经过 这个点.
记住我哦
直线 a 和 b 相交于点O a 交点
b
当两条不同的直线有一个公共点时,我们就称这 两条直线相交,这个公共点叫做它们的交点。
两个 一个 无
可否 度量
可以
不可以
不可以
例题讲解
例1、已知平面上四个点A、B、C、D 读下列语句,并画出相应的图形
①画直线AB ②画线段AC ③画射线AD、DC、CB
画一画
按下列语句画出图形: (1)直线EF经过点C; (2)点A在直线l外; (3)经过点O的三条线段a、b、c; (4)线段AB、CD相交于点B。
探究活动2
你发现直线、射线、线段有哪些联系与区别?
A
B
A
B
A
B
联系:线段向一端无限延长形成射线, 向两端无限延长形成直线
你能分辨吗?
概念 线段 射线 直线
图形 表示方 向几个方 法 向延伸
人教版《直线、射线、线段》优秀课件
.
尺理规解【作 线图段分要等求分析作点出的图意】形义,;能根说够明运据结用果线,已段并的保和知留、作差条图、痕倍迹件、.分关A系B求线:段的B长度C. :CD=3:2:5,不妨设AB=3x,BC=2x,CD=
(或 AB = ___AM = ___ MN = ___NB)
点 M , N 是线段 AB 的三等分点:
∴ CD = CB = ×3=1. M 是线段 AB 的中点. 几何语言:∵ M 是线段 AB 的中点
(2)
如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.
看下面这三幅图片谁高谁矮?你是依据什么判断的 ?
第一步:用直尺画射线 AF;
a
第二步:用圆规在射线 AF 上截取 AB = a.
所以线段 AB 为所求线段.
Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
一、线段的比较
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
一、线段的比较
想一想 画在黑板上的线段是无法移动的,在只有圆规 和无刻度的直尺的情况下,请大家想想办法,如何再画 一条与它相等的线段?
提示:在可打开角度的 最大范围内,圆规可截 取任意长度,相当于可 以移动的“小木棍”.
一、线段的比较
作一条线段等于已知线段.
已知:线段 a,作一条线段 AB,使 AB=a.
——叠合法.
一、线段的比较 试比较线段AB,CD的长短.
A
B
C
D
(1) 度量法;
(2) 叠合法
将其中一条线段“移”到另一条线段上,使其一端点与另 一线段的一端点重合,然后观察两条线段另外两个端点的位 置作比较.
数学人教版七年级上册《直线、射线、线段》课件
向两方无限 延伸 只向一方无 限延伸
b
1
c
线段AB或线段 BA或线段c
2
不能延伸
能
有/有
拓展提升:
1、平面内有3个点,过其中两个画直线,可以画 几条?
拓展提升:
2、平面内有4个点,经过其中两个画直线,可以 画几条?
课后思考:
平面内有n个点,且不存在三点共线的情况, 经过其中两个画直线,可以画几条?
N
·
b
按下列语句画出图形:
①P是直线a外一点,过点P有一条直线b与直线a相交
于点Q;
②直线AB与直线CD相交于点C ;
本课要点:
种类 图形 表示方法 端点 个数
0
延伸情况
能否 度量
不能 不能
延长线/ 反向延 长线
无/无 无/有
直线 射线
线段
B · · O·A· A· B ·
a
A
直线AB或直线 BA或直线a 射线OA或射线b
练习:用两种方法表示下列图形
a
● ●
A
B c
●
●
M
O
探究三:点和直线的位置关系
画图: 画一条直线AB经过点O,另一条直线CD也经 过点O
归纳:
点与直线的位置关系只有两种: 点在直线上 点在直线外
——直线经过点 ——直线不经过点
练习:
用恰当的语句描述图中点与直线的位置关系。
l
M·
O ·
c A B C a
探究一:直线公理
木工师傅锯木板时用墨盒弹墨线
建筑工人在砌墙时拉参照线
探究二:直线的表示方法
种类
直线
射线 线段
图形
表示方法
人教版数学七年级上册4.2线段、直线、射线-课件
AB是同一条射线的是(B )
(A)射线BA (B)射线AC A
(C )射线BC (D)射线CB
BC
3.图中的几何体有多 少条棱?请写出这些 表示棱的线段。
4.请写出图中以O为 端点的各条射线。
A
B
D
C
•A B•
O• C
5.用两种方式表示图中的两条直线。
m
o
A
n 第一种:直线 AO,
直线 BO
B
第二种:直线 m ,
⑴要把准备好的一根硬纸条固定在 硬纸板上,至少需要几个图钉?
两点确定一条直线
⑵ 经过一点O画直线,能画出几条? 经过两点A、B 呢?
O
A
B
经过两点有且只有一条直线
存在
唯一
生活中我们常常用到两点确定一条 直线,你能举几个例子吗?
两点确定一条直线的应用:
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
练习
读下列语句,并分别画出图形:
(1)直线 l 经过A、B、C三点,
并且点C在点A与B之间; (2)两条线段m与n相交于点P; (3) p是直线外一点,过点p有一条
直线b与直线a相交于点Q;
n (4)直线 l、m、 相交于点Q。
l
A
C
B
m n
p
p
Q
b
a
l
m
Q
n
直线的基本性质:
. 经过两点有且只有一条直线 存在性 唯一性
(1)延长直线MN到点C (错)
(2)直线A与直线B交于一点M (错 ) (3)三点决定一条直线 ( 错 )
(4)无数条直线可能交于一点 (对)
2、下图(1)中的线段可表示为 线段AB 或 线段m 。 (2)中的直线可表示为 直线EF 或 直线n 。 (3)中的射线可表示为 射线HE 。
新人教版数学七年级上册第四章几何图形初步直线、射线与线段课时课件
游戏 两个同学合作托起一根教鞭
这就是两点确定一条直线的妙用。
你还能举出一些实际生活中应用“两点确 定一条直线”的实例吗?
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
感悟数学事实
A
B
直线的基本性质:
经过两点有一条直线,并且只有一条直线。 简述为:
过两点有且只有一条直线。
或简述为: 两点确定一条直线。
向两个方向无限延伸的铁轨给我们以 直线的形象.
直线、射线、线段有什么联系 吗?又有什么区分呢?
直线、射线、线段的联系
已知线段AB,你能由线段AB得到射 线AB和直线AB吗?
A 线 直 射段线AB
B
线段和射线都是直线的一部分.
直线、射线、线段的区分
类型
端点
延伸方向
线段 2个端点 不向任何一方延伸
数学课堂自我评价表
评价
评价内容
评价等级
项目
好中差
动口、动手、动脑,主动收集、交流、加工和处理学习 信息。
课堂 学习 状况
独立思考、掌握学法,大胆实践,并能自评、自检和自 改。 勇于发表自己的见解、听取和尊重别人的意见。
争论与和谐统一,有效地进行互帮互学。
多向视察,善于质疑,变式思维,举一反三,灵活实践。
学习 效果
对数学课的喜欢程度(对数学活动充满热情,精神集中, 乐于参与)
基础知识和基本技能的掌握情况(将新学知识纳入原有 的知识体系中融会贯通)
运用知识解决实际问题的能力(从生活中感知数学,用 数学的眼光视察并解答生活中的实际问题,思维迁移)
作业: 全品作业本P91-92
4.2直线、射线、线段(一)
视察:阅兵式公路上的线给我们数 学中什么线的形象?
七年级数学上册 第四章 几何图形初步 4.2 直线、射线、线段课件 (新版)新人教版
七年级 上册
第四章 几何图形初步
知识点一 直线
直线
直线的 相关 概念
表示方法
图形举例
基本事实
特征
(1)用表示直线上任意两 点的大写字母表示; (2)用一个小写字母表示
直线l或直线AB
经过两点有一条直线,并 且只有一条直线.简单说 成:两点确定一条直线
(1)无端点; (2)向两边无限延伸; (3)无长短
知识点三 线段
定义
表示 方法 线段的 中点
内容 直线上两点及两点间的部分
图例
线段AB或线段BA或线段a
(1)用表示端点的两个大写字母表示; (2)用一个小写字母表示
把一条线段分成两条相等线段的点,叫做这条
线段的中点
点M是线段AB的中点,
AM=BM= 1 AB,即AB=2AM=2BM
2
线段的 画法
例1 根据图4-2-1填空:
图4-2-1 (1)点B在直线AD (2)点E是直线 直线CD的交点; (3)过A点的直线有
;点C在直线AD
,直线CD过点
;
与直线
的交点,点
是直线AD与
条,分别是 .
解析 根据图形进行分析,即可完成各题,同一直线的表示方法不唯一.
答案 (1)上;外;E (2)AE;CD;D (3)3;直线AD、直线AE、直线AC
说明:画弧线时都要朝同一方向,否则有的线段会重复. 解法三:(公式法) 当一条直线上有n个点时,共有1+2+3+…+(n-1)=n(n-1)÷2条线段.因此,题 图中共有4×(4-1)÷2=6(条)线段.
点拨 数线段的条数,应注意要按一定的顺序来数,不能重复,也不能遗 漏,一般从左边第一个点数起,使它和其右边的每个点各组合一次.
人教版七年级数学上册第四章 《直线.射线.线段》课件
(1)过一点A可以画几条直线? 去几何画板 (2)过两点A、B可以画几条直线?
无 向一方 两方
可否度量
可以 不可以 不可以
请你画一画,并仔细观察,
聪明的你能用自己的语言描述吗?
A
B 表示:线段 AB(或线段BA)
a
O
A
A
表示:线段 a
Z x xk
表示:射线 OA
B 表示:直线 AB(或直线BA)
l 表示:直线 l
去几何画板
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
经过两点有且只有一条直线。
木工师傅锯木版时,怎样用墨盒弹墨线?
建筑工人在砌墙时,如何拉参照线?
实践:
如果你想将一根细木条固定在墙上, 至少需要几个钉子?你能说出道理吗?
1.直线的性质来源于实践,服务于生活, 你能再举几个应用直线性质的例子吗?
人教版初中数学七年级上册6.2.1直线、射线、线段课件(共24张PPT)
巩固练习
2.下列现象:①农民伯伯拉绳插秧;②解放军叔叔打靶瞄 准;③学生早操队列对齐;④在墙上至少要用两根钉子才能 把木条固定;⑤改直弯曲的河道,缩短航程。其中可以用
“两点确定一条直线”来解释的有____①___②___③。④(填序号)
巩固Байду номын сангаас习
3.按下列语句画出图形: (1)点A 在线段 MN 上; (2)线段 AB 不经过点P; (3)经过点 O 的三条线段a、b、c; (4)射线 AB 和线段 CD 交于点 C 。
思考题:下图中共有几条线段?
AB
C
DE
课堂小结
数学知识: • 两点确定一条直线 • 直线、射线、线段的联系与区别 • 直线、射线、线段的表示方法 • 不同几何语言(文字语言、符号语言、图 形语言)的相互转化
数学思想及方法: • 分类思想,转化思想,有序思考
作业布置
完成本节作业本练习
联系生活
植树时,怎么样才能使所种的树在同 一条直线上?
例题
例1 图中共有几条线段?说明你分析这个问题的具体思路;
以A为端点的线段有AB,AC,AD,AE,共4条,以B 为端点且与前面不重复的线段有BC,BD,BE,共3条,以 C为端点且与前面不重复的线段有CD,CE,共2条,以D 为端点且与前面不重复的线段有DE,共1条,从而共有4+ 3+2+1=10(条)线段。
●
●
线段是直线上两个点和它们之间的部分
●
射线是直线上的一点和它一旁的部分
联系生活
生活中,有哪些物体可以近似地看成 线段、射线、直线?
东方明珠塔夜景
例题
例 如图所示,下列说法正确的是( C )
A.直线AB和直线CD是不同的直线 B.射线AB和射线BA是同一条射线 C.线段AB和线段BA是同一条线段 D.直线AD=AB+BC+CD
人教版数学七上 第四章 4.2直线、射线、线段 课件
1.如图,由A到B有①、②、③的三条路线,最短的路线是
①,理由是(C )
A. 线段有两个端点 B. 经过两点有一条直线,并且只有一条直线 C. 两点之间的所有连线中,线段最短 D. 两点之间线段的长度,叫做这两点之间的距离
2.小光准备从A地去往B地,打开导航、显示两地距离为 37.7km,但导航提供的三条可选路线长却分别为45km, 50km,51km(如图).能解释这一现象的数学知识是
子.
9.若数轴上点A表示的数是-5,则与它相距2个单位的点B
表示的数是( D)
A. ±5 C. 7
B. -7或-3 D. -8或3
10.同一平面上A、B两点间的距离是指( B )
A. 经过A、B两点的直线 B. 射线 AB C.A、B两点之间的线段 D. A 、 B 两 点 间 线 段 的 长 度
6.数轴上表示﹣6和4的点分别是A和B , 则线段AB的长
度是( D)
A. ﹣2B. 2C. ﹣10D. 10
7.如果A,B,C三点同在一直线上,且线段AB=6cm,
BC=3cm,A,C两点的距离为d,那么d=( C )
A. 9cm
B. 3cm
C. 9cm或3cm
D. 大小不定
8 . 要 在 墙 上 钉 一 根 木 条 使 其 固 定 , 至 少 要 用 _ _ _2_ _ _ _ _ 颗 钉
一根木桩,然后拉一条直的参照线,其数学道理是( A )
A. 两点确定一条直线 B. 两点之间,线段最短 C. 垂线段最短 D. 平行于同一条直线的两条直线平行
5.如图,经过创平的木板上的两个点,能弹出一条笔直的墨 线,而且只能弹出一条墨线,能解释这一实际应用的数学知
识是( A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第四章421直线、射线、线段课件
• AB i4 f E ▲ 3 •
.!•■』,J -m」
石
-一
1
—
哼4
■M --
11I5p w0I
幻腾空间-激光•多媒体
科70
!l ra
学习目标:
1、认识直线、射线、线段的关系,掌握它们的表示方法。
2、通过探究,了解两点确定一条直线的性质,并竈初步应用。
3、能根据语句画出相应的图形,会用语句描述简单的图形。
自主学习自学课本125页一
要求:
用“用"-
一126页练习上面的内容。
_,,画出重点语句。
-? ”画出有疑问的地方。
问题1:
经过一点A画直线,能画出几条?
经过A、B两点呢?
经过一点有无数条直线
直线的性质:经过两点有一条直线,并且只有一条
直线。
简車说战,看止确定一冬直钱
日常生活中有哪些例子可以证明两点确定一条直线这个性质呢?
如:两根钉子就可以把木条固定在墙上,
■・匚;■
1
J
■
_ _v Ju
^"TE ^®B | t .上
■
r ta ^l
52?r «
备沁"
■KT
■、
r ・
■ ■ • F w s
g
7g|
f k ; it
p\严 ■
•丄
x. ■奇
•建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据两点确定1、条直
III
线的道理.
问题2:如何表示直线、射线、线段?
二气直线AB或直线a
B线段AB或线段a 射线AB或射线a
射线BA或射线a
数一数下图中线段、射线、直线分别有多少条?
ABC
答:有3条线段,是线段AB、线段AC、线段有6条射线
只有一条直线,是直线AB
判断是否同一条射线必须具备: 1、端点相同2、延伸方向相同。
问]题3:用语言怎样叙述这些图形呢?
关系有几种?两 条直线相交有几 个交点?.A B -------------- b
-------- ・ ------ b
点与直线的位置
E
F C ■ ■ ■
o
A B 按下列语句画出图形: (1) 、直线EF 经过点C ;
(2) 、点A 在直线a 外;
(3) 、经过点0的三条线段
a 、
(4)、线段AB、CD相交于点E
E F C ■ ■ ■
o
A
B
.A -------------- a
b 、
c ;
问题4:直线、射线、线段有什么关系? 联系:射线、线段是直线的一部分。
区别:
已知线段AB,怎样由线段AB 得到射线AB和直线AB呢?
O
A把线段向一个方向无限延伸可得到射线,把线段向两个方向延伸可得到直线。
线段和射线都是直线的一部分。
1、某班的同学在操场上站成笔直的一排,确定两个同学的位置,这一排的位置就确定下来了, 这是因为经过两点有且只有一条直线。
2、分别用两种方式表示图中的直线。
直线AO、直线BO
直线m、直线n
3、下列说法正确的是()。
A、画射线0A=3厘米。
B、线段AB和线段BA不是同一条线段。
C、点A和直线L的位置关系有两种。
D、三条直线相交有3个交点。
4、已知平面上四点,如图:A・
(1 )画直线AB;・D
(2 )画射线AD;B・・C
(3 )直线AB、CD相交于点E;
(4)线段AC、BD相交于点F。