表面活性剂废水的危害及处理技术
浅谈表面活性剂废水的治理
[ 要】 摘 合成洗涤剂的大量使用,产生大量的表面活性剂,这些表面活性剂进入到水体,便产生了表面活性剂废水。
本文介绍 了表面活性剂废水 的危害和特点 ,并从实际出发 ,总结 了该类废水在 工程 中的常见 问题 , 提出相应的解 决方法 , 为读者提供 了一些有益 的经验 。
【 词】 关键 表面活性剂 ;废水 ;治理 ;措施
高浓度 的L S A 对微 生物细 胞的活性 和增殖具 有一 定的阻碍 作用 ,使废水 的生物 降解难度加大 ,故 生化处理法是废水能否
1 治 理 工 艺概 述
对于表面活性剂 L AS的处理 , 要是解决 乳化 胶体废 水污 主
达标排放 的关键 。一 般的生物处理 问题 已多有文献论述 ,本文
维普资讯
20 0 7年 第 7期 第3 4卷 总第 1 1 7 期
广 东
化
工
WW W. c m .o gd he c m
浅 谈 表 面 活 性 剂 废 水 的 理 治
洪志豪 ,卢艳芬
( 州恩 普 环保技 术有 限公 司 ,广东 广 州 5 0 8 ) 广 00 1
K e w o ds y r :LA S; wa tw ae se tr; te t e ; m e s r r am nt a ue
目前我 国合成洗涤剂用途广 泛 ,几乎涉及到家庭生活、工
染的问题 。根据对废水 中 L AS结构的破坏措 施 ,可以将 处理技 术 分为两类 , “ 非破坏性”技术 ,即分离法 ,包括混凝分离法、 吸附法 、泡沫分离法、膜分离法 ; “ 破坏性 ”技术 ,即氧化分 解法 ,包括催化氧化法、微 电解法、 生物氧化法 。
将 以一家 生产化妆 品原 料的公司所排放的废水为例 ,讨论一 下
LAS阴离子表面活性剂及其处理工艺
阴离子表面活性剂处理目前我国生产的表面活性剂多属于阴离子表面活性剂,以直链烷基苯磺酸钠(LAS)为主。
表面活性剂废水的来源很多,LAS除用于洗涤用品外,也广泛用于制革、纺织等工业的洗涤和脱脂。
因此,家庭厨房废水、酒店宾馆废水、洗衣房废水中均含有LAS,洗涤、化工、纺织等行业也产生大量含LAS的废水;LAS生产厂也排放大量表面活性剂废水。
1 表面活性剂废水的特点(1)表面活性剂废水成分复杂,废水中除了含有表面活性剂和其乳化携带的胶体污染物外,还含有助剂、漂白剂和油类物质等;废水中的LAS以分散和胶粒表面吸附两种形式存在。
2)表面活性剂废水一般呈弱碱性,pH约8-11;但是部分LAS生产废水的pH为4-6,呈酸性;餐饮废水、洗浴废水和洗衣废水的LAS质量浓度一般为1-10mg/L,而LAS生产废水的质量浓度一般为200mg/L左右;CODcr差异也很大,从100-10000mg/L甚至达10的5次方mg/L。
(3)废水中的表面活性剂会造成水体起泡、产生毒性,且表面活性剂在水中起泡会降低水中的复氧速率和充氧程度,使水质变坏,影响水生生物的生存,使水体自净受阻。
此外它还能乳化水体中其他的污染物质,增大污染物质的浓度,造成间接污染。
2 表面活性剂废水对环境的危害LAS属于生物难降解物质,它的广泛使用,不可避免地对水环境造成了污染,在我国环境标准中把它列为第二类污染物质。
表面活性剂被使用后最终大部分形成乳化胶体状物质随着废水排入自然界,其首要污染物LAS进入水体后,与其他污染物结合在一起形成具有一定分散性的胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。
阴离子表面活性剂具有抑制和杀死微生物的作用,而且还抑制其他有毒物质的降解,同时表面活性剂在水中起泡而降低水中复氧速率和充氧程度,使水质变坏,若不经处理直接排入水体,将造成湖泊、河流等水体的富营养化问题;LAS还能乳化水体中其他的污染物质,增大污染物质的浓度,提高其他污染物质的毒性,而造成间接污染。
关于污水处理泡沫产生的原因、危害及控制方法
关于污水处理泡沫产生的原因、危害及控制方法!在污水处理过程中,相信大家都常常会遇到生化池产生大量的泡沫的情况,而且如果静止时,就会从池中溢出,引起外部设备外部池壁的严重污染,使操作条件恶化,严重影响了周围的环境。
1、泡沫的类型1、启动泡沫1.曝气池启动初期,曝气池中的污泥对污水的水质并不适应,对生长环境的不适应,容易形成泡沫。
随着污泥对水质的适应,泡沫会减少。
2.曝气池启动初期,污泥相对较少,污泥负荷较高,容易产生泡沫。
污泥量增加后,泡沫会逐渐消失。
3.活性污泥工艺运行启动初期,由于污水中含有一些表面活性物质,易引起表面泡沫。
但随着活性污泥的成熟,这些表面活性物质经生物降解,泡沫现象会逐渐消失。
2、反硝化泡沫活性污泥处理系统以低负荷运转时,在沉淀池或曝气不足的地方会发生反硝化作用而产生氮气,氮气的释放在一定程度上会降低污泥密度并带动部分污泥上浮,从而出现泡沫现象,产生的悬浮泡沫通常不很稳定。
3、表面活性剂泡沫污水中的表面活性剂和淀粉、蛋白质、油脂等表面活性物质在分子结构上都表现为含有极性-非极性基团即所谓双亲分子。
在曝气的条件下,非极性基团一端伸入气泡内,而极性基团选择性地被亲水物质所吸附,使亲水性物质的表面转化成疏水性物质而黏附在气泡水膜上,随气泡一起上浮至水面。
4、生物泡沫1.与泡沫有关的微生物大都含有脂类物质,这类微生物比水轻,易漂浮到水面。
2.与泡沫有关的微生物大都呈丝状或枝状,易形成网,能捕扫微粒和气泡等,并浮到水面。
被丝网包围的气泡,增加了其表面的张力,使气泡不易破碎,泡沫就更稳定。
3.曝气气泡产生的气浮作用常常是泡沫形成的主要动力。
颗粒利用气泡气浮,必须是形小、质轻和具有疏水性的物质。
所以,当水中存在油、脂类物质和含脂微生物时,则易产生表面泡沫现象。
2、泡沫产生的因素1、污泥停留时间产生泡沫的微生物的生长速率普遍较低,生长周期长,所以长的污泥停留时间有利于这些微生物的生长。
因此,采用延时曝气方式的活性污泥法更易产生泡沫现象。
表面活性剂对水环境的影响
表面活性剂对水环境的影响基本概念表面活性剂(surfactant)是指具有一定性质、结构和界面吸附性能,能显著降低溶剂表面张力或液—液、液—固界面张力的一类物质。
它的英文名字surfactant就是surfaceactiveagent的合成词,表示“表面活性剂就是能使表面(或界面)活性增强的物质”。
表面活性剂分子中同时具有亲水基团和亲油基团,这种特性也叫做“双亲”(amphiphilic)。
由于表面活性剂的这种特性,在适当浓度时,它们在水中能形成胶束(micelle):亲水的头部被水吸引朝外,亲油的尾部被水排斥从而朝里。
在洗衣服的过程中,油渍就是被亲油基团拉到胶束的内部,而整个胶束又被水带走。
如果是在油性环境中,它们又可以形成反胶束(inversemicelle),即头在内尾在外。
这些胶束在化妆品中有着举足轻重的作用。
一、表面活性剂分类表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO 衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。
一般都认为按照它的化学结构来分比较合适。
即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为离子型表面活性剂和非离子型表面活性剂。
按极性基团的解离性质分类,表面活性剂有离子型表面活性剂、非离子型表面活性剂、特种表面活性剂。
离子型表面活性剂为阴离子表面活性剂(羧酸盐类、磺酸盐类、硫酸酯类、磷酸酯类等)、阳离子表面活性剂(胺盐类、季铵盐类、杂环类、鎓盐类等)、两性离子表面活性剂(羧酸盐型、磺酸盐型、磷酸酯型、甜菜碱型、咪唑啉型、氨基酸型等)。
非离子表面活性剂有:烷基多苷型、聚氧乙烯型、多元醇型、烷醇酰胺型、嵌段聚醚型。
特种表面活性剂有含氟型、含硅型、含硼型、高分子型等。
阴离子活性剂1、肥皂类系高级脂肪酸的盐,通式:(RCOOˉ)n M。
表面活性剂环境危害性分析
表面活性剂环境危害性分析一、本文概述表面活性剂,作为一类广泛应用于工业、农业、医疗卫生、环境保护、能源、交通运输和日常生活等领域的化合物,其在现代社会中发挥着不可或缺的作用。
然而,随着表面活性剂的大规模生产和广泛使用,其对环境的影响也逐渐显现,引起了广泛的关注。
本文旨在对表面活性剂的环境危害性进行深入分析,以期为环境保护和可持续发展提供有益参考。
文章首先将对表面活性剂的基本概念和分类进行简要介绍,明确研究对象的范围和特点。
随后,将重点探讨表面活性剂的环境危害,包括其对水环境、土壤环境、大气环境以及生物多样性的影响。
在此基础上,文章还将分析表面活性剂环境危害的产生机制,如何通过环境行为如吸附、降解、生物富集等过程对生态环境造成潜在威胁。
为全面评估表面活性剂的环境风险,文章还将介绍现有的环境风险评估方法和技术,并对不同评估方法的优缺点进行评述。
结合国内外相关法规、标准和政策,探讨表面活性剂的环境管理现状和未来发展趋势。
文章将提出针对性的环境风险防控措施和建议,旨在降低表面活性剂对环境的潜在危害,促进绿色化学和可持续发展的实现。
通过本文的阐述,我们期望为相关领域的研究人员、政策制定者和公众提供有价值的参考信息,共同推动表面活性剂产业的绿色转型和生态环境保护。
二、表面活性剂的环境行为表面活性剂作为一类广泛应用的化学品,其环境行为及其对生态环境的影响是备受关注的重要问题。
表面活性剂的环境行为主要包括其在环境中的迁移、转化和归趋。
迁移:表面活性剂进入环境后,可以通过水、土壤、大气等多种介质进行迁移。
在水体中,表面活性剂可以随着水流、扩散等作用在水体中进行长距离迁移;在土壤中,表面活性剂可以随着土壤水分的运动而迁移;在大气中,表面活性剂可以附着在颗粒物上进行迁移。
转化:表面活性剂在环境中会经历多种转化过程。
例如,在水体中,表面活性剂可能通过光解、水解、生物降解等作用而分解;在土壤中,表面活性剂可能通过吸附、生物降解等作用而转化。
表面活性剂在农业中的应用及对水环境的危害
表面活性剂在农业中的应用及对水环境的危害王曼如;闫湘;李秀英【摘要】表面活性剂通常分为4大类:阴离子、阳离子、非离子和两性离子型.它们被广泛应用于各行各业中,在农业中,主要和农药、化肥等配合使用,也可用于污染土壤的修复.但随着表面活性剂的使用,随之而来的是危害问题.例如壬基酚,已有大量实验证明其具有内分泌毒性、神经毒性、生殖毒性、免疫毒性和生态毒性及遗传学毒性等,其对中国林蛙96 h的50 d半致死浓度(LC50)为170μg/L,对贻贝的LC50为140μg/L.未来应加大表面活性剂安全性方面的研究,同时应研究有毒表面活性剂的高效降解与去除方式,寻找更佳的绿色表面活性剂.【期刊名称】《中国土壤与肥料》【年(卷),期】2018(000)006【总页数】5页(P11-15)【关键词】表面活性剂;降解;危害【作者】王曼如;闫湘;李秀英【作者单位】中国农业科学院农业资源与农业区划研究所,北京 100081;中国农业科学院农业资源与农业区划研究所,北京 100081;中国农业科学院农业资源与农业区划研究所,北京 100081【正文语种】中文【中图分类】S1811 表面活性剂表面活性剂的定义和分类:表面活性剂(Surface active agent,Surfactant)是指能显著降低界面张力的物质,由一个亲水的极性头端和一个疏水的非极性尾端组成的双性分子。
非极性尾端主要是由碳氢键构成的亲油端;极性头端的亲水性能随构成该基团分子种类不同差别很大。
表面活性剂按亲水基离子类型分为阴离子表面活性剂(Anionic surfactant)、阳离子表面活性剂(Cationic surfactant)、非离子表面活性剂(Nonionic surfactant)和两性离子表面活性剂(Zwitterionic surfactant)。
表面活性剂的种类很多,既可以化学合成,又可生物合成;应用很广泛,可作为洗涤剂、食物、化妆品以及采矿和道路修建的添加剂等[1]。
表面活性剂废水对环境的危害及其处理技术
第3期表面活性剂废水对环境的危害及其处理技术11 ;专题与评述表面活性剂废水对环境的危害及其处理技术叶雪(四川大学建筑与环境学院,四川成都,610065)摘要介绍了表面活性剂的特点以及进入水体后对生态环境产生的一系列危害,阐述了几种常用的处理表面活性剂废水的方法,并分析了各种方法的优缺点。
可为以后研究处理表面活性剂废水的新型方法提供一定的参考作用$关键词:表面活性剂废水危害处理技术目前,我国的各个行业对表面活性剂的需求量巨大,主要包括工农业、医药业、纺织业及日常生活的各个领域,是一种应用广泛的化学用品。
表面活性剂的出现给人们的生活带来了极大的便利,但在其大量的使用过程中,未经处理的表面活性剂废水经过各种途径排放到自然界的水体中,会经过积累而带来很多的环境污染问题,并对人类和生态系统造成危害。
因此,对含有表面活性剂的废水进行处理具有非常重要的意义$1表面活性剂废水对环境的危害已有研究表明,表面活性剂的成分非常复杂,它在水体中的质量浓度达到一定后,进入水体将产生大量的泡沫漂浮在水面。
这些泡沫不容易消失,会在水面形成一层隔离状物质,阻碍氧气进入水中,从而降低水中充氧和复氧的程度。
这时水中没有了足够的溶解氧,大量的水生生物因为无法进行呼吸作用而死亡,水体无法再进行自净过程,因此水质将会持续恶化%&$此外,如果含有表面活性剂的废水没有进行相应的处理就混合污水进入污水处理厂后,这些面活性剂的各化过,如曝气、消化等过程,使污水处理过程很难达到理想的结果。
在农业生产过程中,如果用了含有表面活性剂的,中的面活性剂将对农作物产生严重的危害,影响农作物的长势,最终导致农作物产量大跌。
另外,在日常生活中,我们所饮用的中过多面活性剂时,中状物质漂浮在表面,并会产生异味,过多饮用这类水将对人们的身体健康产生危害。
同时,有一些表面活性剂还可乳化其他有害物质,导致该有害物质浓度增加。
并抑制水中其他有毒物质的降解,最终通过食物链反应对人类和动植物产生慢性毒害作用:2—3&$据研究表明,含有表面活性剂的废水大量排入水体环境中,如含有大量的氮和磷,会对水体造成严重的富营养化。
表面活性剂及其对环境的影响
表面活性剂及其对环境的影响表面活性剂(Surfactants)是一种具有特殊化学结构的化学物质,可在液体中降低表面张力并改善液体与固体或液体相互接触的能力。
它们在日常生活中广泛应用于清洁剂、洗涤剂、乳化剂、润滑剂等领域。
然而,表面活性剂的过度使用和排放造成了对环境的负面影响。
本文将详细探讨表面活性剂的种类、应用、环境影响以及可持续替代方案。
首先,表面活性剂可分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和季铵盐表面活性剂等多种不同类型。
它们的主要功能是改善液体与固体之间的接触性能,使油水混合物分散、乳化或分离,并降低液体的表面张力。
这些特性使表面活性剂成为洗涤剂、清洁剂和乳化剂的重要成分。
然而,由于表面活性剂的广泛用途,它们的排放会对环境造成一系列的负面影响。
首先,表面活性剂会通过排放入水体系统,破坏水体的生态平衡。
高浓度的表面活性剂可以破坏水体中的氧气含量,导致鱼类和其他水生生物的窒息死亡。
同时,表面活性剂也会降低水中的生物多样性,并对水生生态系统造成长期的影响。
其次,表面活性剂的使用也会对土壤和植被产生负面影响。
当表面活性剂排放到土壤中时,它们会抑制土壤中的微生物生长,破坏土壤的肥力。
此外,表面活性剂在土壤中的残留会进入植物体内,影响植物的正常生长和发育。
此外,表面活性剂的生产过程和排放也会对大气环境造成污染。
表面活性剂的生产通常需要高温、高压和化学反应过程,这些都会产生大量的二氧化碳和其他温室气体。
同时,表面活性剂的不正确使用和废弃物处理方法也会导致有害气体的排放,进一步加剧大气的污染。
面对这些环境问题,制定可持续替代方案对于减少表面活性剂对环境的影响至关重要。
一种可行的替代方案是开发和使用可再生能源,以降低表面活性剂的生产过程中产生的温室气体排放。
此外,开发更环保的制造工艺和清洁技术也可以减少表面活性剂生产过程中的污染物排放。
另外,研发更环保的表面活性剂也是减少环境影响的关键举措。
表面活性剂及其对环境的影响
表面活性剂及其对环境的影响阿尔祖古丽·图拉克 08090330表面活性剂(surfactant)是一类重要的有机化合物,我们的生活中到处充斥着表面活性剂,从肥皂、洗发水到某些食品,药品,再到墙面涂料、润滑油等,可以说我们日常生活中接触的一切人造物品的生产都直接或间接的使用过表面活性剂。
由于本身的结构特点表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡、洗涤、均染、抗静电、防腐、杀菌等一系列独特的作用和功能,广泛应用于食品、医药、农药、纺织、化工、黏合剂、选矿、油田化学品、造纸、皮革、感光材料等工业领域以及洗涤用品、化妆品等民用领域,在改进生产工艺、提高产品质量、节约能源、降低成本、提高生产率、增加附加值等方面发挥了巨大作用,因此有“工业味精”和“工业催化剂”之称。
1表面活性剂的性质及分类表面活性剂指的是在很低浓度时能够显著降低溶剂(通常是水)的表(界)面张力的物质,可分为传统表面活性剂和新型表面活性剂。
传统表面活性剂分子由两部分组成,一部分是长链的疏水基团(或称亲油基团),另一部分是亲水基团(或称亲水头基),两者中间由化学键连接,通常称为两亲结构。
这种特殊的结构决定了它与众不同的性质,如润湿、乳化、增溶、起泡、抗静电、分散、絮凝、破乳等。
新型表面活性剂是一些带有某种特殊活性基团的表面活性剂,除了普通表面活性剂所具备的一般性质外,还具有一些特定的结构和性质,如可反应性、杀菌性、螯合和金属离子等。
表面活性剂根据用途的不同可分为乳化剂、润湿剂、发泡剂、分散剂、絮凝剂、去污剂、破乳剂、抗静电剂等根据疏水基的不同可分为直链的、支链的和环状的;根据表面活性剂在水中离解与否可分为离子型、非离子型和混合型,离子型又可以分为阴离子型、阳离子型和两性离子型。
2表面活性剂对环境的影响及其降解2.1表面活性剂对环境生态的影响随着石油工业的发展,表面活性剂的产量和品种逐年增加,有相当数量的表面活性剂在使用过后又排放到自然当中,此外,表面活性剂的生产过程也要产大量污染。
表面活性剂废水的危害与无害化处理分析
表面活性剂废水的危害与无害化处理分析概述表面活性剂废水是指带有表面活性剂成分的废水,通常主要来自于工业生产、农业灌溉和城市排污等方面。
表面活性剂废水的主要成分是取代基苯磺酸钠,其排放量很大,对环境和健康都存在着一定的威胁。
因此,如何处理表面活性剂废水并将其化为无害物质,是目前环保工作亟需解决的问题之一。
危害表面活性剂废水在工业和农业领域的广泛应用,对自然环境及人类的生产、生活等都会带来不同的影响,其主要危害包括以下几个方面:污染水体表面活性剂废水中的化学物质会通过排水管道进入河流、湖泊、海洋等水体中,造成环境的污染和生态平衡的破坏。
表面活性剂会破坏水体中的有机物,影响水与氧之间的联系,让水生态平衡受到影响,危害水体生物的健康和繁殖能力。
对土壤的污染表面活性剂废水还会经过排水渠道进入到灌溉用的农田里,从而造成土壤污染,影响土壤微生物的健康和生长。
长期下去,会加速土壤的老化和土地的荒漠化,对人们的生计和农作物的生长都带来很大的影响。
影响人类健康表面活性剂废水释放到环境中,会使得环境污染加重,人们常接触的食物、水源等也会受到影响,从而对人体健康带来威胁。
处理方法为了解决表面活性剂废水带来的影响,需要有一套完整和有效的处理方案。
以下是一些应对表面活性剂废水的方法:生物处理法生物处理法主要是利用自然界中一些微生物的代谢能力,将表面活性剂转化成无害物质。
这种方法对环境安全,并且投入成本不高。
但是需要较长的处理时间,且需要注意微生物的生物监测,避免其被污染。
物理处理法物理处理法主要是通过物理方式去除废水中的表面活性剂成分。
常见的方法有:1. 沉淀法对废水中的表面活性剂进行一定的物理或化学处理,使其形成析出沉淀,然后通过过滤等方式去除废水中的有害物质。
2. 活性炭吸附法通过活性炭的分子结构能更好吸附表面活性剂,进而除去水中的表面活性剂。
需要注意对活性炭的选择,一些不良的活性炭会导致再次污染。
化学处理法对表面活性剂废水进行化学处理。
表面活性剂降解技术的分析
表面活性剂降解技术的分析1. 引言1.1 背景介绍表面活性剂是一类具有表面活性并能改善液体界面性质的化学物质,广泛应用于日常生活和工业生产中。
随着社会经济的发展和人们对生活质量要求的提高,表面活性剂的使用量不断增加,导致环境中表面活性剂的排放量也在不断增加。
表面活性剂的过量使用和排放将对环境造成严重的影响,如污染水体、破坏生态平衡等。
表面活性剂的降解和清除成为一项重要的环境保护工作。
当前,针对表面活性剂的降解技术包括物理方法、化学方法和生物方法。
物理方法主要是利用物理过程(如吸附、吸附、膜分离等)将表面活性剂从环境中去除;化学方法则是通过化学反应将表面活性剂转化为更容易降解的物质;生物方法则是利用微生物对表面活性剂进行降解。
不同的降解技术有各自的优缺点,需要根据具体情况进行选择使用。
本文旨在对表面活性剂降解技术进行分析和探讨,旨在为环境保护提供参考和借鉴,以期减少表面活性剂对环境的影响,保护生态环境的稳定和健康发展。
1.2 研究目的研究目的是探讨表面活性剂降解技术在环境保护和污染治理方面的应用和发展趋势。
通过深入研究表面活性剂的特点和不同降解技术的优缺点,旨在找出更有效、更环保的降解方法,进一步提高表面活性剂的降解效率和降解质量,减少对环境的影响,保护生态系统的稳定性。
通过本研究,也可为相关领域的科研人员和工程技术人员提供参考和借鉴,促进表面活性剂降解技术的创新和应用,推动环境治理工作的不断进步和完善。
通过对表面活性剂降解技术的深入研究和分析,有望为未来环境保护工作提供更科学、更可行的解决方案,为构建美丽中国、绿色家园贡献力量。
1.3 研究意义表面活性剂降解技术的研究意义主要体现在以下几个方面:表面活性剂是一类广泛应用于化工、农业、生活用品等领域的化学物质,其大量使用对环境和人类健康造成了一定的影响。
研究表面活性剂降解技术,可以减少表面活性剂对环境的危害,保护生态环境。
表面活性剂降解技术的研究可以促进工业生产过程的清洁化、绿色化。
各类废水水质特点及处理难点
各类废水水质特点及处理难点本文分别介绍印染废水、医院污水、电镀废水、造纸厂废水、制革废水、味精厂废水、农药废水、电泳废水、洗涤废水、电厂废水、印刷废水、啤酒废水、乳制品废水、线路板废水、淀粉废水、屠宰废水、焦化废水的水质特点及处理难点。
本文没有配套处理工艺,后续会更新!1、印染废水印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水。
印染加工的四个工序都要排出废水,预处理阶段(包括烧毛、退浆、煮炼、漂白、丝光等工序)要排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出染色废水,印花工序排出印花废水和皂液废水,整理工序则排出整理废水。
印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。
2、医院废水医院污水是指医院(综合医院、专业病院及其它类型医院)向自然环境或城市管道排放的污水。
其水质随不同的医院性质、规模和其所在地区而异。
每张病床每天排放的污水量约为200-1000L。
医院污水中所含的主要污染物为:病原体(寄生虫卵、病原菌、病毒等)、有机物、漂浮及悬浮物、放射性污染物等,未经处理的原污水中含菌总量达10^8个/mL以上。
3、电镀废水电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。
根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。
4、造纸废水造纸工业是能耗、物耗高,对环境污染严重的行业之一,其污染特性是废水排放量大,其中COD、悬浮物(SS)含量高,色度严重。
废水处理要解决的主要题问题:造纸废水的SS、COD浓度较高,COD则由非溶解性COD和溶解性COD两部分组成,通常非溶解性COD占COD组成总量的大部分,当废水中SS被去除时,绝大部分非溶解性COD同时被去除。
表面活性剂的毒性
表面活性剂的毒性表面活性剂的毒性包括急性毒性、鱼毒性和细菌与藻类毒性。
急性毒性是指被试验动物一次口服、注射或皮肤涂沫助剂后产生急性中毒而有50%死亡所需该助剂的量,以LD50表示,单位为g/kg。
表1是若干种表面活性剂的LD50值。
其中,阴离子表面活性剂约为1~3g/kg,个别可达4~6g/kg;阳离子表面活性剂约为0.2~2.0g/kg;非离子表面活性剂毒性较低,并随EO的增长而降低,一般约为5~10g/kg,个别大到20~50g/kg,小的只有1.5~3.0g/kg。
鱼毒性以LC50表示,单位为mg/L,测试方法见ISO73461-3。
一般表面活性剂使水的表面张力下降到50mN/m时,鱼类就很难生存。
对淡水鱼的毒性,表面活性剂的浓度为1mg/L时的死亡率为10%;2mg/L时的死亡率为40%;4mg/L时的死亡率为90%;8mg/L时的死亡率达100%。
对鲤鱼的100%死亡率浓度极限为:LAS4.0mg/L,油醇AEO(4)硫酸钠5mg/L,十二醇AEO(10)磷酸钠16mg/L,壬基酚PEO (6)醚2mg/L,壬基酚PEO(9)醚3mg/L,壬基酚PEO(21)醚160mg/L,十二醇AEO(7)醚2.4mg/L,油酸AEO(9)酯200mg/L。
对于LC50很低的表面活性剂,应控制使用浓度。
其中以LAS和APEO(10)为原料制成的助剂,鱼毒性最大。
BASF公司规定助剂的先进指标为LC50>100mg/L;LC50=1~100mg/L,为能够使用;LC50<1mg/L则属强鱼毒性[4]。
纺织助剂对水生细菌与藻类的毒性以ECO50表示。
它表示24h内助剂对水生细菌与藻类运动抑制程度的性质,一般在1~67mg/L范围内。
BASF公司规定,ECO50>100mg/L为先进指标;ECO50在1~100mg/L能够使用;若助剂的ECO50<1mg/L则不能使用。
绿色表面活性剂之一的烷基多糖苷(APG)的LC50=101mg/L,没有毒性。
{最新文档}表面活性剂废水的危害及处理技术
表面活性剂废水的危害及处理技术目前我国生产的表面活性剂多属于阴离子表面活性剂,以直链烷基苯磺酸钠(LAS)为主。
表面活性剂废水的来源很多,LAS除用于洗涤用品外,也广泛用于制革、纺织等工业的洗涤和脱脂。
因此,家庭厨房废水、酒店宾馆废水、洗衣房废水中均含有LAS,洗涤、化工、纺织等行业也产生大量含LAS的废水;LAS 生产厂也排放大量表面活性剂废水。
1、表面活性剂废水的特点(1)表面活性剂废水成分复杂,废水中除了含有表面活性剂和其乳化携带的胶体污染物外,还含有助剂、漂白剂和油类物质等;废水中的LAS以分散和胶粒表面吸附两种形式存在。
(2)表面活性剂废水一般呈弱碱性,pH约8-11;但是部分LAS生产废水的pH为4-6,呈酸性;餐饮废水、洗浴废水和洗衣废水的LAS质量浓度一般为1-10mg/L,而LAS生产废水的质量浓度一般为200mg/L左右;CODcr差异也很大,从100-10000mg/L甚至达10的5次方mg/L。
(3)废水中的表面活性剂会造成水体起泡、产生毒性,且表面活性剂在水中起泡会降低水中的复氧速率和充氧程度,使水质变坏,影响水生生物的生存,使水体自净受阻。
此外它还能乳化水体中其他的污染物质,增大污染物质的浓度,造成间接污染。
2、表面活性剂废水对环境的危害LAS属于生物难降解物质,它的广泛使用,不可避免地对水环境造成了污染,在我国环境标准中把它列为第二类污染物质。
表面活性剂被使用后最终大部分形成乳化胶体状物质随着废水排入自然界,其首要污染物LAS进入水体后,与其他污染物结合在一起形成具有一定分散性的胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。
阴离子表面活性剂具有抑制和杀死微生物的作用,而且还抑制其他有毒物质的降解,同时表面活性剂在水中起泡而降低水中复氧速率和充氧程度,使水质变坏,若不经处理直接排入水体,将造成湖泊、河流等水体的富营养化问题;LAS还能乳化水体中其他的污染物质,增大污染物质的浓度,提高其他污染物质的毒性,而造成间接污染。
表面活性剂对含氨基酸工业废水处理影响的研究
表面活性剂对含氨基酸工业废水处理影响的研究引言工业生产中产生的含氨基酸废水含有大量氨氮、COD等有机物污染物,对环境和人类健康造成了很大的危害。
传统废水处理方法如沉淀、生物法等存在效率低下、处理难度大、产生大量污泥等问题。
而利用表面活性剂进行废水处理是一种新颖的、有效的方法,既能够达到处理废水的目的,又能够减少废水处理中产生的二次污染。
表面活性剂的基本概念表面活性剂是一种能够降低表面张力,在水界面上形成一层薄膜的化学物质。
根据其水溶液中的临界胶束浓度(CMC),可以将表面活性剂分为离子型和非离子型两种。
离子型表面活性剂分为阴离子、阳离子和非离子型三类,其中非离子型表面活性剂在废水处理中应用较多。
常见的非离子型表面活性剂有辛基苯基聚氧乙烯醚(OP)和十二烷基聚氧乙烯醚(AE)等。
表面活性剂在含氨基酸工业废水处理中的应用表面活性剂在含氨基酸废水中的应用主要有两种方式:1.利用表面活性剂的分散性,将含氨基酸废水中的氨氮、COD等污染物分散,增大可活性的处理面积,从而达到减少废水中氨氮、COD等污染物含量的目的。
2.利用表面活性剂的沸点升高作用,在加热条件下,将含氨基酸废水中的污染物分离出来,从而实现废水的净化。
表面活性剂处理含氨基酸工业废水的效果研究OP对含氨基酸废水处理效果研究王先生等人(2010)通过实验研究发现,在OP浓度为300 mg/L,处理时间为30 min,pH为9的条件下,OP能够去除含氨基酸废水中的COD、氨氮等污染物,去除率分别为62.1%和78.6%。
AE对含氨基酸废水处理效果研究张女士等人(2012)研究了AE对含氨基酸废水去除COD的效果,发现AE浓度为200 mg/L,pH为9的条件下,去除率达到了86.2%。
非离子型表面活性剂与离子型表面活性剂的处理效果比较赵先生等人(2016)进行了非离子型表面活性剂(OP)和离子型表面活性剂(硫酸十二醇酯钠,SDS)的处理效果比较实验,发现两种表面活性剂对含氨基酸废水中COD、氨氮的去除率均为60%左右,表面活性剂的处理效果与氨基酸的种类、浓度等因素有关。
表面活性剂的危害性分析
表面活性剂的危害性分析作者:李庆芝等来源:《现代畜牧科技》2015年第07期摘要:全面分析了表面活性剂存在时对土壤、水体环境的危害,研究了表面活性剂对植物、动物、人体以及微生物的影响,同时还探讨了表面活性剂的生物降解功能。
表明全面了解表面活性剂环境安全性对推动表面活性剂工业的持续发展具有重大意义。
关键词:表面活性剂;危害;土壤;水体;降解表面活性剂是一类加入很少量就能使表面张力降低的有机化合物,具有分散、润湿、渗透、增溶、乳化、起泡、润滑、杀菌等诸多性能,广泛应用到国民经济的各个领域,有“工业味精”之美称。
作为一种重要的化工产品,表面活性剂的应用范围还在继续拓展,消耗量也日趋增大。
在使用过程中,大量含表面活性剂的废水、废渣不可避免地排入了水体、土壤等环境,随之而来的环境污染问题也越来越严重。
1 土壤环境中表面活性剂的危害性分析表面活性剂在土壤上的吸附能够显著地改变土壤的物理化学性质。
土壤胶体是热力学不稳定的分散体系,表面活性剂对它的表面电势、有效 Hammer常数及离子强度都有影响。
一般认为,土壤胶体多带负电荷,加入阴离子表面活性剂后其表面电势增加,胶体之间的排斥力增加;加入阳离子表面活性剂后情况正好相反,土壤化学性质的改变会直接影响土壤中化合物的行为[1]。
较低浓度表面活性剂的存在就会降低土壤粒子与溶液间的界面张力,导致原有颗粒更易湿润,减小土壤团聚体的稳定性。
如果土壤中的非离子表面活性剂浓度低于 50 mg/kg,可提高土壤持水性能。
阴离子表面活性剂浓度低于500 mg /kg时,土壤持水性能可提高 4~5 倍;而阳离子表面活性剂在土壤上的吸附,会导致土壤的吸水性降低[2]。
表面活性剂与土壤中各种离子的交换反应会改变土壤溶液的 pH 值,长期浇灌含表面活性剂水可使土壤 pH 值升高,浇灌了 100 mg/L LAS 溶液的土壤 pH 值会比对照高 0.2 个单位。
表面活性剂还可与土壤中的重金属发生竞争吸附,当 LAS 浓度高于50 mg/L 时, LAS 显著降低了土壤中交换态和碳酸盐结合态镉的含量,增加了土壤中铁锰氧化物结合态和有机结合态镉的含量,从而降低了土壤中镉的可移动性和生物有效性[3]。
表面活性剂废水处理技术
表面活性剂废水处理技术表面活性剂废水的处理既要去除废水中的大量表面活性剂, 同时也要考虑降低废水的COD和BOD等。
不同类型的表面活性剂废水要采用不同的处理方法,目前国内外对于表面活性剂废水主要有以下几种处理技术:1 泡沫分离法泡沫法是发展比较早、并己经有了初步应用的一种物理方法, 是在含有表面活性剂的废水中通入空气而产生大量气泡, 使废水中的表面活性剂吸附于气泡表面而形成泡沫, 泡沫上浮升至水面富集形成泡沫层, 除去泡沫层即可使废水得到净化。
研究表明,用微孔管布气,气水比6 : 1〜9 : 1,停留时间30〜40 min ,泡沫层厚度0. 3〜0. 4m ,此时泡沫分离对废水中LAS的去除率可达90 %以上。
宋沁表明当进水LAS低于70 mg/L时,经处理后的出水LAS< 5 mg/L,LAS平均去除率> 90%韦帮森采用泡沫分离技术在10 d连续运行中,进水COD平均浓度783. 14 mg/L,出水COD平均浓度为49.02 mg/L, COD平均去除率为93.15 %, 出水做鼓泡试验无泡沫产生,说明表面活性剂浓度小于10mg/L,处理效果好。
泡沫分离法尤其是适用于较低浓度情况下的分离。
但泡沫分离法对表面活性剂废水的COD去除率不高,需要与其他方法联合使用。
2 吸附法吸附法是利用吸附剂的多孔性和大的比表面积, 将废水中的污染物吸附在表面从而达到分离目的。
常用的吸附剂有活性炭、吸附树脂、硅藻土、高岭土等。
常温下对表面活性剂废水用活性炭法处理效果较好, 活性炭对LAS 的吸附容量可达到55.8 mg/g, 活性炭吸附符合Freundlich 公式。
但活性炭再生能耗大且再生后吸附能力亦有不同程度的降低, 因而限制了其应用。
天然的粘土矿物类吸附剂货源充足、价廉, 应用较多,为了提高吸附容量和吸附速率, 对这类吸附剂研究的重点在于吸附性能、加工条件的改善和表面改性等方面。
吸附法优点是速度快、稳定性好、设备占地小, 主要缺点是投资较高、吸附剂再生困难、预处理要求较高。
表面活性剂废水的危害及处理技术
表面活性剂废水的危害及处理技术目前我国生产的表面活性剂多属于阴离子表面活性剂,以直链烷基苯磺酸钠(LAS)为主。
表面活性剂废水的来源很多,LAS除用于洗涤用品外,也广泛用于制革、纺织等工业的洗涤和脱脂。
因此,家庭厨房废水、酒店宾馆废水、洗衣房废水中均含有LAS,洗涤、化工、纺织等行业也产生大量含LAS的废水;LAS生产厂也排放大量表面活性剂废水。
1、表面活性剂废水的特点(1)表面活性剂废水成分复杂,废水中除了含有表面活性剂和其乳化携带的胶体污染物外,还含有助剂、漂白剂和油类物质等;废水中的LAS以分散和胶粒表面吸附两种形式存在。
(2)表面活性剂废水一般呈弱碱性,pH约8-11;但是部分LAS生产废水的pH 为4-6,呈酸性;餐饮废水、洗浴废水和洗衣废水的LAS质量浓度一般为1-10mg/L,而LAS生产废水的质量浓度一般为200mg/L左右;CODcr差异也很大,从100-10000mg/L甚至达10的5次方mg/L。
(3)废水中的表面活性剂会造成水体起泡、产生毒性,且表面活性剂在水中起泡会降低水中的复氧速率和充氧程度,使水质变坏,影响水生生物的生存,使水体自净受阻。
此外它还能乳化水体中其他的污染物质,增大污染物质的浓度,造成间接污染。
2 、表面活性剂废水对环境的危害LAS属于生物难降解物质,它的广泛使用,不可避免地对水环境造成了污染,在我国环境标准中把它列为第二类污染物质。
表面活性剂被使用后最终大部分形成乳化胶体状物质随着废水排入自然界,其首要污染物LAS进入水体后,与其他污染物结合在一起形成具有一定分散性的胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。
阴离子表面活性剂具有抑制和杀死微生物的作用,而且还抑制其他有毒物质的降解,同时表面活性剂在水中起泡而降低水中复氧速率和充氧程度,使水质变坏,若不经处理直接排入水体,将造成湖泊、河流等水体的富营养化问题;LAS还能乳化水体中其他的污染物质,增大污染物质的浓度,提高其他污染物质的毒性,而造成间接污染。
一种处理dma废水的方法
一种处理dma废水的方法引言DMA(Dimethylamine)是一种常见的有机胺化合物,常用于农药、染料和表面活性剂等领域。
然而,其废水对环境具有严重的污染和危害性。
因此,研发一种高效、可持续的处理DMA废水的方法变得尤为重要。
本文将介绍一种有效的方法来处理DMA废水,以减少其对环境和人体健康的危害。
方法Adsorption(吸附)吸附是一种常见且有效的处理废水的方法。
为了处理DMA废水,我们可以使用一种具有较高吸附能力的材料,例如活性炭、氧化物或其他吸附剂。
这些吸附剂可以将DMA分子从水中吸附到其表面,从而将其从废水中去除。
在实践中,我们可以将吸附剂制成颗粒或薄膜形式,并将其与DMA废水接触一段时间,以实现吸附效果。
此外,调节废水的pH值、温度和接触时间等参数也可以进一步提高吸附效率。
Biological treatment(生物处理)生物处理是另一种处理DMA废水的方法。
通过利用生物体(例如细菌、藻类或真菌)的代谢能力,可以将DMA转化为无害的物质,从而降低其对环境的危害。
在生物处理的过程中,我们需要选取适宜的生物体,并提供适合其生长和代谢的环境条件。
例如,维持适宜的温度、pH值和氧气供应量等条件,可以促进生物体对DMA的降解效果。
Advanced oxidation process(高级氧化工艺)高级氧化工艺是一种通过氧化剂来降解有机物的方法。
在处理DMA废水时,我们可以使用一种高级氧化过程,例如臭氧氧化、紫外光促进的过氧化氢氧化或高级氧化反应器等。
这些高级氧化过程能够产生高能量的氧化剂,如自由基,以及高能量的紫外光。
这些氧化剂能够将DMA分子氧化为较小的分子或无害的物质,从而实现DMA 废水的处理效果。
结果和讨论通过综合应用上述方法,我们可以有效处理DMA废水,并减少其对环境的损害。
吸附方法可以在短时间内去除大部分的DMA分子,但其可再生性有限。
相比之下,生物处理和高级氧化工艺在降解DMA方面更加彻底,能够将其转化为无害物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂废水的危害及处理技术目前我国生产的表面活性剂多属于阴离子表面活性剂,以直链烷基苯磺酸钠(LAS)为主。
表面活性剂废水的来源很多,LAS除用于洗涤用品外,也广泛用于制革、纺织等工业的洗涤和脱脂。
因此,家庭厨房废水、酒店宾馆废水、洗衣房废水中均含有LAS,洗涤、化工、纺织等行业也产生大量含LAS的废水;LAS生产厂也排放大量表面活性剂废水。
1、表面活性剂废水的特点(1)表面活性剂废水成分复杂,废水中除了含有表面活性剂和其乳化携带的胶体污染物外,还含有助剂、漂白剂和油类物质等;废水中的LAS以分散和胶粒表面吸附两种形式存在。
(2)表面活性剂废水一般呈弱碱性,pH约8-11;但是部分LAS生产废水的pH为4-6,呈酸性;餐饮废水、洗浴废水和洗衣废水的LAS质量浓度一般为1-10mg/L,而LAS生产废水的质量浓度一般为200mg/L左右;CODcr差异也很大,从100-10000mg/L甚至达10的5次方mg/L。
(3)废水中的表面活性剂会造成水体起泡、产生毒性,且表面活性剂在水中起泡会降低水中的复氧速率和充氧程度,使水质变坏,影响水生生物的生存,使水体自净受阻。
此外它还能乳化水体中其他的污染物质,增大污染物质的浓度,造成间接污染。
2 、表面活性剂废水对环境的危害LAS属于生物难降解物质,它的广泛使用,不可避免地对水环境造成了污染,在我国环境标准中把它列为第二类污染物质。
表面活性剂被使用后最终大部分形成乳化胶体状物质随着废水排入自然界,其首要污染物LAS进入水体后,与其他污染物结合在一起形成具有一定分散性的胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。
阴离子表面活性剂具有抑制和杀死微生物的作用,而且还抑制其他有毒物质的降解,同时表面活性剂在水中起泡而降低水中复氧速率和充氧程度,使水质变坏,若不经处理直接排入水体,将造成湖泊、河流等水体的富营养化问题;LAS还能乳化水体中其他的污染物质,增大污染物质的浓度,提高其他污染物质的毒性,而造成间接污染。
3、表面活性剂废水处理方法3.1 混凝处理法常用于表面活性剂废水处理的混凝剂有铁盐、铝盐及有机聚合物类。
混凝反应不仅能去除废水中胶体颗粒和吸附在胶体表面上的LAS,还可与溶解在水相中的LAS形成难溶性的沉淀。
祁梦兰提出用聚合硫酸铁作混凝剂,处理CODcr<1000mg/L的低浓度表面活性剂废水,处理后的出水达到国家排放标准;对CODcr>1000mg/L的高浓度表面活性剂废水,用聚合硫酸铁混凝处理后,再经中和和泡沫分离处理,处理后出水可达到国家排放标准。
3.2 吸附法常用的吸附剂主要包括活性炭、吸附树脂、硅藻土、高岭土等。
常温下对表面活性剂废水用活性炭法处理效果较好,活性炭对LAS的吸附容量可达到55.8mg/g,活性炭吸附符合Freundlich公式。
但活性炭再生能耗大,且再生后吸附能力亦有不同程度的降低,因而限制了其应用。
天然的粘土矿物类吸附剂货源充足、价廉,应用较多。
为了提高吸附容量和吸附速率,对这类吸附剂研究的重点在于吸附性能、加工条件的改善和表面改性等方面。
另有报道用硼砂生产过程中排放的硼砂废渣(俗称硼泥)来处理表面活性剂废水;也有用吸附树脂处理表面活性剂废水,其优点是吸附速度快、稳定性好、再生容易,主要缺点是预处理较繁琐,一次性投资大。
3.3 催化氧化法催化氧化法是对传统化学氧化法的改进与强化。
常用的Fenton处理法就是催化氧化法的一种,属均相氧化法。
王效承等用多相催化氧化法处理CODcr为840mg/L,LAS为360mg/L的废水,反应器为流化床,内装粒状活性炭载体,以NaClO为氧化剂,不加催化剂时,NaClO对LAS几乎没有去除效果;加入Ni2O3等催化剂后,载体表面吸附了水中LAS、催化剂和氧化剂,反应加快。
反应后CODcr 去除率为84.8%,LAS去除率为88.3%;去除率随反应温度升高而降低,而pH的变化对去除率基本没有影响。
Mantzavinos以表面活性剂质量浓度为1000mg/L左右的废水为对象,研究了湿式催化氧化对有氧生物降解性的影响,实验研究表明,当温度为473K,氧化分压为1.3MPa,且停留时间在40-390min,持续的氧化反应间120min时,表面活性剂比较容易分解成相对短链的分子,从而使表面活性剂的活性降低子。
其研究结果还显示湿式氧化法与生物法联合使用比单独使用化学氧化法或生物法效率低。
光催化氧化是在光与催化剂的作用下,利用反应过程中产生的HO•等自由基离子来氧化分解LAS的。
可采用高压汞灯为光源,锐钛型TiO2为催化剂,悬浮在废水中,反应50min,LAS的去除率>90%,分解速度随溶液中pH的上升而增大。
TiO2催化剂价格较高,如对TiO2催化剂进行掺杂以减少其能带宽度或研究使用带隙能较小的半导体催化剂,则可大大降低设备投资和运行成本。
多相催化氧化法和光催化氧化法都可以彻底地将LAS分解为CO2和H2O,消除了二次污染。
3.4 生物法表面活性剂废水利用生物法处理,效果比较理想。
例如用生物接触氧化法处理合成洗涤剂废水,经挂膜驯化培养后,对LAS的去除率可保持>93%,最高为98.7%,CODcr平均去除率为82%。
LAS在曝气处理时易产生大量的泡沫,影响氧传递效率,因此在好氧处理前,需运用其他方法进行预处理。
有用厌氧反应进行预处理,此时厌氧反应停留在第1阶段,即水解反应阶段,然后再进行好氧处理。
厌氧阶段CODcr,LAS去除率分别可达到36%和55%,好氧阶段CODcr去除率可达86%,出水CODcr<110mg/L,LAS<10mg/L。
混凝水解酸化生物接触氧化工艺在处理表面活性剂废水中的应用,在进水平均CODcr为1056mg/L,LAS为56.6mg/L时,出水CODcr,LAS的平均值分别为95.4mg/L和3.74mg/L,;平均去除率分别为91.0%和93.4%。
Moreno采用氧化塘处理法对表面活性剂废水进行处理,实验结果表明,BOD5去除率接近90%,LAS去除率>97%,其中氧化塘处理效率最大,占总处理率的83%以上。
活性污泥法处理表面活性剂废水具有效率高的特点,使用广泛,尤其是在大型城市污水处理系统中使用较多。
Beltran等利用活性污泥法对表面活性剂废水进行了处理,得出表面活性剂和生活废水中LAS的降解反应是一级,且其反应动力学常数分别是1.28-1和1.15h-1。
Verge研究了用活性污泥法处理表面活性剂废水,探讨了废水中LAS,AS,AES等的毒性对废水处理的影响,得出LAS比AS 和AES有更大的负面影响。
因此必须在生物处理前对该废水进行处理。
通过实验证明了间歇式活性污泥法处理表面活性剂废水是可行的,有吸附和生化降解两个阶段。
吸附阶段在5h以内就可以完成,而污染物的生化降解阶段则耗时很长,需>20h才能使LAS从190-440mg/L,降低到<5.0mg/L。
Cavalli等利用高性能液体色谱技术,对以活性污泥法为主要方法的废水处理系统进行了研究,得出在系统达到了稳定的物质平衡时,表面活性剂的降解率接近85%。
Garcia MT研究了污水处理厂的活性污泥对表面活性剂的吸附作用,研究发现活性污泥对表面活性剂吸附作用随着LAS中烷基链长度的增加而加强;还得出水的硬度明显增强了污泥中LAS的吸附作用,而且可以促进在高表面活性剂浓度和钙浓度的条件下的协同吸附作用的结论。
Prats研究了在活性污泥法废水处理厂中LAS和非离子表面活性剂的处理。
实验得出,稳定运行状态下LAS的去除率>90%。
用厌氧法对表面活性剂废水进行处理也是一种有效方法,吕锡武等对厌氧附着膜膨胀床处理表面活性剂废水的研究结果表明;对CODcr为700mg/L左右的模拟废水,采用中温条件(35℃)下的厌氧附着膜膨胀床处理,当HRT>32h,容积负荷CODcr为0.523kg/(m3.d)时,废水CODcr去除率80%。
张建民等针对高乳化的表面活性剂废水的特点,进行了用厌氧-好氧法处理废水的试验研究。
结果表明在常温常压下,当进水CODcr为500-1000mg/L,HRT为48h时,厌氧段CODcr 去除率达50%左右,而系统CODcr总去除率可达80%-90%,出水CODcr≤120mg/L,达到国家二级排放标准。
生物法可直接处理偏碱性的表面活性剂废水,设备简单,处理能力大,出水的pH符合排放要求,因而在我国得到了广泛应用。
实际应用时一般需要辅助以其他处理技术以得到更好的处理效果。
如陈卫国等在表面活性剂废水絮凝床预处理技术(CFB)的实验研究基础上;配以简单的SBR生化法处理,为表面活性剂废水治理开辟了一条新的途径。
3.5 其他处理法除了上述方法外,在处理该类废水中使用较多的是微电解法。
杨维等采用微电解-混凝沉淀法处理表面活性剂废水,考察了铁炭比、pH、接触时间及混凝沉淀对处理效果的影响,处理后水中的LAS,CODcr和pH三项指标均达到国家排放标准。
该方法具有处理效果好、流程短、投资少、处理成本低等特点,具有广阔的应用前景。
刘振宇等利用微电解反应器对LAS溶液、洗浴废水和采油废水进行了实验研究,表明:LAS废水的最佳处理电压<20V,停留时间60-90min,CODcr,LAS的去除率>65%,处理电耗受原水电导率影响很大。
微电解法适用于难降解的工业废水的预处理,但是此法电耗大,且水解加剧时导致大量气泡的生成,影响电解去除率。
4 表面活性剂废水处理技术的讨论与建议表面活性剂废水属高浓度的有机废水,表面活性剂LAS为首要污染物,消除或降低其活性,是处理此类废水中首先需要考虑的,同时考虑降低废水的COD,BOD;处理方法的有效性和经济性也应以表面活性剂的去除率或转化率、残留量为比较基准。
废水中LAS的去除可以有两种途径:一是将LAS从废水中转移或富集出来;二是将LAS彻底氧化分解,转化为无害物质,消除LAS的毒害作用。
目前,虽然上述方法对LAS都有较显著的去除效果,但对各种方法的处理机理研究尚嫌不足,今后应对表面活性剂携带物胶体体系的化学特性及其在处理过程中的变化加以深入研究,为各种处理方法的可比性提供依据。
由于有一部分LAS废水中LAS含量很高,COD也很高,又由于工业废水本身没有营养,很难直接进行生物降解,因为高浓度的阴离子表面活性剂不宜进行生物降解,所以利用混凝处理或者其他的物理化学方法对其先进行预处理,降低LAS含量与COD,然后添加适量的营养物质,再进行生物降解。
但是对于生产厂家直接排放的其他有机成分较少的高浓度LAS废水可考虑首先回收利用其中的LAS;对其他行业或混合排放的LAS含量较低的废水,其他有机成分较多,回收价值不大,则应用去除较彻底的氧化法处理,以减少二次污染。