九年级数学尖子生培优竞赛专题辅导第三讲韦达定理及其应用(含答案)

合集下载

新课标九年级数学竞赛培训第03讲:韦达定理

新课标九年级数学竞赛培训第03讲:韦达定理

.(4分)(2003•杭州)设x1,x2是关于x的方程x2+px+q=0的两根, x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别等于 ( ) A. 1,﹣3 B. 1,3 C.﹣1,﹣3 D.﹣1,3 10.(4分)(2000•河北)在Rt△ABC中,∠C=90°,a、b、c分别是 ∠A、∠B、∠C的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,那 么AB边上的中线长是( ) A. B. C. 5 D. 2 11.(4分)方程x2+px+1997=0恰有两个正整数根x1、x2,则 的值是( ) A. 1
(1)若x12+x22=6,求m值; (2)求
的最大值. 20.(8分)如图,在矩形ABCD中,对角线AC的长为10,且AB、 BC(AB>BC)的长是关于x的方程x2+2(1﹣m)x+6m=0的两个根. (1)求m的值; (2)若E是AB上的一点,CF⊥DE于F,求BE为何值时,△CEF的面积 是△CED的面积的 ,请说明理由.
1552088
专 计算题. 题: 分 根据根与系数的关系,可以写出两根和与两根积,再由两根是正整数及 析: p+q=28,利用提公因式法因式分解可以确定方程的两个根. 解 解:设x1,x2是方程的两个根,则①x1+x2=﹣p,②x1x2=q, 答: ∵②﹣①得:p+q=28, ∴x1x2﹣x1﹣x2=28, ∴x1x2﹣x1﹣x2+1=28+1, ∴x1(x2﹣1)﹣(x2﹣1)=29, 即(x1﹣1)(x2﹣1)=29, ∵两根均为正整数, ∴x1﹣1=1,x2﹣1=29或x1﹣1=29,x2﹣1=1, ∴方程的两个根是:x1=2,x2=30.或x1=30,x2=2. 故答案为:x1=30,x2=2. 点 本题考查的是一元二次方程根与系数的关系,根据根与系数的关系写出两 评: 根和与两根积,再由已知条件用十字相乘法因式分解求出方程的两个根. 15.(3分)已知α、β是方程x2﹣x﹣1=0的两个根,则α4+3β的值为 5 . 考 根与系数的关系;代数式求值. 点: 专 计算题. 题: 分 先由α、β是方程x2﹣x﹣1=0的两个根可知,α2=α+1,α+β=1,然后代入 析: α4+3β求解即可. 解 解:∵α、β是方程x2﹣x﹣1=0的两个根, 答: ∴α2=α+1,α+β=1, ∴β=1﹣α, ∴α4+3β=(α+1)2+3(1﹣α)=α2+2α+1+3﹣3α=α+1+2α+4﹣3α=5.

韦达定理及其应用竞赛题(完整资料).doc

韦达定理及其应用竞赛题(完整资料).doc

【最新整理,下载后即可编辑】韦达定理及其应用【内容综述】设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

【要点讲解】1.求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

★★例1若a,b为实数,且,,求的值。

思路注意a,b为方程的二实根;(隐含)。

解(1)当a=b时,;(2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得,ab=1.说明此题易漏解a=b的情况。

根的对称多项式,,等都可以用方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得,∴2.构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

解(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论(p,q)=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

于是,得以下七个方程,,,,,0x2=x21x2=+无实数根,舍去。

-,其中01+x2=+,01其余六个方程均为所求。

3.证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

初中数学竞赛第三讲充满活力的韦达定理(含答案)

初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为

(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.

韦达定理含答案-

韦达定理含答案-

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件. 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理一、选择题1.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413B .1949413C .999413D .979413 答案:B2.如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b a a b +的值为( )A .22123B .22125或2C .22125D .22123或2(2001年TI 杯全国初中数学竞赛试题)答案:B3.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3答案:C 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤1答案:C5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x答案:C6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( )A .1B .-lC .21-D .21 答案:C7.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25C .5D .2 答案:B二、填空题8.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . (2003年天津市竞赛题)答案:5.9.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 .(2001年内蒙古中考题)(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .(2003年四川省中考题)答案:(1)2135-≤<-m ;(2)7>m 10.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .(2003年金华市中考题)答案:611.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .(2002年四川省竞赛题) 答案:18211≤<m . 12.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .(2002年湖北省黄冈市中考题)答案:一313.已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 . (2001年浙江省绍兴市竞赛题)答案:014.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .(“祖冲之杯”邀请赛试题)答案:30,2三、解答题15.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 答案:(1)125≤k ;(2)0=k . 16.已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .(2002年苏州市中考题)答案:(1)△=02)1(22>+-m ;(2)4=m ,51±=x ;0=m ,01=x ,22-=x17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.答案:1222===n m BD AD BC AC ,即m=2n ①,△=4n 2一m 2—8n 十16>0 ②,把①代人②得,n ≤2.又222119)(<-x x ,得4n 2一m 2—8n+4<0③,把①代人③,得n>21,∴221≤<n , ∴n=l ,2,从而得m=2或4.18.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.(全国初中数学联赛题) 答案:(1)2175-=m ;(2)原式=25)23(22--m ,当1-=m 时,最大值为10.19.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.答案:(1)m=8;(2)BE=2.20.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.(第十六届江苏省竞赛题) 答案:当32=m 时,2221x x +有最小值,这个最小值为98 21.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长. (2003年哈尔滨市中考题) 答案:(1)当m=2时,△=0,∴AB ∥CD 且AB=CD ,故四边形ABCD 是平行四边形.当m>2时,△=m 一2>0,又AB+CD =2m>0,047)21(2>+-=⋅m CD AB ,∴AB ≠CD ,而AB ∥CD ,故四边形ABCD 是梯形.(2)12121=-=AB DC PQ ,∴2=-AB DC ,∵AB DC BC DC AB DC ⋅-+=-4)()(22 ,∴)2(4)2(2222+--=m m m ,解得3=m ,从而AB=2,CD=4.22.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.(2000年俄罗斯数学竞赛题)答案:设01121=++ax x ,0121=++c bx x ,得b a c x --=11,由0222=++a x x ,0222=++b cx x ,得12--=c b a x (c ≠1),故121x x =.另一方面由韦达定理知11x 是第一个方程的根,这就表明2x 是方程012=++ax x 和02=++a x x 的公共根.因此两式相减有0)1)(1(2=--x a ,但当1=a 时,这两个方程无实根,故x 2=l ,从而x 1=l ,于是2-=a ,1-=+c b ,所以3-=++c b a23.关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确? 答案:由条件得14)(2+=+ab b a ,又△=0434)(92≥⨯⨯-+ab b a ,∴ab b a 316)(2≥+,即ab ab 31614≥+,∴4ab ≤3,从而4ab+1≤4.即(a+b)2≤4.。

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为_________ .
答案:
7.
考点:零指数幂;有理数的乘方。1923992
专题:计算题。
分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;
(2)根据乘方运算法则和有理数运算顺序计算即可.
解答:解:(1)根据零指数的意义可知x﹣4≠0,
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.
解答:解:(x﹣a)(x2+ax+a2),
=x3+ax2+a2x﹣ax2﹣a2x﹣a3,
=x3﹣a3.
故选B.
点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.
3.
13.
考点:整式的混合运算。1923992
分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.
解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,
∴a=4﹣1,
解得a=3.
故本题答案为:3.
点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.
以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要_________.(单位:mm)(用含x、y、z的代数式表示)
10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________ .
考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992
分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的`性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.
解答:解:①3x3(﹣2x2)=﹣6x5,正确;
②4a3b÷(﹣2a2b)=﹣2a,正确;
③应为(a3)2=a6,故本选项错误;
整式的乘除与因式分解单元测试卷(选择题)
下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。
整式的乘除与因式分解单元测试卷
选择题(每小题4分,共24分)
1.(4分)下列计算正确的是()
A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6
2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()
因式分解同步练习(解答题)
解答题
9.把下列各式分解因式:
①a2+10a+25②m2-12mn+36n2
③xy3-2x2y2+x3y④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

初级中学数学竞赛辅导义及习题解答充满活力韦达定理

初级中学数学竞赛辅导义及习题解答充满活力韦达定理

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

韦达定理的应用专题(供初三复习用)

韦达定理的应用专题(供初三复习用)

韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。

九年级数学竞赛资料专题(三)——韦达定理的应用上

九年级数学竞赛资料专题(三)——韦达定理的应用上

韦达定理的应用一、典型例题例1:已知关于x 的方程2x -(m +1)x +1-m=0的一个根为4,求另一个根。

解:设另一个根为x 1,则相加,得531-=x例2:已知方程x -5x +8=0的两根为x 1,x 2,求作一个新的一元二次方程,使它的两根分别为和.解:∵ 又 ∴代入得, ∴新方程为例3:判断是不是方程9x -10x -2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。

∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。

又a,b为方程两根。

∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M 为何值时,方程8x -(m -1)x +m -7=0的两根① 均为正数 ②均为负数 ③一个正数,一个负数 ④一根为零 ⑤互为倒数解:①∵ ⎪⎩⎪⎨⎧+≥∆02121>>x x xx ∴m>7 ②∵∴不存在这样的情况。

③∴m<7 ④∴m=7 ⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。

6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。

7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

第三讲 韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣;常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解).消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理,你能利用韦达定理解决下面的问题吗?已知:①a 2+2a -1=0,②b 4-2b 2-1=0日1-ab 2≠0.求2220041()ab b a++的值。

解析 由①知211120a a +-= .即211()210a a +-=,③由②知(b 2)2-2b 2-1=0,④ 由韦达定理,得22112,1b b a a+=⋅=- , ∴()200422220042004211()21ab b b b a aa ⎡⎤++⎛⎫=++=-⎢⎥ ⎪⎝⎭⎣⎦62为一元二次方程²-2x -1=0的两根。

点评 本题的关键是构造一元二次方程x 2-2x -1=0,利用韦达定理求解,难点是将①变形成③,易错点是忽视条件1-ab ²≠0,而把a ,-b 2看作方程x 2+2x -1=0的两根来求解.知识延伸】例1 已知关于x 的二次方程2x 2+ax -2a +1=0的两个实根的平方和为174 ,求a 的值.解析 设方程的两实根为x 1,x 2,根据韦达定理,有 12122212a x x a x x ⎧+=-⎪⎪⎨-+⎪⋅=⎪⎩ 于是,x 12+x 22=(x 1+x 2)2-2x 1x 2 =221222a a -+⎛⎫--⋅ ⎪⎝⎭=14(a 2+8a -4) 依题设,得14 (a 2+8a -4)=174,解得a =-11或3.注意到x 1,x 2,为方程的两个实数根,则△≥0,但a =-11时,△=(-11)2+16×(-11)-8=-63<0;a =3时,△=32-4×2×(-6+1)=49>0,故a =3.点评 韦达定理应用的前提是方程有解,即判别式△=0,本题容易忽视的就是求出a 的值后,没有考虑a 的值满足△≥0这一前提条件。

初中数学竞赛韦达定理及其应用(含答案)

初中数学竞赛韦达定理及其应用(含答案)

韦达定理及其应用设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

1.求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

例1若a,b为实数,且,,求的值。

思路注意a,b为方程的二实根;(隐含)。

解(1)当a=b时,;(2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得, ab=1.说明此题易漏解a=b的情况。

根的对称多项式,,等都可以用方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

例2若,且,试求代数式的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得,∴2.构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

例3设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

解(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论(p,q)=(0,0),(1,0),(1-)。

-,1)或(0, 1-,0),(0,1),(2,1),(2于是,得以下七个方程,,,,,-,其中0x2=11x2=+无实数根,舍去。

其余六个方程均为所求。

x2=+,01x2+3.证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

例4已知a,b,c为实数,且满足条件:,,求证a=b。

证明由已知得,。

九年级数学竞赛题:韦达定理

九年级数学竞赛题:韦达定理

九年级数学竞赛题:韦达定理一元二次方程)0(02=/=++a c bx ax 求根公式是:1x =1x a ba b a ac b b ac b b x x -=-=---+-+-=+2224)(42221ac a ac a ac b b x x ==---=⋅2222221444)4()(这表明一元二次方程两根的和与积,可用一元二次方程系数表示,“acx x a b x x =-=+2121,”被称为一元二次方程的根与系数的关系,常常被称为韦达定理,这是因为该定理是16世纪最杰出的数学家韦达发现的.韦达定理简单的形式里包含了丰富的数学内容,在以下方面有广泛的应用: (1)求代数式的值;(2)确定方程中参数的值;(3)结合根的判别式,讨论根的符号特征; (4)逆用构造一元二次方程辅助解题等.例1 (1)若方程042=+-c x x 的一个根为2_______,c =______. (2)已知方程0532=-+x x 的两根为x 1、x 2,则=+2221x x _________.(3)已知α、β是方程0522=-+x x 的两个实数根,则ααβα22++的值为__________.例2 若关于x 的一元二次方程013222=-+-m x x 的两个实数根为x 1、x 2,且42121-+>x x x x ,则实数m 的取值范围是( ).A 、35->m B 、21≤m C 、35-<m D 、2135≤<-m 例3 已知关于x 的方程0122=-+-m mx x 的两个实数根的平方和为23,求m 的值. 例4已知关于x 的一元二次方程)0(02=/=-+a a x ax (1)求证:对于任意非零实数a ,该方程恒有不等两实根; (2)设x 1、x 2 是该方程的两个根,若a x x 求,4||||21=+的值.例5(1)△ABC 的一边长为5,另两边长恰为01222=+-m x x 的两根,求m 的取值范围. (2)已知1≠xy ,且有yxy y x x 求,0520019,092001522=++=++的值. (3)已知x 、y 均为实数,且满足17=++y x xy ,6622=+xy y x ,求432234y xy y x y x x ++++的值.1.若x 1、x 2是方程0132=+-x x 的两个实数根,则2111x x +的值是____________. 2.已知关于x 的方程032=+-m x x 的一个根是另一个根的2倍,则m 的值为___________. 3.已知关于x 的方程02)(2=-++-ab x b a x ,x 1、x 2是此方程的两个实数根,现给出三个结论:(1)21x x =/,(2)ab x x >21,(3)222221b a x x +>+,则正确结论的序号是__________. (在横线上填上所有正确结论的序号).4.已知x 1、x 2是方程032=--x x 的两根,那么2221x x +的值是( ). A .1 B .5 C .7 D .7495.已知α、β是关于x 的一元二次方程0)32(22=+++m x m x 的两个不相等的实数根,且满足111-=+βα,则m 的值是( ).A .3或-1B .3C .1D .-3或16.在Rt △ABC 中c b a C 、、,90 =∠分别是∠ A 、∠ B 、∠ C 的对边,b a 、是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长为( ). A .23 B .25C .5D .2 7.已知关于x 的一元二次方程01)1(22=-++-k x k kx 有两个不相等的实数根x 1、x 2 . (1)求k 的取值范围; (2)是否存在实数k ,使11121=+x x 成立?若存在,请求出k 的值;若不存在,请说明理由.8.已知关于x 的一元二次方程0241)2(22=-++-m x m x . (1)当m 为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x 1、x 2 满足182221=+x x ,求m 的值.9.若整数m 使方程020062=++-m mx x 的根为非零数,则这样的整数m 的个数为___________.10.设x 1、x 2是方程02)1(222=+++-k x k x 的两个实数根,且8)1)(1(21=++x x ,则k 的值是___________.11.已知1=/ab 且 有08199552=++a a 及05199582=++b b ,则=ba___________. 12.已知实数b a =/,且满足22)1(3)1(3),1(33)1(+-=++-=+b b a a ,则baaa b b +的值为( ).A .23B .-23C .-2D .-1313.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ). A .10≤≤m B .43≥m C .143≤<m D .143≤≤m14.若一元二次方程02=++q Px x 的两个根为p 、q ,则pq 等于( ). A .0 B .1 C .0或-2 D .0或115.已知关于x 的方程0122=++px x 的两个实数根一个大于1,另一个小于1,求实数p 的取值范围.16.已知x 、y 是正整数,并且的值求2222,120,23y x xy y x y x xy +=+=++.17.已知四边形ABCD 中,P 是对角线BD 上的一点,过P 作D EF AD MN C //,//,分别交AB 、CD 、AD 、BC 于点M 、N 、E 、F ,设PF PN b PE PM a ⋅=⋅=,解答下列问题:(1)当四边形ABCD 是矩形时,见图1,请判断a 与b 的大小关系,并说明理由; (2)当四边形ABCD 是平行四边形,且∠ A 为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设,k PDBP=是否存在这样的实数k ,使得94ABD PEAM =∆S S 平行四边形? 若存在,请求出满足条件的所有是的值;若不存在,请说明理由.。

人教九上:专题三--韦达定理的应用(含解析)

人教九上:专题三--韦达定理的应用(含解析)

专题三韦达定理的应用1.设x1、x2是关于x的方程x2+kx+2=0的两个实数根,求代数式1x1+1x2+k2的值.2.已知关于x的一元二次方程x2−(k+3)x+3k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为4,另两边恰好是这个方程的两根,求k的值.3.已知关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2.(1)求k的取值范围;(2)若x1,x2满足x21+x22=1+x1⋅x2,求实数k的值.4.已知关于x的方程x2−2x+m−1=0.有一个实数根是5,求此方程的另一个根以及m的值.5.关于x的一元二次方程x2−6x+k=0,若方程的一个根x1=2,求k的值和方程的另一个根x2.6.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.7.关于x的一元二次方程x2+2x−3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程的根.8.已知x1,x2是关于x的一元二次方程.x2+2x+c=0的两个不相等的实数根.(1)求c的取值范围;(2)若x1x2=−1,直接写出c的值;(3)若x1=−3,直接写出c的值.9.若关于x的一元二次方程x2+4x+m−1=0有两个相等的实数根,求m的值及方程的根.10.已知3,t是方程2x2+2mx−3m=0的两个实数根,求m及t的值.11.若关于x的一元二次方程x2+bx−6=0有一个根是x=2,求b的值及方程的另一个根.12.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.求m的值及方程的另一个根.13.关于x的一元二次方程x2−8x+m=0有一个根是x=3,求m的值及方程的另一个根.14.已知关于x的方程x2−kx+12=0的一个根为3,求k的值及它的另一个根.15.若关于x的一元二次方程x2−4x+m+3=0有两个相等的实数根,求m的值及此方程的根.16.关于x的一元二次方程x2+2x−m=0有两个不相等的实数根.(1)求m的取值范围:(2)当m=8时,求方程的根.17.已知:关于x的方程x2+mx−8=0有一个根是−4,求另一个根及m的值.18.已知x=−1是一元二次方程x2−2x+c=0的一个根,求c的值及方程另一个根.参考答案1.0【分析】利用根与系数的关系求出x1+x2=−k,x1x2=2,然后根据分式的加减对原式进行变形,整体代入计算即可求出答案.【详解】解:∵x1、x2是关于x的方程x2+kx+2=0的两个实数根,∴x1+x2=−k,x1x2=2,又∵边长k>0,∴k=7,综上所述,k的值为5或7.3.(1)k≤1312(2)k=1【分析】本题主要考查了一元二次方程根的判别式,一元二次方程根与系数的关系,解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2−4ac>0,则方程有两个不相等的实数根,若Δ=b2−4ac=0,则方程有两个相等的实数根,若Δ=b2−4ac<0,则方程没有实数根,若x1,x2是该方程的两个实数根,则x1+x2=−b,x1x2=c a.a(1)根据题意可得Δ=(2k−3)2−4(k2−1)≥0,据此可得答案;(2)根据根与系数的关系得到x1+x2=−(2k−3),x1⋅x2=k2−1,再由已知条件和完全平方公式的变形得到(2k−3)2−3(k2−1)=1,解方程即可得到答案.【详解】(1)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴Δ=(2k−3)2−4(k2−1)≥0,∴4k2−12k+9−4k2+4≥0,∴k≤13;12(2)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴x1+x2=−(2k−3),x1⋅x2=k2−1,∵x21+x22=1+x1⋅x2,∴x21+x22−x1⋅x2=1∴(x1+x2)2−3x1x2=1,∴(2k−3)2−3(k2−1)=1,∴4k2−12k+9−3k2+3=1,∴k2−12k+11=0解得:k1=1,k2=11(舍去)∴k=1.4.x2=−3;m=−14.【分析】本题考查了一元二次方程的解以及根与系数的关系,代入x=5可求出m的值,再利用两根之和等于−b,即可求出方程的另一个根,解题的关键是熟练掌握一元二次方程根与系数的关系.a【详解】解:当x=5时,原方程为52−2×5+m−1=0,解得:m=−14,设方程的另一个实数根为x2,∵5+x2=2,∴x2=−3,∴方程的另一个根为−3,m的值为−14.5.k=8,x2=4【分析】利用根与系数的关系表示出两根之和与两根之积,由一个根为2,求出另一根,进而确定出k的值.【详解】设另一根为x2,∴2+x2=6,2x2=k,则x2=4,k=8,则6∴1把则7(2)((【详解】(1)解:∵一元二次方程有两个不相等的实数根,∴Δ=b2−4ac=4−4×1×(−3m)>0,解得:m>−1,3(2)当m=1时,方程为x2+2x−3=0,(x+3)(x−1)=0,解得x1=−3,x2=1.8.(1)c<1(2)c=−1(3)c=−3【分析】本题考查了根与系数的关系、根的判别式以及一元二次方程的解.(1)根据方程的系数,结合根的判别式Δ<0,可得出关于c的一元一次不等式,解之即可得出c的取值范围;(2)利用根与系数的关系,可得出x1x2=c,结合x1x2=−1,即可得出c的值;(3)代入x1=−3,即可求出c的值.【详解】(1)解:∵关于x的一元二次方程x2+2x+c=0有两个不相等的实数根,∴Δ=22−4×1×c>0,解得:c<1,∴c的取值范围是c<1;(2)解:∵x1,x2是关于x的一元二次方程x2+2x+c=0的两个不相等的实数根,∴x1x2=c,又∵x1x2=−1,∴c=−1;(3)解:将x1=−3代入原方程得9+2×(−3)+c=0,解得:c=−3,∴若x1=−3,则c的值为−3.9.m=5,x1=x2=−2【分析】本题考查一元二次方程根的判别式及解法,根据当Δ=0时,方程有两个相等的实数根求得m 值,进而解一元二次方程即可求解.【详解】解:∵一元二次方程x2+4x+m−1=0有两个相等的实数根,∴Δ=42−4(m−1)=0,则m=5,∴x2+4x+4=0,解得x1=x2=−2.10.t=3,m=−6【分析】利用根与系数的关系,建立二元一次方程组进行求解.【详解】解:∵3,t是方程2x2+2mx−3m=0的两个实数根,∴3+t=−2m2,3t=−3m2,3+t=−m①2t=−m②,∴3+t=2t,解得:t=3,∴m=−2×3=−6,答:t=3,m=−6.【点睛】本题考查了根与系数的关系,二元一次方程组,解题的关键是能利用根与系数的关系建立二元一次方程组.11.b=1,方程的另一个根为−3【分析】本题考查了一元二次方程的根及解一元二次方程.将x=2代入x2+bx−6=0求得b的值,然后解方程组即可.【详解】∵x=2是方程x2+bx−6=0有一个根,∴4+2b−6=0,∴b=1当b=1时,原方程为x2+x−6=0,解得x1=2,x2=−3.∴b=1,方程的另一个根为−3.12.m=6,另一个根为4【分析】把x=3代入方程求出m的值,然后解方程求出另一个根即可.【详解】解:把x=3代入x2−(m+1)x+m+6=0,得9−3(m+1)+m+6=0,解得m=6,把m=6代入原方程得x2−7x+12=0,∴(x−3)(x−4)=0,∴x1=3,x2=4,即方程的另一个根为4.【点睛】本题考查了一元二次方程的解,以及一元二次方程的解法,熟练掌握一元二次方程的解法是解答本题的关键.13.m的值为15,另一根为5【分析】本题考查一元二次方程的根与系数的关系,掌握ax2+bx+c=0(a≠0)的两根为x1,x2,则有x1+x2=−ba ,x1x2=ca是解题的关键.【详解】解:设另一根为a,则a+3=8,3a=m,解得:a=5,m=15,∴m的值为15,另一根为5.14.k=7,另一根为4【分析】由于一根为3,把x=3代入方程即可求得k的值.然后根据两根之积即可求得另一根.【详解】解:∵方程x2−kx+12=0的一个根为3,∴32−k×3+12=0,解得k=7,设另一根为x,∵3x=12,∴x=4,∴另一根为4.【点睛】本题考查了一元二次方程的解和根与系数的关系,解题时可利用根与系数的关系使问题简化,难度不大.15.m=1,x1=x2=2【分析】本题考查的是一元二次方程根的判别式的应用以及解一元一次方程,根据Δ=0时,方程有两个相等的两个实数根列出方程,解方程求出m,利用因式分解法解方程求出方程的根.【详解】解:∵关于x的方程x2−4x+m+3=0有两个相等的实数根,∴△=b2−4ac=(−4)2−4×1×(m+3)=4−4m=0,解得,m=1,∴方程为x2−4x+4=0,∴(x−2)2=0解得:x1=x2=2.16.(1)m>−1(2)x1=−4,x2=2【分析】本题考查一元二次方程根的判别式及解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),判别式Δ>0时方程有两个不相等的实数根;Δ=0时方程有两个相等的实数根;Δ<0时方程没有实数根;熟练掌握一元二次方程根与判别式的关系及解一元二次方程的方法是解题关键.(1)根据方程x2+2x−m=0有两个不相等的实数根可得判别式Δ>0,列不等式求出m的取值范围即可;(2)把m=8代入x2+2x−m=0,利用因式分解法解一元二次方程即可.【详解】(1)解:∵关于x的一元二次方程x2+2x−m=0有两个不相等实数根,∴Δ=b2−4ac=22−4×1×(−m)>0,解得:m>−1.∴m的取值范围为m>−1.(∴∴x17∴∴18∴1∴c设另一个根为x2,则−1⋅x2=−3,∴x2=3,∴c的值是−3,另一个根是x=3.。

一元二次方程-韦达定理的应用及答案

一元二次方程-韦达定理的应用及答案

一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ ,当△<0 时_________方程___________ .韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数2.求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m>2 时,原方程永远有两个实数根.例 2.已知关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由.例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;例 4.已知关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。

(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。

例 5.当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于 2.例 6.已知 a,b,c,是△ ABC 的三边长, 且关于 x 的方程 22(1)2(1)0b x ax c x --+-=有两个相等的实根,求证: 这个三角形是直角三角形。

例 7.若 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求m n的值。

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.
点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.
12
考点:规律型:数字的变化类。1923992
专题:图表型。
分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为
12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)
第n年12345…
老芽率aa2a3a5a…
新芽率0aa2a3a…
总芽率a2a3a5a8a…
照这样下去,第8年老芽数与总芽数的比值为_________(精确到0.001).
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
∴(2a+2b)2﹣12=63,
∴(2a+2b)2=64,
2a+2b=±8,
两边同时除以2得,a+b=±4.
点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.
11
考点:完全平方公式。1923992
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣:常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提岀了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得岀一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)•消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达左理,你能利用韦达泄理解决下而的问题吗?已知:①0+2“一1=0,②夕一2沪一1=0日1 一c/HO.求(严a 的值。

解析由①知1 + 2丄一丄=0・a cr即(丄尸+2丄一1 = 0,③a a由②知(护)2一2沪一1=0,④由韦达泄理,得丄+ Z/=2丄,=一1 ,a a...严=[(* +町+ 乡「(2-1 严62为一元二次方程2 -21-1 =0的两根。

点评本题的关键是构造一元二次方程X2-2A-1=0,利用韦达立理求解,难点是将①变形成③,易错点是忽视条件1 一ab2 #0,而把“,一夕看作方程/+加一1 =0的两根来求解.知识延伸】例1已知关于x的二次方程2x2+av-2z/+l= 0的两个实根的平方和为7丄,求“的值. 4解析设方程的两实根为小,也,根据韦达泄理,有一2“ +1于是,Xj24-A22=(X14-X2)2-2.¥I%2=—G?+8a_4) 4依题设,得丄(0+&』一4) = 7丄,解得t/=-ll 或3 •注意到小畑 为方程的两个实数根,则△$(),4 4但 “=一11 时,△= (-11) 2+16X (-11) -8=-63<0: “=3 时,Z\ = 32—4X2X (-6+1) =49 >0,故“=3・点评 韦达左理应用的前提是方程有解,即判别式△=(),本题容易忽视的就是求岀“的值后,没有 考虑“的值满足△$()这一前提条件。

例2已知关于x 的方程疋+2"汰+加+2=0,求:(1)加为何值时,方程的两个根一个大于0,另一 个小于0:(2) 为何值时,方程的两个根都是正数:(3)川为何值时,方程的两个根一个大于1,另一个 小于1即(m - l)(/n +1) > 0(1) m < -2(2)由(1),得m>2或川V —1, /. m<—2.(2) 加应当满足的条件是 △=4亦一4(加+2) > 0v 舛+兀=一2加> 0 舛・ x 2 = ni+ 2 >0(3) 加应当满足的条件是 A=4/??2—4( /n+2) > 0© -1)(兀三 一1)<0加>2或加<一1 加 + 2 —(一2加)+1 < 0m > 2或加<一1 m <一1:• /M V —1.点评 若已知含字母系数的一元二次方程的根的范用,求字母系数的范崗,应根据已知和韦达定理, 灵活地将字母系数应满足的条件一一列出来,然后再求解。

解析(1)据题意知,应当满足条件1 A=4?n 2—4( ?n+2) >J, x =m + 2<0好题妙解】佳题新题品味例 已知AABC 的边长分别为",k c,且a>b>c 2h=a+c, b 为正整数,若^+Z>2+c 2=84,求b 的 值.解析依题设,有“+c=24①加+,+4=84・(2)②可变为(a+c)2 — 2ac =84 — b?,③ ①代入③,得心苧.④3••“ C 是关于,•的-元二次方程宀纱+苧=。

的两个不相等的正实数根.△ = 4/, -4x M >02即16<沪<28・ 又〃为正整数,故b=5.点评:韦达九理的逆定理是:如果小M 满足Xl+X2=--. XI -X2=-,那么小X2是一元二次方程 a aX+加+c=0的两个根,此解的独特之处在于利用a+c=2b.将“2+夕+*=84转变为必=, 2从而构造韦达定理所需的条件.中考真题欣赏例1 (河南省)已知关于X 的方程4F+4加+7b=0有两个相等的实数根,N ,w 是关于y 的方程r+(2 一仍+4=0的两个根,求以旗,康为根的一元二次方程.解析V 关于x 的方程4/+4加+7*0有两个相等的实数根,△ = (4b)2—4x4x7b=0,即沪一7方=0.•°.bi=0, £>2=7.当方=0时,关于y 的方程化为^+2y+4=0, 因厶=4一 16= — 12<0,方程无解.当b=l 时,关于y 的方程可化为尸一5y+4=0, 解得 yi=4, y2=l. 则厲+厲=3,駅•厲=2,•:以賦, 康为根的一元二次方程为*一3$+2=0・5於-84~~2点评:本题既考查了判别式,韦达左理的逆左理,又考査了分类讨论的思想,〃=0时得到的方程无解 易忽视,应重视.例2 (四川省)已知m X2是关于X 的一元二次方程”+4("Ll )x+m —0的两个非零实数根,问M 与 X2能否同号?若能同号,求出相应的川的取值范圉:若不能同号,请说明理由.解析•••关于X 的一元二次方程/+4(,”一 1)兀+用2=0有两个非零实数根,/. △ = [4 伽一1 )2—4x4/n 2 = — 32加 +1620,/. 丄・2又小兀2是方程4"+4(加一 l )x+〃?2=o 的两个实数根,一(加一 1)>01 J A »-nr >0.4•••加< 1且加H0,此时,加W 丄且加H0:2[x + \. <0 f-(/M-l )<0②若xi<0, X2<0,则有存 v 「即1 ) ,X x 2 >0 一“广 >0而加W 丄时方程才有实数根,2.•・此种情况不可能.综上所述,当加的取值范帀为mW 丄且加H0时,方程的两实根同号.2点评:存在性问题的探索一般是先假设存在,然后据已知和相关知识进行推理,若推理的结论与题设 或概念、定理、事实等相矛盾,则假设不成立,从而不存在,反之则存在.竞赛样题展示例(1998年江苏初中数学竞赛题)求满足如下条件的所有斤值:使关于x 的方程也2+(k+l )x+伙一1) =0的根都是整数.解析(1)当k=0时,方程为x —l=o,有整数根1:(2)当RH0时,所给方程是一元二次方程,设该方程两整数根为a, X2,则X1+.v 2=-i±l=-i-l £一1 f 1X1X2=—= 1'7由①一②,得 X14-X2—XI • X2=—2,即(.¥1—1)(X2—1) = 3./.xi+x2=—(/H — 1), xi • xi = — nr.4假设M ,X2同号,则有两种可能:①若 Xl>0, X2>0,贝 1」<列+“2[°,即<• x 2 > 0•••“疋为整数,代入①得k= — -或k= 1・7又•・•△=* +1)2—处伙一 1)= 一3疋+6R+1,当=k_t ,R=1 时都大于 0. •••满足条件的斤值为£=0或《=—丄或k=\.7点评:注意到方程二次项系数是参变数k,所以方程可能是一次方程,也可能是二次方程应分别讨论.求 参数时,通常由根与系教的关系列岀关于k 的式子,消去仁然后因式分解及因数分解求出整数根,从而 求参数k.过关检测】A 级1.已知方程"+3兀+加=0的两根之差为5,求加的值.2. 已知m 卫是方程3"—〃圧一2=0的两个根,且丄+丄=3,求彳+ €的值.3・已知方程卫一4入・+2—《2=0,且WHO,不解方程证明:(1)方程有两个不相等的实数根:(2)-个根 大于1,另一根小于1・4. 利用根与系数的关系,求一个一元二次方程,使它的两根分别比方程3/+2A •—3=0的两个根的平方多L戶Ti 或或八一山3或< 兀2 - 1 = 3 x 2 - 1 = -3 [x 2 - 1 = 1A'j — 1 =一3 AS 一 1 = 一1[心或<X 2 = - 2 x 2 = 2 X\=-2 解得 x 2 = 05•关于x的方程X2—3n—1=0①,x2—⑵?+3)x—8/?2 + 2=0(2),若方程①的两根的平方和等于方程②的一个整数根,求川的值.6.若 /+11“+16=0:庆+1"+16=0,求『-石B级1.已知0是方程W-7x+8=0的两根,且不解方程,求二+ 302的值. a2-已知两数之积如'且^+1234567890.+3=0, 3^+1234567890,4-2=0.求*3.已知m疋是方程”2伙一2)x+伙2+3«+5)=0伙为实数)的两实根,求.vf + x;的最小值.4.如果方程仗一1)(/一加+加)=0的三个实根可以作为一个三角形的三条边,求实数加的取值范用.5.若方程(W — 1)(卫一4)=斤有四个非零实根,且它们在数轴上对应的四个点等距排列,求k值.6.已知 g b, c, 〃是四个不同的有理数,且("+c)("+d)= 1, (b+c)(b+J)=l,求(a+c)(b+c)的值.第三讲韦达定理及其应用A 级•1.-42.-12 •/ x!v x2为方程yx2 -mx -2 =0 的两根x a=y ,X| * = -y. -而丄4■丄二3;・;m = -6.X l X2因此订+«/ = («1 +x2)(Xj2 -Xj X2 +x22) =(x t 4-xJt («! -3吟2】=-12.3.(1)叮A = (-4)2-4(2-F) =4^ +8>0,•••方程有两个不相等的实数抿;(2) (x t -1) (x2 - 1) =x t• x2 - (x t +x2) +1 =2-V-4 + l = - fc2 -1 <0,x} -1 ,x2 - 1中必有一个正数■—个负数,即卒*2中必有一个大于1.,另一个小于1.4.9y2 -40y +-40 =0.设方程3/ -3 =0的根为x^xj,所求方程的根为门,/a.而帀+衍=-y,x, - x2 = -1,:• Tl +T2 =(«/ +1) +(*22 +1)=(«| +*2)2 -2x t x2 +2=(-y) -2x( -1) 4-240n.-/2 r(x i2 +i)(h +1)• -r-(«i • «2)2 +(*/ +疔)十i ・=(«f • «2)2 -+«2): -2衍巧41 =譽•上•礫桶为八令+瞥0, 〔’即9/_40 八40=0. '・.5・0•提示:设方程①的两根为%! 9x2t则力i+«2=4n,塔i * x2 = -3n — 1・•= (*i +*2)2一2吋2 =(4ra)2 -2( -3n - 1) :& . F •= 16n2 +6n+2 ・解方程=4n+2»x2 =l-2n.⑴当16於+6e+2=4“十2时,%二0,衍=-y.把%=0,代龙+2,得知盂2;把円=■代人引=4^2,得旺二•!•不是整数,.•• “二■+舍去3⑵当16n2 +6n 4-2 = 1-2n时丿严心八*•把“-扌代人觀=1 -2n,得± =|•不妲整数,•'•舍去.当"0时,方程①的山=4>0, •••"的值为0.6,0或土孕T(1)当a = 6时 1 -1 =0;":•-宀・... ra * b =出11 /-• •» *-••• 1 • * j -(2)当a#6时心6是方程x2 + llx + 16 =0两实根,从而有( 让'原式=—7==〒(& - Q)=(ab = 16. •…」.J ah 4±-i/(a+A)2-4a/>= 土*/⑵ 一64 = 土卑、1.^-(403 -85/17).由题意知a+0=7,矽=8.于是¥+= (a+p)2 -2^3 =33,(a -/9)2 = (a +j8)2 -4竝= 17,又a >0,故a-B=皿令吒+射宀訐J则^ + fi=~+|+3(a2+严2卑評■十32诃>=琴^3x33 二攀人-B = 2 一令+ 3伊-3a =?-(需巧 +3(/3-a)(/3 +a)= (^-a)[^+3(3 + «)]= ■帀伶 ®7)=-弩互, ①,②两式相加,得A =*(403 -85 /17).2* 设1 234 567 890 = m,则有+ma+3 =0,36?+皿+ 2二0,即2(计 +m ・-i-+3 =0.又dX*, 故a 与+是二次方程2d +皿+3 =0.的两个不等实根,故十’・土弓又4=4(12)2-4W+3R+ 5)=・2814工0,即X 故只有人二-*时严/+#取最小值为45034. —<m^I.由已知«, = 1,设另两根为衍点3且刼W 巧庐2 +巧=2宀•靭=九又衍 >衍一巧即1 > y (%3=Jl*、+衍)2 ・4巧•巧"4 -4叫解得 m>^.又 & = (-2尸 _4mM0"・. mWl.345. 召.设%2=y,原方程变为/ -5y + (4-A;) =0,设此方程有实根a 以。

相关文档
最新文档