化工原理复习总结重点

合集下载

化工原理复习的总结重点

化工原理复习的总结重点

化工原理绪论P7 1,21.从基本单位换算入手,将下列物理量的单位换算为 SI 单位。

(1 )水的黏度 卩=0.00856 g/(cm • s) (2) 密度 p =138.6 kgf ? s 2/m 4(3) 某物质的比热容 C =0.24 BTU/(lb •?)2(4) 传质系数 K G =34.2 kmol/(m ? h? atm) (5) 表面张力 d =74 dyn/cm( 6)导热系数 入=1 kcal/(m ? h? °C ) 解:本题为物理量的单位换算。

(1) 水的黏度基本物理量的换算关系为 1 kg=1000 g , 1m=100 cm血 卩=0.00856 i —1=8.56 x 10, kg /(m s)=8.56x 10,Pa s 则 [cm ,s 」1000g J 1m 一 "'丿(2)密度 基本物理量的换算关系为 1 kgf=9.81 N , 1 N=1 kg ? m/s 2(3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ , l b=0.4536 kgC p =0.24BTU 1.055kJ 1lb 1 FHj b F 1BTU 0.4536kg 5 9 C=1.005kJ kg C(4) (5) 传质系数 基本物理量的换算关系为1 h=3600 s , 1 atm=101.33 kPaK G =34.2:也-||m 2 h atm 113600s 101.33kPa1atm= 9.378 10』kmol. m 2s kPa_ 5表面张力基本物理量的换算关系为1 dyn=1 x 10 N 1 m=100 cmc =74dyn 1 10钿 100cm[cm 」1dyn 」1m 」= 7.4 10‘N.m导热系数 基本物理量的换算关系为1 kcal=4.1868 x 103J, 1 h=3600 s.「kcall ]〔4.1868 心03J"T 1h ]卄几 .,■ =1「1.163J m s C =1.163W m Cm 2 h C 1kcal 3600s (6) 1kcal2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即H E =3.9A(2.78 汇 10^G B(12.01D C (0.3048Z 。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p 不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原则的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反应。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

化工原理知识点总结复习重点

化工原理知识点总结复习重点

化工原理知识点总结复习重点化工原理是化学工程与工艺专业的一门基础课程,主要介绍化学工程与工艺中的物质平衡、能量平衡和动量平衡等基本原理及其应用。

下面是化工原理的知识点总结和复习重点的详细版:1.化学反应平衡-反应物与生成物的化学计量关系-反应的平衡常数与平衡常数表达式- Le Chatelier原理和平衡移动方向-改变反应条件对平衡的影响2.物质平衡-物质守恒定律-化学工程中常见的物质平衡问题-不可压缩流体的物质平衡-反应器中的物质平衡-非理想流动下的物质平衡3.能量平衡-能量的守恒定律-热力学一、二、三定律-热力学方程与热力学性质-各种热力学过程的分析-标准生成焓与反应焓-反应器中的能量平衡4.动量平衡-动量的守恒定律-流体的运动学性质-流体的连续性方程、动量方程和能量方程-流体的黏度、雷诺数与运动阻力-流体的流动模式与阻力系数5.质量传递-质量传递的基本概念和规律-质量传递过程中的浓度梯度-净质量流率和摩尔质量流率-质量传递的速率方程和传质系数-各种传质装置的设计和分析6.物料的流动-流体的本构关系和流变特性-流体的流变模型和流变学方程-各种物料的流动模式和流动参数-孔板、喷嘴、管道等流体动力装置的设计和分析7.反应工程学-反应器的分类与特性-反应速率方程和反应级数-决定反应速率的因素-等温、非等温反应的热力学分析-反应器的设计和分析8.分离工程学-分离过程的基本原理-平衡闪蒸和分馏过程-萃取、吸附和吸附过程-结晶和干燥过程-分离设备的设计和分析9.管道和设备-化工工艺流程图的绘制-管道的基本特性和设计原则-常见流体设备的结构和工作原理-设备的选择、设计和运行控制以上是化工原理的知识点总结和复习重点的详细版。

在复习时,需要重点掌握每个知识点的基本概念、原理和公式,并通过习题和实例进行巩固和应用。

同时,建议结合实际工程问题,加深对知识点的理解和运用能力。

化工原理期末复习重点

化工原理期末复习重点

化工原理期末复习重点第1章 流体流动1.1标准大气压(atm)=1.013×105Pa=1.033kgf/cm 2=10.33m H 2O=760mm Hg 1(at)=1kgf/cm 2 =9.81×104Pa 表压=绝对压力-大气压力 真空度=大气压力-绝对压力=-表压2.静力学基本方程式 2a p p gh ρ=+(1)当液面上方的压力一定时,在静止液体内任一点压力的大小,与液体本身的密度和该点距液面的深度有关。

因此,在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。

压力相等的水平面,称为等压面。

(2)当液面的上方压力p a 有变化时,必将引起液体内部各点压力发生同样大小的变化。

3. q v :体积流量 m 3/s m 3/h q m :质量流量 kg/s kg/h u:流速(平均速度) m/sm v q q ρ=22//44V V m q q q u m sA d d ρππ===4.流体在管道中的流动状态可分为两种类型。

(1)层流:若其质点始终沿着与管轴平行的方向作直线运动,质点之间互相不混合,充满整个管的流体就如一层一层的同心圆筒在平行地流动,这种流动状态称为层流或滞流。

(2)湍流:当流体流速增大时,若有色液体与水迅速混合,则表明流体质点除了沿着管道向前流动外,各质点还做剧烈的径向脉动,这种流动状态称为湍流或絮流。

(3)区别:有无径向脉动。

5.雷诺数Re du ρμ=Re≤2000 流动类型为层流 Re ≥4000 流动类型为湍流2000<Re<4000 流动类型不稳定,可能是层流,也可能是湍流,或者两者交替出现,与外界干扰情况有关。

这一范围称为过渡区。

6.(1)流体在圆管中层流时,其平均速度为最大速度的一半,max 1u =。

(2)在靠近管壁的区域,仍有一极薄的流体作层流流动,称这一极薄流体层为层流内层或层流底层。

流体的湍流程度越大,层流底层越薄。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)普通本科化工原理(天大版)知识点总结——重科田华制第一章:流体流动一、流体静力学在静止的流体中,单位面积上所受的压力称为静压力或压强。

表压强等于绝对压强减去大气压强,真空度等于大气压强减去绝对压强。

流体静力学方程式只适用于静止的、连续的同一液体内,处于同一水平面上各点压力都相等的情况。

常用的应用包括U型压差计、倾斜液柱压差计和微差压差计。

二、流体动力学流量指的是单位时间内通过某一横截面的流体体积或质量。

连续性方程式表明,在稳定的流动中,流体的质量或体积流量在任何截面上都是相等的。

柏努利方程式适用于实际流体,可以用于计算流体在不同位置的压力和速度。

要点包括作图确定衡算范围、截面的选取、基准水平面的选取、两截面上的压力和单位的一致。

三、流体流动现象雷诺准数可用于描述流体流动的类型,包括层流区、过渡区和湍流区。

在层流和湍流中,质点的运动方式存在本质区别。

层流中,质点沿管轴作规则的平行运动,互不碰撞,互不混合;而湍流中,质点作不规则的杂乱运动并相互碰撞,产生旋涡,附加阻力也随之增加。

管道截面上,无论是层流还是湍流,质点的速度都沿管径而变化,管壁处速度为零,离开管壁后速度渐增,到管中心处速度最大。

在层流中,速度呈抛物线分布,管中心最大速度是平均速度的两倍;而在湍流中,速度分布则分为层流内层、缓冲区和湍流主体,层流内层的厚度随着Re值的增加而减小。

计算管道阻力时,可以使用伯努利方程和范宁公式,其中范宁公式有多种形式,包括圆直管道和非圆直管道的公式。

在运算时,需要找出λ值,非圆管道的当量直径为4倍水力半径。

流量计可以使用孔板流量计、文丘里流量计和转子流量计,其中孔板流量计是利用流体流经孔板前后产生的压力差来实现流量测量。

离心泵的工作原理是将电动机转化为流体的动能,再将动能转化为静压能。

离心泵的特性参数和特性曲线是描述其性能的重要指标,气蚀现象和安装高度也是需要考虑的因素。

在工作点和流量调节方面,需要注意离心泵的运行状态和流量变化。

化工原理复习总结考点

化工原理复习总结考点

化工原理复习总结考点化工原理是化学工程专业的一门重要基础课程,主要介绍化学工程的基本原理和应用。

它涵盖了化学反应工程、流体力学、传热传质、化工过程控制等内容。

下面是对化工原理复习的总结和重点考点的介绍。

一、化学反应工程1.化学反应动力学:理解反应速率、反应动力学方程、活化能、指前因子等概念,并能利用反应动力学方程进行计算;2.化学平衡:掌握平衡常数的概念与计算方法,理解平衡常数与温度的关系,并能应用到化学反应平衡的计算;3.反应器的设计与操作:了解不同类型的反应器,如连续流动反应器、批式反应器等,掌握反应器设计和操作的基本原理。

二、流体力学1.流体静力学:熟悉流体静力学的基本概念,包括流体的压力、密度、体积等,并能应用到液柱压强、浮力等问题的计算;2.流体动力学:理解流体的运动规律,包括连续性方程、动量方程和能量方程,并能应用到流体流动和传动的计算;3.流态转换:了解流体流动的各种流态,如层流与紊流、临界流速等,并能应用到实际问题的分析。

三、传热传质1.热传导:了解热传导的基本原理和计算方法,掌握导热系数、热阻、热传导方程等概念;2.对流传热:熟悉对流传热的基本原理和换热系数的计算方法,理解纳塞数和普朗特数的概念;3.辐射传热:了解辐射传热的基本原理和计算方法,并理解黑体辐射和灰体辐射的特性;4.传质过程:了解传质的基本原理和计算方法,掌握质量传递系数、浓度梯度等概念,并能应用到传质过程的计算。

四、化工过程控制1.控制系统基础:理解控制系统的基本概念,包括反馈控制、前馈控制、比例、积分和微分控制等,并能应用到控制系统的分析;2.过程变量与控制策略:了解过程变量的基本概念,包括流量、浓度、温度等,并掌握常见的控制策略,如比例控制、比例积分控制、比例积分微分控制等;3.控制器与控制回路:熟悉PID控制器的构造和调节方法,理解控制回路的稳定性和动态响应,并能应用到控制回路的设计与优化。

综上所述,化工原理的复习重点包括化学反应工程、流体力学、传热传质和化工过程控制等内容。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。

一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。

祝你取得好成绩!。

化工原理复习重点

化工原理复习重点

第一章1.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的1/2倍。

2.流体在圆形直管中作层流流动,如果流量等不变,只是将管径增大一倍,则阻力损失为原来的1/16。

3.当20℃的甘油(ρ=1261kg.m-3,,μ=1499厘泊)在内径为100mm 的管内流动时,若流速为2.52.5m.s-1时,其雷诺准数Re为210.3,其摩擦阻力系数λ为0.304.4.当量直径的定义是de=4×流通截面积/浸润周边,对边长为a正方形风管当量直径de=a。

5.当量直径的定义是de=4×流通截面积/浸润周边,在套管环间流动的流体,外管的内径是d2,内管的外径是d1,则当量直径d e=d2-d1。

6.当Re 为已知时,流体在圆形管内呈层流时的摩擦系数λ=64/Re,在管内呈湍流时,摩擦系数λ与Re、ε/d有关。

7.水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小后,水流量将减小,摩擦系数增大,管道总阻力损失不变(增大、减小、不变)。

8.当流体在园管内流动时,管中心流速最大,滞流时的平均速度与管中心的最大流速的关系为( C )A. U m=3/2.U maλB. U m=0.8U maλC. U m=1/2.U maλ9.学习流体流动与输送,你认为应解决些什么问题?答:1、合理选择流体输送管道的管径2、确定输送流体所需的能量和设备。

3、流体流量测量和速度、体积和质量流量、压力,以及控制。

4、流体流动的形态和条件,作为强化设备和操作的依据。

10.什么叫化工单元操作?常用的化工单元操作有哪些?答:化工产品的生产过程中,具有共同物理变化,遵循共同的物理学定律的一些物理操作过程。

例如:流体流动、流体输送、非均相分离、传热、蒸发、蒸馏、吸收、萃取、干燥等。

第二章1.液体输送设备有:离心泵; 往复泵; 齿轮泵; 螺杆泵; 旋涡泵2.产品样本上离心泵的性能曲线是在一定的转速下,输送20℃的水(或答:水)时的性能曲线。

化工原理复习重点

化工原理复习重点

化工原理复习重点化工原理是化学工程学科中的基础课程,是学习和应用化学工程的基础。

下面是化工原理的复习重点:1.化工原理的基本概念:(1)化学工程的定义和发展历史;(2)化学工程的特点和基本任务;(3)化工反应过程的基本特点;(4)化工原理的特点和基本内容。

2.物料平衡:(1)物料平衡的基本原理;(2)闭合系统和开放系统的物料平衡表达式;(3)平行反应体系的物料平衡;(4)反应器的物料平衡;(5)多组分混合物的物料平衡。

3.能量平衡:(1)热力学基础和热力学平衡;(2)封闭系统的能量平衡表达式;(3)开放系统的能量平衡表达式;(4)反应器的能量平衡。

4.流程模拟与优化:(1)流程模拟、优化和控制的基本概念;(2)传质过程的模拟与优化;(3)反应过程的模拟与优化;(4)传热过程的模拟与优化。

5.化工热力学:(1)热力学基础知识回顾;(2)理想气体热力学模型;(3)混合物的热力学性质;(4)化学反应的热力学计算。

6.化工流体力学:(1)流体性质和流体静力学;(2)流体动力学基本方程;(3)流体的流动特性和流动模式;(4)流体工程中的摩擦、阻力和流量计算。

7.化工反应工程:(1)化学反应动力学基本概念;(2)反应速率方程和反应级数;(3)反应器的选择和设计;(4)反应器的理论和实际操作。

8.分离操作:(1)传递过程基本概念;(2)传递过程的质量和能量平衡;(3)分离塔的基本结构和操作原理;(4)萃取、吸附、蒸馏等分离操作的基本原理。

以上是化工原理的复习重点,通过对这些内容的复习,可以对化工原理的基本理论和应用技术有全面的了解,为进一步学习和实践打下坚实的基础。

化工原理期末复习重点

化工原理期末复习重点

化工原理期末复习重点第1章 流体流动1.1标准大气压(atm)=1.013×105Pa=1.033kgf/cm 2=10.33m H 2O=760mm Hg 1(at)=1kgf/cm 2 =9.81×104Pa 表压=绝对压力-大气压力 真空度=大气压力-绝对压力=-表压2.静力学基本方程式 2a p p gh ρ=+(1)当液面上方的压力一定时,在静止液体内任一点压力的大小,与液体本身的密度和该点距液面的深度有关。

因此,在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。

压力相等的水平面,称为等压面。

(2)当液面的上方压力p a 有变化时,必将引起液体内部各点压力发生同样大小的变化。

3. q v :体积流量 m 3/s m 3/h q m :质量流量 kg/s kg/h u:流速(平均速度) m/sm v q q ρ=22//44V V m q q q u m s A d d ρππ===4.流体在管道中的流动状态可分为两种类型。

(1)层流:若其质点始终沿着与管轴平行的方向作直线运动,质点之间互相不混合,充满整个管的流体就如一层一层的同心圆筒在平行地流动,这种流动状态称为层流或滞流。

(2)湍流:当流体流速增大时,若有色液体与水迅速混合,则表明流体质点除了沿着管道向前流动外,各质点还做剧烈的径向脉动,这种流动状态称为湍流或絮流。

(3)区别:有无径向脉动。

5.雷诺数Re du ρμ=Re≤2000 流动类型为层流 Re ≥4000 流动类型为湍流2000<Re<4000 流动类型不稳定,可能是层流,也可能是湍流,或者两者交替出现,与外界干扰情况有关。

这一范围称为过渡区。

6.(1)流体在圆管中层流时,其平均速度为最大速度的一半,max 1u =。

(2)在靠近管壁的区域,仍有一极薄的流体作层流流动,称这一极薄流体层为层流内层或层流底层。

流体的湍流程度越大,层流底层越薄。

化工原理复习总结重点

化工原理复习总结重点

化工原理绪论P7 1,21. 从基本单位换算入手,将下列物理量的单位换算为S I单位。

(1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容CP=0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m2·h·at m)(5)表面张力σ=74 d yn/cm (6)导热系数λ=1 kcal /(m·h·℃)解:本题为物理量的单位换算。

(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 ()s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ(2)密度 基本物理量的换算关系为1 kgf=9.81 N,1 N =1 kg·m /s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ (3)从附录二查出有关基本物理量的换算关系为 1 B TU=1.055 kJ ,l b=0.4536 kg则 ()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c(4)传质系数 基本物理量的换算关系为1 h=3600 s,1 atm =101.33 kP a则 ()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为 1 dyn=1×10–5 N 1 m=100 c mo o 51F C 9=则 m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ(6)导热系数 基本物理量的换算关系为1 kca l=4.1868×103 J,1 h=3600 s则 ())C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,f t; G—气相质量速度,lb/(ft 2·h); D —塔径,ft;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP; ρL —液相密度,lb/f t3A 、B、C 为常数,对25 mm的拉西环,其数值分别为0.57、-0.1及1.24。

化工原理重要知识点总结

化工原理重要知识点总结

化工原理重要知识点总结化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】扩展阅读:化工原理知识点总结整理一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。

化工原理重点内容总结

化工原理重点内容总结

化工原理重点内容总结第一篇:化工原理重点内容总结化工原理重点内容总结绪论研究本学科的基本方法:1.实验研究法(经验法)2.数学模型法(半经验半理论的方法)研究单元过程的基本工具1.物料衡算2.能量衡算3.系统的平衡关系4.过程速率第一章流体流动及流体输送机械流体密度的定义牛顿粘性定律τ=-μdu⎧+表压真实压强=大气压强⎨dy⎩-真空度流体静力学基本方程式压差的静力学测量:普通U 型管压差计、倒置 U 型管压差计普通 U 型管压差计p1-p2=R(ρ0-ρ)g流量:(1)体积流量V(2)质量流量W;V=W/ρ流量与流速间的换算u=duρV流型的判断依据:雷诺数Re=AμRe<2000稳定的层流区;20004000湍流区2u12p1u2pgz1+++he=gz2++2+∑hf2ρ2ρ--柏努利方程直管阻力损失的计算通式 lu2hf=λd2 层流时摩擦系数的计算λ=64 Re湍流时摩擦系数的计算:查穆迪图局部阻力损失计算:(1)阻力系数法(2)当量长度法流量测量:孔板流量计、文丘里流量计、转子流量计泵的分类离心泵的主要部件离心泵的主性能参数:流量V、压头H、功率、效率离心泵的特性曲线: H—V、N—V、η—V关系曲线离心泵的气缚现象:原因及解决方法离心泵的气蚀现象:危害及防止措施离心泵的流量调节:1、改变管路特性曲线(调节阀门开度)2、改变泵 H-V 特性曲线气体输送机械:通风机、鼓风机、压缩机、真空泵第二章颗粒-流体非均相物系分离过滤操作的基本慨念:滤浆、过滤介质、滤饼或滤渣、滤液过滤操作的基本步骤:过滤、洗涤、脱湿、卸料、清洗过滤介质常用的过滤设备:板框压滤机、叶滤机、转筒真空过滤机过滤的主要参数:处理量V、过滤的推动力∆p、过滤面积、过滤速率第三章固体流态化固体流态化的定义流态化过程的三个阶段:固定床阶段、流化床阶段、颗粒输送阶段流化床操作范围:临界流化速度umf与带出速度之间流态化按其性状不同可分为散式流态化和聚式流态化不正常的流化现象:腾涌、沟流气力输送的类型:稀相输送和密相输送第四章传热热量传递的方式:对流、传导、辐射导热速率方程――傅立叶定律牛顿冷却定律给热系数的影响因素冷凝传热中的两种冷凝方式沸腾传热的类型:大容积沸腾、强制对流沸腾大容积饱和沸腾曲线的四个阶段:自然对流沸腾区、核状沸腾区、过渡沸腾区、膜状沸腾区高温设备的热损失: 热损失为对流传热量和辐射传热量之和传热速率方程Q=KA∆tm传热强化的方法;提高传热系数的方法按传热特征分,换热器可分为:间壁式、直接混合式和蓄热式常见的间壁式换热器的类型:夹套式换热器、蛇管换热器、套管换热器、列管式换热器列管换热器的结构:壳体、管束、封头、管板、折流挡板等列管换热器中折流挡板的形式和作用;列管换热器中管箱的作用列管换热器的分类:固定管板式换热器、U形管式换热器、浮头式换热器热补偿方式:固定管板式换热器:补偿圈(或称膨胀节)U形管式换热器: U型管,浮头式换热器:浮头第五章蒸发蒸发的定义基本概念:加热蒸汽(生蒸汽)、二次蒸汽、单效蒸发、多效蒸发蒸发器的分类:循环型和单程型循环型蒸发器的代表:中央循环管式、悬筐式、外热式、强制循环式多效蒸发流程:并流加料、逆流加料、平流加料第六章气体吸收传质、传质方式吸收过程中的基本概念:吸收质或溶质、惰性气体、吸收剂、吸收液、吸收尾气、解吸吸收剂选择时应考虑的因素气体的溶解度与温度及压力的关系亨利定律的内容吸收塔的调节手段:通常采取改变吸收剂入塔参数(L, Xa,ta)第七章蒸馏蒸馏的定义、用途泡点方程、露点方程及用途相平衡常数、挥发度、相对挥发度的定义精馏操作的必要条件:(1)物系的相对挥发度不等于1;(2)塔内要有汽液相回流;(3)要有汽液相接触的场所。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

必须汽蚀余量:(NPSH)r 离心泵的允许吸上真空度:
离心泵的允许安装高度Hg(低于此高度0.5-1m): 关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机。
四、工作点及流量调节:
管路特性与离心泵的工作点: 由两截面的伯努利方程所得
全程化简。
联解既得工作点。 离心泵的流量调节:
汽蚀现象:汽蚀现象是指当泵入口处压 力等于或小于同温度下液体的饱和蒸汽压时, 液体发生汽化,气泡在高压作用下,迅速凝 聚或破裂产生压力极大、频率极高的冲击, 泵体强烈振动并发出噪音,液体流量、压头 (出口压力)及效率明显下降。这种现象称 为离心泵的汽蚀。 二、特性参数与特性曲线: 流量 Q:离心泵在单位时间内排送到管路系 统的液体体积。 压头(扬程)H:离心泵对单位重量(1N) 的液体所提供的有效能量。
厚度随Re 值的增加而减小。
层流时的速度分布
u

1 2 umax
湍流时的速度分布
u 0.8u max
四、流动阻力、复杂管路、流量计:
计算管道阻力的通式:(伯努利方程损失能)
范宁公式的几种形式: 圆直管道
hf
l u2 d2
非圆直管道
p f
W f
l d
u 2 2
运算时,关键是找出 值,一般题目会告诉,仅用于期末考试,考研需扩充
应用解题要点:
1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相匹配。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理绪论P7 1,21. 从基本单位换算入手,将下列物理量的单位换算为SI单位。

(1)水的黏度μ=0.00856 g/(c m·s) (2)密度ρ=138.6 kgf ·s2/m4 (3)某物质的比热容C P=0.24 BT U/(lb·℉) (4)传质系数KG =34.2 kmol/(m 2·h·atm)(5)表面张力σ=74 dy n/cm (6)导热系数λ=1 kcal/(m·h·℃)解:本题为物理量的单位换算。

(1)水的黏度 基本物理量的换算关系为1 kg =1000 g ,1 m=100 cm则 ()s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ(2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ (3)从附录二查出有关基本物理量的换算关系为 1 BTU=1.055 kJ ,l b=0.4536 kg则 ()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c(4)传质系数 基本物理量的换算关系为1 h=3600 s,1 a tm=101.33 kPa则 )kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为 1 dy n=1×10–5 N 1 m =100 cmo o 51F C 9=则 m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ(6)导热系数 基本物理量的换算关系为1 kcal=4.1868×103J,1 h=3600 s则 ()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft; G—气相质量速度,lb/(ft 2·h); D —塔径,f t;Z 0—每段(即两层液体分布板之间)填料层高度,ft; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL—液相密度,lb/ft 3A、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。

试将上面经验公式中各物理量的单位均换算为S I单位。

解:上面经验公式是混合单位制度,液体黏度为物理单位制,而其余诸物理量均为英制。

经验公式单位换算的基本要点是:找出式中每个物理量新旧单位之间的换算关系,导出物理量“数字”的表达式,然后代入经验公式并整理,以便使式中各符号都变为所希望的单位。

具体换算过程如下: (1)从附录查出或计算出经验公式有关物理量新旧单位之间的关系为m 3049.0ft 1= ()()s m kg 10356.1h ft lb 1232⋅⨯=⋅- (见1)α量纲为一,不必换算 s Pa 101cp 13⋅⨯=-13lb ft =133lb 1kg 3.2803ft ft 2.2046lb 1m ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭=16.01 kg /m 2(2) 将原符号加上“′”以代表新单位的符号,导出原符号的“数字”表达式。

下面以H E 为例:m ft EE H H '= 则 同理 ()G G G '=⨯'=-5.73710356.13 D D '=2803.3 EE E E 2803.3mft2803.3ft m ft m H H H H '=⨯'='=002803.3Z Z '=()3LL 101-⨯'=μμ L L L 06246.001.16ρρρ'='= (3) 将以上关系式代原经验公式,得()()()⎪⎪⎭⎫⎝⎛'''⨯⨯⨯'⨯'⨯⨯⨯='-LL10 1.24-0.14E0624.010002803.33048.02803.301.125.7371078.257.09.32803.3ρμαZ D G H整理上式并略去符号的上标,便得到换算后的经验公式,即()()LL 3101.240.1-4E 4.39205.010084.1ραμZ D G A H -⨯=第一章 流体流动 P72-75 作业3,4,12,20 练习1,2【练习】 1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 k Pa,温度为40 ℃。

已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、C H 4 1%,大气压力为 101.3 k Pa,试计算气柜满载时各组分的质量。

解:气柜满载时各气体的总摩尔数()mol 4.246245mol 313314.860000.10005.53.101t =⨯⨯⨯+==RT pV n 各组分的质量:kg 197kg 24.246245%40%4022H t H =⨯⨯=⨯=M n mkg 97.1378kg 284.246245%20%2022N t N =⨯⨯=⨯=M n mkg 36.2206kg 284.246245%32%32CO t CO =⨯⨯=⨯=M n mkg 44.758kg 444.246245%7%722CO t CO =⨯⨯=⨯=M n m kg 4.39kg 164.246245%1%144CH t CH =⨯⨯=⨯=M n m2.若将密度为830 kg/ m 3的油与密度为710 kg/ m3的油各60 kg混在一起,试求混合油的密度。

设混合油为理想溶液。

解: ()kg 120kg 606021t =+=+=m m m331221121t m 157.0m 7106083060=⎪⎪⎭⎫ ⎝⎛+=+=+=ρρm m V V V33t t m m kg 33.764m kg 157.0120===V m ρ【作业】流体静力学3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。

若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同?解:(1)设备内绝对压力 绝压=大气压-真空度= ()kPa 3.65Pa 1020103.8533=⨯-⨯ (2)真空表读数 真空度=大气压-绝压=()kPa 03.36Pa 103.651033.10133=⨯-⨯4.某储油罐中盛有密度为960 kg/m3的重油(如附图所示),油面最高时离罐底9.5 m,油面上方与大气相通。

在罐侧壁的下部有一直径为760 mm 的孔,其中心距罐底1000 mm ,孔盖用14 mm的钢制螺钉紧固。

若螺钉材料的工作压力为39.5×106 Pa,问至少需要几个螺钉(大气压力为101.3×103Pa)? 解:由流体静力学方程,距罐底1000 mm 处的流体压力为[](绝压)Pa 10813.1Pa )0.15.9(81.9960103.10133⨯=-⨯⨯+⨯=+=gh p p ρ 作用在孔盖上的总力为N 10627.3N 76.04π103.10110813.1)(4233a ⨯⨯⨯⨯⨯-==)-=(A p p F每个螺钉所受力为 N 10093.6N 014.04π105.39321⨯=÷⨯⨯=F因此 )(个)695.5N 10093.610627.3341≈=⨯⨯==F F n12.20 ℃的水以2.5 m/s的平均流速流经φ38 mm ×2.5 m m的水平管,此管以锥形管与另一φ53 mm ×3 mm 的水平管相连。

如本题附图所示,在锥形管两侧A 、B 处各插入一垂直玻璃管以观察两截面的压力。

若水流经A 、B 两截面间的能量损失为1.5 J /kg ,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。

解:在A 、B两截面之间列机械能衡算方程 22121b12b2f 1122p p gz u gz u h ρρ++=+++∑式中 z 1=z2=0,m 0.3b1=um 232.1m 2003.0053.020025.0038.05.222221b121b1b2=⎪⎭⎫⎝⎛⨯-⨯-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=d d u AA u u∑h f =1.5 J/kgkg J 866.0kg J 5.125.2232.1222f 2b12b2b221-=⎪⎪⎭⎫⎝⎛+-=+-=-∑h u u u p p ρ故mm 3.88m 0883.0m 81.9866.021===-gp p ρ 流体输送管路的计算20.如本题附图所示,贮槽内水位维持不变。

槽的底部与内径为100 mm 的钢质放水管相连,管路上装有一个闸阀,距管路入口端15 m处安有以水银为指示液的U管压差计,其一臂与管道相连,另一臂通大气。

压差计连接管内充满了水,测压点与管路出口端之间的直管长度为20 m 。

(1)当闸阀关闭时,测得R=600 mm 、h =1500 mm;当闸阀部分开启时,测得R=400 m m、h =1400 mm 。

摩擦系数λ可取为0.025,管路入口处的局部阻力系数取为0.5。

问每小时从管中流出多少水(m 3)?(2)当闸阀全开时,U管压差计测压处的压力为多少Pa(表压)。

(闸阀全开时L e /d≈15,摩擦系数仍可取0.025。

)解:(1)闸阀部分开启时水的流量在贮槽水面1-1,与测压点处截面2-2,间列机械能衡算方程,并通过截面2-2,的中心作基准水平面,得22b1b21212f 1222u u p p gz gz h ρρ++=+++∑,- (a ) 式中 p 1=0(表) ()(表)Pa 39630Pa 4.181.910004.081.913600O H Hg 22=⨯⨯-⨯⨯=-=gR gR p ρρub 2=0,z2=0 z 1可通过闸阀全关时的数据求取。

相关文档
最新文档