化工原理复习总结知识点

合集下载

化工原理知识点总结期末

化工原理知识点总结期末

化工原理知识点总结期末一、化工原理的基础知识1. 化学反应原理化学反应是指原子或者分子之间的化学变化。

化学反应的类型包括合成反应、分解反应、置换反应和氧化还原反应等。

化学反应速率由浓度、温度、压力、催化剂等因素影响。

2. 化学平衡原理化学平衡是指反应物和生成物的浓度达到一定比例的状态。

根据化学平衡定律,反应物和生成物的浓度比例由反应的热力学性质决定,并受到温度、压力或者浓度的影响。

3. 化学动力学化学动力学研究化学反应速率和反应机理的关系。

根据化学反应速率公式可以推导出各种反应速率与浓度、温度、压力等因素的关系。

4. 化工流程图化工流程图是化工生产过程的图示表示,包括物料流程图、能量流程图和设备图等。

根据化工流程图可以设计化工生产过程,并进行操作控制。

5. 化工物性化工物性包括物质的物理性质和化学性质两个方面。

物质的物理性质包括密度、粘度、熔点和沸点等;物质的化学性质包括化学反应性、溶解度和稳定性等。

6. 化工热力学化工热力学研究能量转化和传递的原理。

根据热力学定律可以推导出系统的能量平衡和热效率等问题。

7. 化工传质学化工传质学研究物质的传输和分离原理。

根据传质学理论可以设计分离设备和传质设备,提高化工生产效率。

8. 化工反应工程化工反应工程研究化学反应的工程化原理。

根据反应工程理论可以设计反应器和催化剂,优化反应条件。

9. 化工系统控制化工系统控制研究化工生产过程的控制原理。

根据系统控制理论可以设计控制系统和自动化装置,提高化工生产的稳定性和可靠性。

10. 化工安全与环保化工安全与环保研究化工生产过程的安全和环保原理。

根据安全与环保理论可以设计安全设备和环保装置,保障化工生产的安全和环保。

二、化工原理的应用1. 化工生产过程化工生产过程包括化学反应、传质过程、分离过程和能量转化过程等。

根据化工原理可以设计化工生产装置和优化生产过程,提高产品质量和降低成本。

2. 化工产品制备化工产品制备包括化工原料的合成、加工和制备等。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理总结期末复习

化工原理总结期末复习

化工原理总结期末复习化工原理是化学工程学科的基础,是化工工程师必须掌握的重要知识。

化工原理包括了化学反应工程、传递现象和热力学三个方面的内容。

在本次的学习中,主要涉及了化学反应工程和传递现象的理论与实践,并对热力学的基本概念进行了回顾与总结。

下面将对这三个方面的知识进行具体的总结和回顾。

一、化学反应工程化学反应工程是化工原理中的重要内容,它研究了化学反应的基本原理、反应动力学以及反应系统的设计和操作。

在化学反应工程中,有几个重要的概念需要掌握。

1. 化学反应平衡化学反应平衡是指在一定条件下,反应物和产物浓度之间达到动态平衡的状态。

平衡常数K是反应系统平衡状态的定量指标,它表示了反应物和产物之间的相对浓度。

平衡常数的计算可通过热力学的方法,如Gibbs自由能和化学势的概念。

2. 反应动力学反应动力学研究的是化学反应的速率和速率方程。

速率方程描述了反应速率与反应物浓度之间的关系,它可以通过实验数据拟合得到。

反应速率受到几个因素的影响,包括反应物浓度、温度和催化剂等。

常用的反应动力学方程有零级、一级、二级反应等。

3. 反应器设计反应器设计是指根据反应动力学和传递现象等知识,选择合适的反应器类型,设计出达到预期反应效果的反应器。

常用的反应器类型有批量反应器、连续流动反应器、固定床反应器等。

反应器设计要考虑多个因素,包括反应器尺寸、热效应、控制方式等。

二、传递现象传递现象是化学反应工程中的另一个重要内容,涉及了物质和能量的传递过程。

在传递现象中,有几个基本概念需要了解。

1. 质量传递质量传递是指溶质从高浓度区向低浓度区的传递过程。

在化学反应工程中,质量传递过程常发生在液相中,如溶质在溶液中的扩散。

质量传递过程受到多个因素的影响,包括浓度差、传质系数等。

2. 热传递热传递是指热量从高温区向低温区的传递过程。

在化学反应工程中,热传递常发生在反应器中,如反应器内部的热量的扩散。

热传递过程受到多个因素的影响,包括温度差、热传导系数等。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

化工原理上 知识点总结

化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。

化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。

化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。

2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。

其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。

3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。

在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。

二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。

物质平衡的基本概念包括输入、输出、积累和转化等概念。

输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。

2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。

物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。

物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。

3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。

例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。

化工原理知识点总结pdf

化工原理知识点总结pdf

化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。

本章将针对化工原理的基础知识进行总结。

1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。

化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。

1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。

在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。

1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。

物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。

1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。

动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。

1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。

质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。

1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。

界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。

第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。

本章将总结化工反应原理的基本知识。

2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。

化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

化工原理知识点总结复习重点

化工原理知识点总结复习重点

化工原理知识点总结复习重点化工原理是化学工程与工艺专业的一门基础课程,主要介绍化学工程与工艺中的物质平衡、能量平衡和动量平衡等基本原理及其应用。

下面是化工原理的知识点总结和复习重点的详细版:1.化学反应平衡-反应物与生成物的化学计量关系-反应的平衡常数与平衡常数表达式- Le Chatelier原理和平衡移动方向-改变反应条件对平衡的影响2.物质平衡-物质守恒定律-化学工程中常见的物质平衡问题-不可压缩流体的物质平衡-反应器中的物质平衡-非理想流动下的物质平衡3.能量平衡-能量的守恒定律-热力学一、二、三定律-热力学方程与热力学性质-各种热力学过程的分析-标准生成焓与反应焓-反应器中的能量平衡4.动量平衡-动量的守恒定律-流体的运动学性质-流体的连续性方程、动量方程和能量方程-流体的黏度、雷诺数与运动阻力-流体的流动模式与阻力系数5.质量传递-质量传递的基本概念和规律-质量传递过程中的浓度梯度-净质量流率和摩尔质量流率-质量传递的速率方程和传质系数-各种传质装置的设计和分析6.物料的流动-流体的本构关系和流变特性-流体的流变模型和流变学方程-各种物料的流动模式和流动参数-孔板、喷嘴、管道等流体动力装置的设计和分析7.反应工程学-反应器的分类与特性-反应速率方程和反应级数-决定反应速率的因素-等温、非等温反应的热力学分析-反应器的设计和分析8.分离工程学-分离过程的基本原理-平衡闪蒸和分馏过程-萃取、吸附和吸附过程-结晶和干燥过程-分离设备的设计和分析9.管道和设备-化工工艺流程图的绘制-管道的基本特性和设计原则-常见流体设备的结构和工作原理-设备的选择、设计和运行控制以上是化工原理的知识点总结和复习重点的详细版。

在复习时,需要重点掌握每个知识点的基本概念、原理和公式,并通过习题和实例进行巩固和应用。

同时,建议结合实际工程问题,加深对知识点的理解和运用能力。

851化工原理知识点总结

851化工原理知识点总结

851化工原理知识点总结一、化工原理基础1、化工原理的定义化工原理是研究化工反应过程、化工设备与化工产品性能的科学。

化工原理学是将物理、化学、工程学和数学原理应用于化工反应过程研究及化工生产的学科。

2、化工反应过程化工反应过程是指物质在化学、物理或生物因素作用下发生变化的过程。

化工反应过程是化工生产的基础。

化工反应原理是全面了解各种原料的物理化学特性,选择工艺条件,确定设备型号和操作要点的基础。

3、化工设备化工设备是进行化学反应、分离、提纯和储存化工产品的机械或设备。

化工设备的主要功能包括:各种化工反应设备、蒸馏器、析取设备、萃取设备、结晶器、过滤设备、离心机、混合、搅拌设备、搬运储存设备。

4、化工产物化工产品是通过工程化工反应和设备工艺过程获得的化学产品。

化工产品对社会的生产和生活有重要作用。

二、化工反应动力学化工反应动力学是研究化工反应速率与反应机理的科学。

化工反应速率是量化描述反应物质浓度与时间的关系。

1、反应动力学理论反应动力学理论是化工原理基础,了解反应动力学理论对化工操作有重要的指导作用。

2、反应速率反应速率是化学物质浓度随时间变化的速率,描述了反应的快慢。

3、反应速率常数与反应级数反应速率常数是描述反应物质转化速率规律的常数,反应级数是衡量化学反应中各参与组分对反应速率的影响程度的方式。

4、反应速率与温度、压力、浓度的关系化工反应速率与温度、压力、浓度的关系是化工操作中需要注意的因素,温度、压力、浓度对反应速率有一定的影响。

5、反应活性能及影响反应活性是指单位时间内1mol反应物所消耗的能量,影响反应活性的因素包括温度、浓度、催化剂等。

6、反应动力学模型反应动力学模型是描述化学反应动力学过程的数学方程。

7、反应机理反应机理是描述反应过程中反应物质转化成产物的详细过程。

三、催化反应催化反应是通过催化剂加速化学反应的过程,催化反应是化工工程中常见的重要反应过程。

催化剂是一种能够降低反应活化能,加快化学反应速率的物质。

化工原理复习总结考点

化工原理复习总结考点

化工原理复习总结考点化工原理是化学工程专业的一门重要基础课程,主要介绍化学工程的基本原理和应用。

它涵盖了化学反应工程、流体力学、传热传质、化工过程控制等内容。

下面是对化工原理复习的总结和重点考点的介绍。

一、化学反应工程1.化学反应动力学:理解反应速率、反应动力学方程、活化能、指前因子等概念,并能利用反应动力学方程进行计算;2.化学平衡:掌握平衡常数的概念与计算方法,理解平衡常数与温度的关系,并能应用到化学反应平衡的计算;3.反应器的设计与操作:了解不同类型的反应器,如连续流动反应器、批式反应器等,掌握反应器设计和操作的基本原理。

二、流体力学1.流体静力学:熟悉流体静力学的基本概念,包括流体的压力、密度、体积等,并能应用到液柱压强、浮力等问题的计算;2.流体动力学:理解流体的运动规律,包括连续性方程、动量方程和能量方程,并能应用到流体流动和传动的计算;3.流态转换:了解流体流动的各种流态,如层流与紊流、临界流速等,并能应用到实际问题的分析。

三、传热传质1.热传导:了解热传导的基本原理和计算方法,掌握导热系数、热阻、热传导方程等概念;2.对流传热:熟悉对流传热的基本原理和换热系数的计算方法,理解纳塞数和普朗特数的概念;3.辐射传热:了解辐射传热的基本原理和计算方法,并理解黑体辐射和灰体辐射的特性;4.传质过程:了解传质的基本原理和计算方法,掌握质量传递系数、浓度梯度等概念,并能应用到传质过程的计算。

四、化工过程控制1.控制系统基础:理解控制系统的基本概念,包括反馈控制、前馈控制、比例、积分和微分控制等,并能应用到控制系统的分析;2.过程变量与控制策略:了解过程变量的基本概念,包括流量、浓度、温度等,并掌握常见的控制策略,如比例控制、比例积分控制、比例积分微分控制等;3.控制器与控制回路:熟悉PID控制器的构造和调节方法,理解控制回路的稳定性和动态响应,并能应用到控制回路的设计与优化。

综上所述,化工原理的复习重点包括化学反应工程、流体力学、传热传质和化工过程控制等内容。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。

一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。

祝你取得好成绩!。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理复习重点

化工原理复习重点

化工原理复习重点化工原理是化学工程学科中的基础课程,是学习和应用化学工程的基础。

下面是化工原理的复习重点:1.化工原理的基本概念:(1)化学工程的定义和发展历史;(2)化学工程的特点和基本任务;(3)化工反应过程的基本特点;(4)化工原理的特点和基本内容。

2.物料平衡:(1)物料平衡的基本原理;(2)闭合系统和开放系统的物料平衡表达式;(3)平行反应体系的物料平衡;(4)反应器的物料平衡;(5)多组分混合物的物料平衡。

3.能量平衡:(1)热力学基础和热力学平衡;(2)封闭系统的能量平衡表达式;(3)开放系统的能量平衡表达式;(4)反应器的能量平衡。

4.流程模拟与优化:(1)流程模拟、优化和控制的基本概念;(2)传质过程的模拟与优化;(3)反应过程的模拟与优化;(4)传热过程的模拟与优化。

5.化工热力学:(1)热力学基础知识回顾;(2)理想气体热力学模型;(3)混合物的热力学性质;(4)化学反应的热力学计算。

6.化工流体力学:(1)流体性质和流体静力学;(2)流体动力学基本方程;(3)流体的流动特性和流动模式;(4)流体工程中的摩擦、阻力和流量计算。

7.化工反应工程:(1)化学反应动力学基本概念;(2)反应速率方程和反应级数;(3)反应器的选择和设计;(4)反应器的理论和实际操作。

8.分离操作:(1)传递过程基本概念;(2)传递过程的质量和能量平衡;(3)分离塔的基本结构和操作原理;(4)萃取、吸附、蒸馏等分离操作的基本原理。

以上是化工原理的复习重点,通过对这些内容的复习,可以对化工原理的基本理论和应用技术有全面的了解,为进一步学习和实践打下坚实的基础。

化工原理知识点复习

化工原理知识点复习

第一章 流体流动 流体静力学密度 不可压缩(恒密度)流体和可压缩性(变密度)流体压力 压强常用单位P8-9 真空度= - 表压 静力学基本方程U 型压差计测得的是修正压强或阻力损失和动能水平之和,水平管测得的是压强差 流体动力学连续性方程柏努利方程 基准、各项单位物理意义g∆Z+∆u 2/2+∆p/ρ=We -∑h f能量转换g∆Z+∆u 2/2+∆p/ρ=0有效功率 N e =W e W=W e V ρ 轴功率 N=N e /η 流动阻力直管阻力+局部阻力 直管阻力粘性:年顿粘性定律(层流时的牛顿型流体) 液体:T 增大,μ减小 μ液体> μ气体气体:T 增大,μ增大动力粘度μ SI 制:Pa·s运动粘度μ :粘度μ与密度之比 SI 制:m 2/s流动型态 层流Re≤2000 u=u max /2 λ=64/ReRe>4000湍流区:λ=φ(Re 光滑管:Re=3×103~1×105 λ=0.3164/Re 0.25 完全湍流区:λ=λ(ε/d) 局部阻力 ζ进口 = 0.5 ζ出口 = 1总阻力等径管)(2112z z g p p -+=ρ变径管:∑h f =∑h f1+∑h f2+∑h f3+…. 流速与流量的测量 测速管(皮托管):测量点速度 孔板流量计:恒截面、变压差文丘里流量计:恒截面、变压差;能量损失小,造价高 转子流量计:恒压差、恒流速、变截面第二章 流体输送机械 离心泵结构 叶轮作用 静压能增大和动能增大分类 ① 闭式② 半闭式③敞式泵壳作用 :汇集由叶轮抛出的液体;动能→静压能)。

气缚现象性能参数:流量/扬程/有效功率/轴功率 Ne=WeW=WeVρg/g=ρgVH 轴功率N=Ne/η=ρgVH/η泵的进口处安_真空表_,泵出口处安_压力表_和_出口阀门_,而在出口处,_出口阀门_必须安在_压力表_之前,在出口管路上还应安装测量_流量_的仪表 2. 离心泵的特性曲线p67转速n 一定时,由实验测得H ~V ,Na ~V ,η~V ,这三条曲线称为特性曲线,由泵制造厂提供。

(完整word版)化工原理各章知识点汇总

(完整word版)化工原理各章知识点汇总
重要理论
连续性方程(依据): ;对不可压缩流体,有:
伯努利方程(依据): (无输送机械管路)
直管阻力: ;阻力系数:
局部阻Hale Waihona Puke :流体输送机械
概念
气缚;汽蚀;最大允许安装高度;管路水锤;压缩比;动风压;静风压;极限真空;抽气残率;离心泵工作点
基本理论
(或知识点)
管路特征方程;离心泵主要构件;离心泵性能曲线;叶轮类型;泵效率主要影响因素;离心泵流量调节;离心泵组合特性曲线;最大允许安装高度;输送机械分类;往复泵流量特点、计算及其调节;
重要理论
相平衡方程:
连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):
逐板计算法;
气液
传质
设备
概念
液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料的特性(比表面积、空隙率、几何形状)
基本理论
(或知识点)
传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;
颗粒沉降速度:
斯托克斯区:
牛顿区:
降尘室生产能力;
传热
概念
载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;
基本理论
(或知识点)
传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率方程;热阻分析;黑体辐射热流量;

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 化工原理简介:化工原理是研究化学反应过程及其工艺条件、能量传递和物料传递等基本规律的学科,为化学工艺的设计、改进和优化提供理论基础。

2. 化学反应动力学:研究化学反应速率与反应物浓度、温度、压力等因素的关系。

常用动力学模型有零级、一级和二级反应动力学模型。

3. 热力学:研究物质在不同条件下的热力学性质,如焓、熵、自由能等。

常用的热力学模型有理想气体模型、理想溶液模型等。

4. 质量守恒:化工过程中,物料的质量总量在任何情况下都是保持不变的。

质量守恒方程可以用来描述物料在化工过程中的流动和转化。

5. 能量守恒:能量守恒是指在化工过程中能量的总量保持不变。

能量守恒方程可以用来描述能量的传递和转化。

6. 流体力学:研究流体的性质和流动规律。

常用的流体力学方程有连续性方程、动量方程和能量方程。

7. 反应器设计:根据反应动力学和热力学的知识,设计和选择适当的反应器,以实现期望的反应效果。

8. 分离工艺:将化工过程中的混合物分离成纯净的组分。

常用的分离方法包括蒸馏、萃取、吸附、结晶、膜分离等。

9. 催化剂:催化剂能够加速化学反应速率,同时不参与反应本身。

催化剂通常提供合适的活化能降低剂量。

10. 传热:研究热量在物体之间传导、对流和辐射的过程。

传热过程是化工过程中能量交换的重要方面。

11. 反应平衡:当化学反应达到一种稳定状态时,正向反应与反向反应的速率相等。

反应平衡可以根据平衡常数来描述。

12. 操作过程安全:化工过程中需要注意操作过程的安全,如避免爆炸、毒性物质的泄露等。

合理设计和控制工艺参数是保证操作过程安全的关键。

13. 环境保护:化工过程中需要注意减少对环境的污染和危害。

合理的废物处理和资源利用是环境保护的重要内容。

14. 化工装置:化工装置是指用来进行化工过程的设备和设施,例如反应器、分离设备、传热设备等。

15. 工艺流程图:用图形和符号表示化工过程的流程、设备和物料流动方式,便于理解和分析工艺过程。

化工原理的知识点总结

化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。

在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。

常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。

2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。

反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。

通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。

3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。

反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。

通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。

二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。

传热原理主要包括热传导、对流传热和辐射传热三种方式。

热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。

2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。

传质原理主要包括扩散、对流传质和表面传质。

扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。

三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。

在化工过程中,流体的性质对设备设计和流体流动有重要影响。

流体的主要性质包括黏度、密度、表观黏度、流变性等。

2. 流体流动流体流动是指流体在管道或设备内部的运动过程。

流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

必须汽蚀余量:(NPSH)r 离心泵的允许吸上真空度:
离心泵的允许安装高度Hg(低于此高度0.5-1m): 关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机。
四、工作点及流量调节:
管路特性与离心泵的工作点: 由两截面的伯努利方程所得
全程化简。
联解既得工作点。 离心泵的流量调节:
汽蚀现象:汽蚀现象是指当泵入口处压 力等于或小于同温度下液体的饱和蒸汽压时, 液体发生汽化,气泡在高压作用下,迅速凝 聚或破裂产生压力极大、频率极高的冲击, 泵体强烈振动并发出噪音,液体流量、压头 (出口压力)及效率明显下降。这种现象称 为离心泵的汽蚀。 二、特性参数与特性曲线: 流量 Q:离心泵在单位时间内排送到管路系 统的液体体积。 压头(扬程)H:离心泵对单位重量(1N) 的液体所提供的有效能量。
厚度随Re 值的增加而减小。
层流时的速度分布
u

1 2 umax
湍流时的速度分布
u 0.8u max
四、流动阻力、复杂管路、流量计:
计算管道阻力的通式:(伯努利方程损失能)
范宁公式的几种形式: 圆直管道
hf
l u2 d2
非圆直管道
p f
W f
l d
u 2 2
运算时,关键是找出 值,一般题目会告诉,仅用于期末考试,考研需扩充
应用解题要点:
1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相匹配。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 流体流动
常温下水的密度1000kg/m3,标准状态下空气密度 kg/m3 1atm =101325Pa====760mmHg
(1)被测流体的压力 > 大气压 表压 = 绝压-大气压
(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 静压强的计算 柏努利方程应用
层流区(Laminar Flow ):Re < 2000;湍流区(Turbulent Flow ):Re > 4000; 2000 <Re < 4000时,有时出现层流,有时出现湍流,或者是二者交替出现,为外界条件决定,称为过渡区。

流型只有两种:层流和湍流。

当流体层流时,其平均速度是最大流速的1/2。

边界层:u<
阻力损失:直管阻力损失和局部阻力损失 当量直径d e
管路总阻力损失的计算
突然缩小局部阻力系数ζ= ,突然扩大局部阻力系数ζ= 1。

流体输送管路的计算:
通常,管路中水的流速为1~3m/s 。

并联管路, 各支管的阻力损失相等。

毕托管测量流速
测量流量: 孔板流量计, 文丘里流量计, 转子流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

第2 章 流体流动机械
压头和流量是流体输送机械主要技术指标
离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置
f
e h u p gz h u p gz +++=+++222221112121ρρ
f e H g
u z g p H g u z g p +++=+++2222
222111ρρμ
ρ
du =
Re 222'2
e 2e 2u
d l l u d l l u d l h h h f f f ⎪⎪⎭
⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝
⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ
离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

半闭式和开式效率较低,常用于输送浆料或悬浮液。

气缚现象:贮槽内的液体没有吸入泵内。

启动与停泵
灌液完毕,关闭出口阀,启动泵,这时所需的泵的轴功率最小,启动电流较小,以保护电机。

启动后渐渐开启出口阀。

停泵前,要先关闭出口阀后再停机,这样可避免排出管内的水柱倒冲泵壳内叶轮,叶片,以延长泵的使用寿命。

离心泵总是采用后弯叶片。

泵的有效功率及效率:
泵的有效功率Ne ,kW ,用下式表示。

Ne =HeQ ρg 泵的效率η:泵轴通过叶轮传给液体能量过程中有能量损失。

泵的效率η为有效功率与轴功率之比,而轴功率N 为电动机输入离心泵的功率。

影响离心泵的效率,主要是容积损失、水力损失和机械损失。

离心泵的特性曲线 :
扬程-流量曲线H ~Q 线、 轴功率-流量曲线N ~Q 线、
效率-流量曲线η~Q 线,具体图形见下图。

*****离心泵牌铭上的额定功率、额定流量和扬程是指效率最高时的值。

调节流量方法有调节管路特性曲线(调节阀门流量)和泵特性曲线(改变泵的转速或叶轮直径)。

用阀门调节流量操作简便、灵活,故应用很广。

H 单< H 串< 2H 单, Q 单< Q 串< 2Q 单 总效率与流量为Q 串时单泵的效率相同。

H 单< H 并< 2H 单, Q 单< Q 并< 2Q 单。

并联泵的总效率与每台泵的效率相同。

汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。

各种泵:
耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体。

油泵: 输送不含固体颗粒、无腐蚀性的油类及石油产品。

杂质泵: 常输送悬浮液.
O
Q qv H
H 1
管路h e ~ Q 离心泵的工作点
泵H ~ Q
泵 ~ qv
ηg P
z A ρ∆+
∆=A
N Q gH N Ne e ρη==
液下泵:在化工生产中有着广泛应用,安装在液体贮槽内。

屏蔽泵:常输送易燃、易爆、剧毒及放射性液体。

第3章 非均相物系的分离与固体流态化
影响沉降速度的因素:当颗粒浓度增加,沉降速度减少。

容器的壁和底面,沉降速度减少。

非球形的沉降速度小于球形颗粒的沉降速度。

旋风分离器,排灰口密封不好而发生漏气,即外面空气窜入旋风分离器内,则上升气流会将已沉降下来的尘粒重新扬起,大大降低收尘效果。

降尘室处理能力(流量)的计算 V s = Au t =blu t ,V s (隔板)= (n+1)V s (无隔板) (n 层)
Stokes 区:
过滤之初,液体浑浊。

但颗粒会在孔道内很快发生“架桥”现象,滤液由浑浊变
为清澈。

在滤饼过滤中,真正起截留颗粒作用的是滤饼层而不是过滤介质。

助滤剂能形成结构疏松、空隙率大、不可压缩的滤饼。

板框压滤机、叶滤机、厢式压滤机、转筒真空过滤机(操作连续、自动) 叶滤机 (dV/d θ)w =(dV/d θ)E 板框压滤机 (dV/d θ)w =(dV/d θ)E /4
过滤速率基本方程
恒速过滤,
恒压过滤
先非恒压,再恒压过滤(了解)
第4章 传热
传热的基本方式:
(1)热传导(2)对流传热—热对流 (3)辐射传热
φμr p K ∆=2)(2e q q K d dq u +==θθK qq q e =+22θ
222KA VV V e =+)()(2)(11212ττ-=-+-K q q q q q e )
()(2)(121212ττ-=-+-KA V V V V V e A
dV dq =
μ
ρρ18)(2min g
d u p p t -=
工业上大量使用热交换器,传热设备在化工厂设备投资中占很大比例,有些达40%左右。

工业换热的方法
1、直接接触式换热
2、蓄热式换热
3、间壁式换热
蓄热式换热,只适用于气体。

常见加热剂有热水、饱和水蒸气、矿物油、联苯混合物、熔盐和烟道气。

常见冷却剂有水、空气和各种冷冻剂。

载热体的选择
(1)载热体的温度应易于调节;
(2)载热体的饱和蒸气压要低(沸点高),不易分解; (3)载热体的毒性要小,使用安全,腐蚀性小; (4)载热体应价格低廉且容易得到。

金属杯和陶瓷杯,哪个更保温
流体湍流流动给热系数大于层流流动。

加热器放置在空间的下部,冷却器放置在空间的上部。

各因次准数的物理意义:普兰德准数Pr 它反映流体物性对给热过程的影响 圆形直管内强制湍流的给热系数
圆筒壁的总传热系数
如果外侧热阻比内侧热阻小得多,壁温接近于外侧温度。

而外壁有污垢热阻后,外侧热阻比内侧热阻大得多,壁温接近于内侧温度。

增大传热面积A 常用的方法:用小直径管,采用翅片管、螺纹管等代替光滑管,可以提高单位体积热交换器的传热面积。

熟记公式:1.傅立叶定律
2.一维稳态导热
n
d
Pr Re 023.08.0λ
α=2
2121221212111
111αλδααλδα+⋅+⋅=+⋅+⋅=
=m m d d d d A A A A K K ⎪⎩⎪⎨
⎧圆筒壁平壁
A b t t Q λ2
1-=λ
πL r r t
t Q 2ln 1221-=
3.牛顿冷却定律
4.管内湍流时:
适用范围:光滑管,Re>104,<Pr<160;充分发展段,即L/d50或60;低粘度(<2水)
定性温度:2出
进t t t m +=
定性尺寸:管内径
5.总传热速率方程 1)总传热系数K :
2)传热面积A :套管换热器: 列管换热器: 3)传热平均温度差(对数平均温度差): 6.热平衡方程:
无相变化时:)()(1221t t C W T T C W Q c m mc h p mh -=-= 有相变时:r W R W Q mc mh ==
i
o K
αα111+=污垢热阻可忽略时 o
K α≈i
K α≈i
o ααππo
i ααππ结论:K 的值总是接近热阻大的一侧的α值。

金属壁的热阻可略
()
t t A Q w -=α⎩⎨
⎧===被冷却被加热
3.04.0Pr Re 023.08.0n n Nu n n
p c du d )
((023.08.0λ
μμρλα=2
.08
.0d
u ∝αi
o
i i o i m o o o d d d d R d bd R K αλα111++++=1
2
1
2ln t t t t t m ∆∆∆-∆=
∆dl A π=dl n A π=m
t KA Q ∆=。

相关文档
最新文档