无功补偿技术培训-动态补偿
动态无功补偿技术的应用现状及发展趋势
动态无功补偿技术的应用现状及发展趋势动态无功补偿技术是电力系统中的一项重要技术,它通过对电网中的无功功率进行控制和调节,能够提高电力系统的稳定性和可靠性。
本文将以动态无功补偿技术的应用现状及发展趋势为主题,对动态无功补偿技术的基本原理、应用领域、发展趋势等进行探讨。
一、动态无功补偿技术的基本原理动态无功补偿技术是通过控制电容器的接入和退出,实现对电网中无功功率的补偿。
当电网中存在较大的无功功率时,通过接入适量的电容器,可以提供无功功率,改善电网功率因数;而当电网中无功功率较小或为负值时,可以通过退出电容器来吸收多余的无功功率,维持电网的稳定运行。
二、动态无功补偿技术的应用领域动态无功补偿技术广泛应用于电力系统中,特别适用于以下场景:1.大型工业企业:工业生产中往往存在较大的无功功率,通过动态无功补偿技术可以改善电网的功率因数,降低电网的无功损耗,提高电力质量。
2.电力系统调度:电网运行中,由于负荷变化或电源接入退出等原因,电网中的无功功率波动较大。
通过动态无功补偿技术可以实时调节电网的无功功率,保持电网的稳定运行。
3.新能源接入:随着可再生能源的快速发展,如风电和光伏发电等,这些电源的接入会对电网的无功功率产生影响。
通过动态无功补偿技术可以有效控制电网的无功功率,提高电网的稳定性和可靠性。
三、动态无功补偿技术的应用现状国内外对动态无功补偿技术的研究和应用已取得了显著的进展。
在国内,动态无功补偿技术已广泛应用于电力系统中,取得了良好的效果。
许多大型工业企业和电力系统调度中心都采用了动态无功补偿装置,有效提高了电网的稳定性和可靠性。
在国外,欧洲、美国、日本等发达国家也广泛应用了动态无功补偿技术,并在此基础上进行了深入研究,提出了一系列的改进措施和新技术,如自适应控制、多级补偿等,进一步提高了动态无功补偿技术的性能和可靠性。
四、动态无功补偿技术的发展趋势随着电力系统的规模不断扩大和负荷特性的变化,对动态无功补偿技术提出了更高的要求。
无功补偿知识培训
预充触头来抑制冲击电流。 5、热电器:过热、过载保护。
第七章 发电市电补偿转换原理
1、发电市电补偿自动转换改造背景。 2、改造所需材料。 3、改造原理。
第二章 无功补偿方式分类
1. 延时投切方式 延时投切方式即人们熟称的“静态”补偿方式。
这种投切依靠于传统的接触器的动作,我们公 司现采用的是CJ19和CJ20投切电容的专用接触 器,它具有抑制电容的涌流作用,延时投切的 目的在于防止接触器过于频繁的动作时,电容 器造成损坏,更重要的是防备电容不停的投切 导致供电系统振荡,这是很危险的。
过程并能量又有较大的变化,我们把它称为瞬
的意义及补 偿容量的算法
1、提高功率因数的意义 ①、改善设备的利用率。 ②、提高功率因数可减少电压损失。 ③、可减少线路损失。 ④、可提高电力网的传输能力。 2、确定补偿容量的算法 ①、从提高功率因数需要提高确定补偿容量。
②、从降低线损需要来提高确定补偿容量。 ③、从提高运行电压需要来确定补偿容量。 ④、用补偿当量确定补偿容量。
第四章 无功功率控制器
无功功率补偿控制器有三种采样方式,功率因 数型、无功功率型、无功电流型。选择那一种 物理控制方式实际上就是对无功功率补偿控制 器的选择。控制器是无功补偿装置的指挥系统, 采样、运算、发出投切信号,参数设定、测量、 元件保护等功能均由补偿控制器完成。
无功补偿知识培训
主讲人:李 才 时 间:2011.09.06
目录
1、无功补偿作用 2、无功补偿方式分类 3、提高功率因数的意义及补偿容量的算法 4、无功功率控制器 5、控制器参数调整 6、主要元器件的作用与特点 7、发电市电补偿转换原理
SVG动态无功补偿培训教程
SVG动态无功补偿培训教程SVG(Static Var Generator)是一种用于无功补偿的静态设备,能够实时调节无功功率并保持系统功率因数在设定值范围内。
这种设备在电力系统中广泛应用,用于提高电网的稳定性和电能质量。
因此,学习SVG动态无功补偿的培训教程对于电力工程师和相关领域的从业人员来说是非常重要的。
一、SVG动态无功补偿的原理与作用SVG动态无功补偿的原理是通过控制其电流输出来改变电网的无功功率,进而调节系统的功率因数。
SVG通过控制其电压和电流的相位差来实现无功补偿。
当电网需要补偿无功功率时,SVG能够主动增加无功功率;当电网需要吸收无功功率时,SVG能够主动减少无功功率。
通过实时调节无功功率,SVG可以保持电网的功率因数在设定值范围内并提高电能质量。
二、SVG动态无功补偿的优点1.快速响应:SVG能够在毫秒级别实现无功功率的调节,相比传统的无功补偿设备(如电抗器和电容器),响应速度更快,能够更好地应对电网负荷的变化。
2.精准补偿:SVG能够精确控制无功功率的调节量,使系统维持在设定的功率因数范围内。
无论是低负载还是高负载时,都能够有效地补偿无功功率。
3.减少损耗:SVG通过保持系统功率因数在最佳范围内,减少了输电线路和电气设备的损耗,提高了电能的利用效率。
4.提高电能质量:SVG能够消除电网的谐波和提供电压稳定性,改善电网的电能质量,减少电能质量问题对终端设备的影响。
三、SVG动态无功补偿的应用1.电厂:SVG能够调节并补偿电厂的无功功率,提高电站的稳定性和可靠性。
2.变电站:SVG能够控制变电站的无功功率,改善电网的功率因数,减少无功功率引起的负荷损耗。
3.工业设备:SVG能够提供稳定的无功功率补偿,改善电能质量,降低电机的运行成本。
4.输电线路:SVG能够减少输电线路的无功功率损耗,降低能耗并提高输电效率。
四、SVG动态无功补偿的调试和维护为了确保SVG动态无功补偿系统的正常运行,需要进行调试和维护。
无功补偿控制器及动态补偿装置工作原理
无功补偿控制器及动态补偿装置工作原理1.无功补偿控制器的目标是维持电网的功率因数在良好范围内,并最大限度地减少无功功率的损耗。
为实现这个目标,控制器通过检测电网的功率因数来判断是否需要进行无功补偿以及补偿的大小。
当电网的功率因数低于设定值时,控制器发出指令,启动无功补偿装置,将电网中的无功功率与之相等的有功功率引入电网,从而提高功率因数。
2.无功补偿控制器采用了先进的电力电子技术,通过与无功补偿装置的通信以及对电网的监测,实现对电网无功功率的精确控制。
控制器通过测量电网的电压和电流来计算出电网的功率因数,并与设定值进行比较。
当功率因数偏离设定值时,控制器发出相应的指令,控制无功补偿装置进行补偿。
3.在电力系统中,无功补偿控制器还可通过调节无功功率的大小和相位来实现更精确的无功补偿。
控制器可以根据电网的需求和运行状态,调整无功补偿装置的输出功率,并确保无功功率的补偿与电网的负荷变化相匹配。
此外,控制器还可以通过改变无功补偿装置的输出电流相位角来实现无功功率的引入或者吸收,以进一步控制电网的功率因数。
4.无功补偿控制器在工作过程中还需要考虑到电网的稳定性和可靠性。
当电网的频率和电压发生波动时,控制器应具备相应的保护机制,及时判断是否需要调整无功补偿装置的补偿策略,并采取相应措施以保证电网的稳定运行。
动态补偿装置工作原理:动态补偿装置是无功补偿的一种重要技术手段,其工作原理主要包括以下几个方面:1.动态补偿装置通过实时检测电网的无功功率和功率因数,并与设定值进行比较,来判断是否需要进行无功补偿。
当电网的无功功率超过设定值时,动态补偿装置通过控制器发出指令,启动相应的无功补偿设备,并将其输出与电网中的无功功率相抵消,从而实现无功功率的补偿。
2.动态补偿装置采用了高速开关技术,通过将无功功率与之相等的有功功率引入电网,在实时响应电网无功功率的变化,快速调整补偿功率和补偿相位,以满足电网的补偿要求。
3.动态补偿装置还可以实现对电网的谐波抑制和电压调节。
10KV高压动态无功补偿技术协议要点
10KV高压动态无功补偿技术协议要点一、背景高压电力系统中,电流和电压之间的相位差引起了无功电能的流失,使得电力系统效率低下。
传统的无功补偿器通常采用静态方式进行无功补偿,效果不佳。
而采用动态无功补偿技术,可以有效地提高电力系统的效率,减少电能的损耗,降低系统损耗和能源消耗。
二、技术原理动态无功补偿技术基于功率电子技术,通过瞬时响应的无功电流,来实现对电压和功率因数的控制。
这种技术能够在瞬间感知到状态改变,快速响应实现调节,并能够适应不同负荷情况,使得电力系统在不同情况下都能够保持较佳的效率。
三、技术要点1.高效的响应能力:动态无功补偿器能够大幅提高响应速度,实现快速的无功补偿。
这种技术的响应速度通常在20ms以内,对于电力系统来说非常重要。
2.精准的电气参数控制:动态无功补偿器能够精确地控制电气参数,比如电压、电流、功率因数等,确保电力系统的稳定性和高效性。
3.自适应控制能力:动态无功补偿器具有自适应控制能力,能够自动适应电力系统的负荷变化,从而实现对功率因数的自动调节。
4.可靠的保护机制:动态无功补偿器还具有完善的保护机制,可以监测电力系统的工作状态,一旦出现异常情况,能够自动切断电力系统的连接,保护设备和人员的安全。
四、应用范围动态无功补偿技术主要应用于中、高压电力系统中,特别是适用于电容器、感性负载等需要进行无功补偿的场合。
在电网运行、电压稳定、电力质量、室内外电气设备等方面,都有着广泛的应用。
五、同时考虑的问题在使用动态无功补偿技术时,还需要考虑配合使用电力设备的其它技术,比如中压柜、高压电机、电力电子等,以实现对整个电力系统的协调运行和优化控制。
六、动态无功补偿技术作为现代电力系统中的一种新型技术,能够提高电力系统的效率,减少无功电能的流失,从而减少能源消耗,是现代电力系统运行的重要组成部分。
通过对技术原理、技术要点和应用范围的了解,我们能够更好地使用其优势,提升电力系统的效率和可靠性,实现更好的能源利用和环境保护。
SVG无功补偿系统培训
• 8、将SVG转换开关打到“投入”状态,观察调节装置三相直流电压值, 监控装置SVG链节电压以及有无告警信息出现,一切正常无告警则正常 运行,否则将SVG转换开关打到“自检”状态,分析故障原因,待排除 故障后再投入SVG。
• 在电力系统中除发电机是无功功率的电源外,线 路的电容也产生部分无功功率。在上述两种无功 电源不能满足电网无功功率的要求时,需要加装 无功补偿装置。
无功补偿装置的作用?
• 改善功率因数 • 改善电压调节 • 调节负载的平衡性
无功补偿的基本原理
把具有容性功率负荷的装置与感性功率负 荷,并联接在同一电路;当容性负载释放能量 时,感性负荷吸收能量;而当感性负荷释放能 量时,容性负荷却在吸收能量;能量在两种负 荷之间交换。
SVG退出运行操作步骤
• 1、将SVG转换开关打到“自检”状态; • 2、断开旁路接触器; • 3、断开SVG断路器; • 4、关闭SVG风机; • 5、打开SVG隔离开关、合隔离开关接地刀
SVG维护注意事项
• SVG运行时,严禁打开启动柜柜门以及功率柜 柜门,避免发生事故。如需对启动柜、功率 柜内的部件进行检修,须断开SVG上级断路器、 拉开SVG上级隔离并将隔离开关接
直流电容
SVG控制系统工作方式
• SVG控制系统共有3种工作方式,分别是:“投入”、“自 检”、“退出”。工作方式切换通过SVG控制屏前板所设 置转换开关完成。
• 在“投入”模式下,SVG控制系统所有装置均正常工作, 能够实现功率单元的正常触发、监测和SOE记录。
变压器 动态无功补偿
变压器动态无功补偿
变压器的动态无功补偿是一种用于改善电力系统功率因数和电能质量的技术。
它通过在变压器的低压侧或高压侧接入无功补偿装置,实现对无功功率的实时补偿。
动态无功补偿的主要作用包括:
1. 提高功率因数:无功补偿装置可以向电网提供无功功率,减少无功功率的流动,从而提高系统的功率因数。
这有助于减少电网的无功负担,降低电网损耗,提高电网的传输效率。
2. 稳定电压:无功补偿装置可以对系统中的无功功率进行快速响应和补偿,有助于稳定电网电压。
它可以减少电压波动和闪变,提高供电质量,保护电气设备的正常运行。
3. 节能降耗:通过提高功率因数,减少无功功率的流动,可以降低电网的电能损耗。
这有助于节约能源,降低电力成本。
4. 改善电能质量:动态无功补偿可以抑制谐波,减少无功电流引起的谐波污染,提高电能质量。
它有助于保护电气设备免受谐波干扰,提高设备的运行效率和寿命。
在实际应用中,动态无功补偿通常采用电容器组、电抗器、静态无功发生器(SVG)等装置来实现。
这些装置可以根据电网的无功需求自动进行补偿,实现无功功率的快速调节和平衡。
需要注意的是,在选择和应用动态无功补偿装置时,应根据具体的电网条件、负载特性和补偿要求进行综合考虑,以确保补偿效果和系统的安全稳定运行。
同时,定期的维护和监测也是确保无功补偿装置正常工作的重要环节。
动态无功补偿技术要求1
动态无功补偿技术要求一、采用标准GB50227-95 《并联电容器成套装置设计规范》GB3986.2-89 《高压并联电容器》JB7111-93 《高压并联电容器装置》DL/T604-1996 《高压并联电容器装置订货技术条件》《高压并联电容器串联电抗器订货技术条件》JB5346-1998 《串联电抗器》GB 6450-86 《干式电力变压器》GB/T15576 《低压无功功率补偿装置总技术条件》GB4208-1993 《外壳防护等级(IP代码)》GB12747 《自愈式低压并联电容器》以上标准规范应执行最新版本一般技术参数要求系统标准电压:0.4KV额定绝缘电压:1KV额定频率:50Hz电容器接线型式:内三角型相数:3功率因数:0.95以上补偿方式:三相共补二、总体技术要求1.应采用单独可控硅模块实现对多级电容器组的无触点、无浪涌、无过渡投切;2.要求触发系统采用光电触发方式,实现一次系统和二次系统隔离,解决谐波干扰问题,高可靠性,控制简单,技术达到国际先进水平;3.实现电流过零投切,电容投切过程中无浪涌冲击、无操作过电压、无电弧重燃现象,使用寿命长;4.能够根据负荷无功功率的大小及功率因数的实际运行水平自动投切,动态补偿无功功率,响应速度小于20ms,保证系统功率因数在0.95以上。
5.补偿装置要求一次系统主要元件:可控硅、电容器、电抗器、快速熔断器等采用单相设计器件,全部连接于角内回路,实现真正的电容过零投切并做到控制简单,设计合理及高可靠性工作。
6.动态抑制系统谐波,针对电力系统谐波源影响,要求采用光触发控制和谐波抑制技术,保证可靠、安全运行。
7.对控制器、电抗器、驱动器进行特殊设计,要求选用串联电抗器,从根本上解决与系统发生串联、并联谐振,避免使谐波放大,实现无功补偿的谐波抑制并举的功能,操作没有涌流和过电压,可任意频繁操作。
可自动手动切换,输出编码为1:2:4:4方式投切。
8.控制器实现全数字化,大屏幕液晶显示,以及各种电能参数;具有联网通讯功能,控制应具有高可靠性,而且操作简单,与系统联结时,不需要考虑交流系统相序,不会因为相序接错而带来烧坏可控硅或其他器件的现象;9.为了便于操作、观察监视,要求控制器界面在补偿器正面柜门上显示,做到不用开门即可进行控制器参数设置、调整,保护操作人员人身安全;10.能就地补偿、稳定系统电压、抑制电压闪变,改善电能质量;11.根据负载无功和负荷波动情况,在规定的动态响应时间内,多级补偿一次到位;12.补偿器保护措施齐全,自动化程度高,能在外部故障或停电时自动退出工作,送电后能自动恢复运行,整套设备设有过电压、欠压、过流等保护。
动态无功补偿装置及其于电网意义基础知识讲解
课前引导
风场与光伏电站无功补偿的必要性
适合开发风电、光伏的地区一般都处于电网末端,此处电网架构比较薄 弱,风电的并入会对电网产生重要影响 ,其中最突出的问题就是风电场的并 网引起系统无功的变化,进而影响系统电压,甚至可能导致电压崩溃。因此, 需要对风电场、光伏电站进行无功补偿以改善无功状况,从而达到改善系统和 风电场、光伏电站的电压水平的目的。
电能转换 (负载)
无功功率补偿的概念与意义
功率因数:有功功率出力在设备容量中所占的比重。
0 cos 1.0
功率三角形
S Q
S2 Q2 P2 P S cos
Q S sin
P
P S 或 cos
1.0
节电:
Q0
无功功率补偿的概念与意义
➢自然功率因数
负荷自然功率因数:无功补偿前负荷的功率因数
波形和相量图
Us
滞后的电流
IL
Us
UI
IL UI jxIL
(c) UI < Us
UI Us
IL 超前的电流
IL Us jxIL UI
(b) UI > Us
UI
没有电流
Us
Us
UI
(a) UI = Us
说明
UI = Us,IL = 0,SVG不吸发无 功。
UI > Us,IL为超前的电流,其 幅值可以通过调节UI来连续控 制,从而连续调节SVG发出的无 功。
SVG与SVC的对比
与相控电抗器TCR和磁阀控制电抗器MCR相比,SVG的具有明显性能优势: SVG能耗小,相同调节范围下,SVG的损耗只有MCR的1/4,TCR的1/2,
运行费用低,更节能环保; SVG是电流源型装置,主动式跟踪补偿系统所需无功;从机理上避免了大
动态补偿和静态补偿
动态补偿与静态补偿在我们的供配电系统当中,无功功率对供配电系统和负载的安全、有效的运行,是非常重要的。
在电力系统中,大部分变电设备和用电设备的阻抗是感性的,也就意味着它们需要消耗无功功率,很显然,这些无功功率通过供电系统由发电机提供并且通过长距离的传送是非常不合理的,在大容量的系统中也是不可能的,所以,合理的方法就是在需要无功功率的地方向系统提供无功,即我们平时所说的无功补偿。
无功补偿在系统中是必不可少的,它的主要作用是提高供配电系统的功率因数,从而提高输电设备和变电设备的利用率,提高用电效率,降低用电成本;另外,在长距离输电线路中,在合适的地点加装动态无功补偿装置,还可以改善输电系统的稳定性,提高输电能力,稳定受电端及电网的电压。
产生无功功率的方法有三种:1、早期的典型代表为同步调相机,体积庞大造价高,已渐渐淘汰;2、第二种是并联电容器的方法,主要的优点是成本低,易于安装使用,但是需要根据系统可能存在谐波等电能质量问题,根据不同用户的供电情况、负荷情况、电压等级等条件,进行设计;串联电抗器的电容器补偿装置是提高功率因数Z广泛的一种方式,当用户系统负荷为连续性生产,负载变化率不高时,一般建议采用FC的固定补偿方式,也可以采用由接触器控制的分步投切的自动补偿方式(例如50kvar、100kvar、200kvar、600…),这个对于中压、低压供配电系统都适用;主要应用在大部分的用电场所,石油化工、水处理、公共建筑、水泥、造纸等。
当负荷变化较快,或者为冲击性负荷时,需要快速补偿,例如橡胶行业的密炼机,通常在1-2分钟内系统对于无功功率的需求从0kvar上升至1500kvar,然后又下降至0kvar。
但是由于一般的无功自动补偿系统所采用的电容器,从运行状态断开,退出电网后,在电容器的两极之间存有残压,残压的大小无法预知,需要1-3分钟的放电时间,所以再次投入电网的间隔至少要等到残压通过电容器内部的放电电阻消耗至50V以下时才能进行第二次投入使用,所以无法做到快速响应;另外,由于系统存在大量谐波,由电容器串联电抗器组成的LC调谐式滤波补偿装置需要大容量的投入来保证电容器的安全,但是同时也有可能造成系统过度补偿,呈容性;于是,也就有了通常所说的静止功补偿装置:(SVC---Static Var Compensator)诞生了,其典型的SVC代表是由TCR(Thyristor Controlled Reactor)+FC(Fixed Capacitor)组成的,即晶闸管控制电抗器+固定电容器组(通常需要串联一定比例的电抗器),静止无功补偿装置的重要性是它能够通过调节TCR中晶闸管的触发延迟角来连续调节补偿装置的无功功率;SVC这种补偿形式目前主要在中高压配电系统中应用,对于负载容量大、谐波问题严重、冲击性负荷、负载变化率高的场合特别适用,例如钢厂、橡胶、有色冶金、金属加工、高铁等;除了SVC,还有TSC(Thyristor Switch Capacitor),即晶闸管投切的电容器组,采用晶闸管来代替接触器的快速投切方式,主要使用在低压配电系统,例如焊接设备特别多的汽车制造、造船、机械加工等;MCR(Magnetic Controlled Reactor)即磁阀式可控电抗器,通常与FC配合使用。
无功补偿技术培训-动态补偿
故该补偿器可以补偿的电压下降为
3.3 动态无功功率补偿的原理
★例: 吸收50Mvar容性无功功率时补偿器电压下降0.05pu ,则:
当电源电压下降5%时补偿器所吸收的容性无功功率为: 当电源电压上升5%时补偿器所吸收的感性无功功率为:
3.3 动态无功功率补偿的原理
可见 ,所需容量分别比理想补偿器所需容量减小了一 半 。但是连接点电压也不能像理想补偿那样保持恒定 。 当系统电压下降5%时 ,连接点电压下降2.5%; 而当系 统电压上升1%时 ,连接点电压上升0.5%。
3.2 动态无功功率补偿的主要功能
1 、改善功率因数 可以对动态无功负荷的功率因数进行校正 。不但能把平均功率因数补
偿到所需的值 , 而且使动态功率因数保持在一定的范围内。
2 、改善电压调整 能通过发出和吸收无功功率来提高电压和降低电压 , 防止过电压和欠
电压。
3 、减少电压波动 由于反应迅速 , 所以能补偿快速变化的电压波动 , 减少电压闪烁 ,
工作原理: ※在过励磁运行时 , 向系统供给无功功率而起无功电源作用 , 能提高
系统电压; ※在欠励磁运行时 , 它从系统吸收无功功率而起无功负荷作用 , 可降低系
统电压。
优点 :能根据电压平滑地调节输入或输出的无功功率。
缺点 :有功损耗大 、运行维护复杂 、响应速度慢 , 小容量的调相机每kVA容 量的投资费用比较大 ,近来已逐渐退出电网运行。
的电压— 电流特性 系统无功负载正常时的工作点(A) :
系统无功负载正常时的特性与补
偿器特性都交与纵轴上电压为Uref的
点统。无功需负补载偿增器大提时供:无 功 功 率 。
假设没有补偿器而无功负载增大至 特性l 2 , 则系统工作点变为纵轴与l 2 的 交点B; 采用理想补偿器C点; 实际 补 偿器D点。
磁控式动态无功补偿装置技术原理、优势及适用行业
磁控式动态无功补偿装置技术原理、优势及适用行业摘要无功补偿有多种形式,基于MCR的动态无功补偿是其中较为先进的一类,磁控电抗器(MCR)利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。
该系统装置具有较高的安全性,运行稳定可靠。
与其他类型的无功补偿装置对比。
此类补偿装置与其它类型的无功补偿装置的区别主要在于磁控电抗器(MCR),因此,该文重点讲述了MCR的基本原理和技术优势,与它类型的无功补偿装置做了技术比较,预测了MSVC技术的发展前景。
关键词:MCR;直流励磁;可控硅;无功功率引言目前,无功补偿的主要装置是电容器、电抗器和少量的动态无功补偿装置。
开关(断路器)投切电容器的调节方式是离散的,不能取得理想的补偿效果。
开关投切电容器所造成的涌流和过电压对系统和设备本身都十分有害。
20世纪80年代以来,基于相控电抗器(TCR)的静止型动态无功补偿器(SVC)在电力系统中投入实际运行。
但由于其投资昂贵,难以推广。
20世纪末,因具有价格便宜、维护方便等优点,基于磁阀式可控电抗器(MCR)的SVC,相继在一些国家电网投入运行,并展示了它的优越性。
磁控电抗器(MCR)型SVC(简称MSVC)装置利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。
一、MSVC装置的基本结构:MSVC装置由补偿(滤波)支路和磁控电抗器(MCR)并联支路组成,其中补偿(滤波)支路经隔离开关固定接于母线,通过调节磁控电抗器的输出容量(感性无功功率)实现无功的柔性补偿。
因与其它各类补偿装置的主要区别在于磁控电抗器,故下面集中对磁控电抗器(MCR)作介绍。
图1动态无功补偿装置(MSVC)一次系统图二、磁控电抗器(MCR)2.1基本工作原理磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁芯,改变铁芯磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。
静止型动态无功补偿器SVC基础知识讲解
7、下列情况补偿装置的投退 (1) 正常情况下,补偿不退出运行。 (2) 当35kV母线电压超过电容器额定电压的1.1倍或者电流超 过额定电流的1.3倍以及电容的环境温度超过55℃时,均应将 其退出运行。 (3) 35kV母线失压后,必须将补偿装置退出运行。 (4)电容器的投退必须使用断路器,电容器退出后需放电 10min,方可重新投入(放电线圈正常)。
8、当补偿装置发生下列情况之一时,应立即退出运行 (1)电容器外壳明显膨胀,喷油,起火或爆炸; (2)电容器套管发生破裂或有闪络放电; (3)电容器内部或放电设备严重异常响声; (4)联接头严重过热或熔化
9、 TCR阀组维护 (1)、除尘 虽然TCR阀组安装在室内,但由于其本身带有高压电,会吸附 空气中的灰尘,所以阀组运行两个月要进行一次清理灰尘,采 用电吹风机除去散热器、电阻、电容,触发机箱、框架等部位 的灰尘。具体步骤如下: a)确认断路器断开。 b)确认TCR阀组停止运行。 c)确认阀组主回路挂接地线。 d)清除灰尘。 e)拆除全部接地线。 f)恢复运行。
(2)、紧固件检查 检查支撑绝缘子安装螺栓的紧固情况。 检查主电路电缆的连接情况,护线软管有无破裂。 检查控制插头的连接情况,插头、插座有无损坏,光纤有无损 坏。 检查阀组框架有无明显裂纹和变形,检视表面的油漆剥落和腐 蚀情况。
(3)、一般故障的处理 一般故障包括电阻故障、电容故障等。 处理步骤如下: 1)确认断路器断开。 2)确认TCR阀组停止运行。 3)确认阀组主回路挂接地线。 4)找到故障的零件进行维修或更换即可。
■空心 ■铝绕组 ■环氧树脂固封 ■空气绝缘 ■自然冷却
3.维护使用以及故障处理
• 1、设备投运 • 确认设备正常及补偿装置断路器处于分闸位; • 依次合上隔离刀闸; • 关好滤波补偿装置门锁; • 确认各种指示和监控正常; • 断路器合闸送电。
SVG动态无功补偿培训
二.无功补偿装置的作用。
• 提高线路输电稳定性。 • 维持受电端电压,加强系统电压稳定性。 • 补偿系统无功功率,提高功率因素。 • 谐波动态补偿,改善电能质量。 • 抑制电压波动和闪变。 • 抑制三相不平衡。
SVG动态无功补偿培训
三.电网中无功的增大对系统的影响?
• 无功功率的增加,会导致电流增大和视在 功率增加,从而使发电机、变压器及其他 电器设备容量和导线容量增加。同时,电 力用户的启动及控制设备、测量仪表的尺 寸和规格也要加大。
SVG动态无气原理 • SVG 装置的主电路采用链式逆变器拓扑结
构,Y 形连接,10kV 装置每相由 12 个功 率单元串联组成,运行方式为 N+1 模式。 下图所示为 SVG 装置的连接原理图。
SVG动态无功补偿培训
10KV SVG 装置的连接原理图
SVG动态无功补偿培训
• 操作部分包括启机按钮、停机按钮和复位 按钮。
SVG动态无功补偿培训
空气开关功能
SVG动态无功补偿培训
控制器
• 控制器由一台西门子 PLC S7-200 CPU 模块、一个 PWS6600 触摸 屏、一台 QCON
• 主控制器及远程监控计算机组成, 如图 。QCON 主控制器安装在一 个标准6U 机箱内。
启动柜
• 启动柜由启动开关、充电电阻 等几个部分组成。
• SVG 装置的启动方式设计为自 励启动。在主开关合闸后,系 统电压通过充电电阻对功率单 元的直流电容进行充电,当充 电电压达到额定值的 80%后, 控制系统闭合启动开关,将充 电电阻旁路。
SVG动态无功补偿培训
连接电抗器
• 装置的输出通过连接 电抗器并联到系统侧。
• 引起一些保护设备误动作,如继电保护,熔断器等。 • 导致电器测量仪表计量不准确。 • 通过电磁感应和传导耦合等方式对邻近电子设备和通信系统产生干扰,
10KVSVG动态无功补偿资料教程
2. 装置主要技术参数
a) 额定工作电压:10kV; b) 工作电压范围(p.u.):0.4 pu~1.2p.u; c) 额定容量:10Mvar; d) 输出无功范围:从感性额定无功到容性额定无功范围内连续变化; e) 控制器响应时间:<1ms; f) 输出电压总谐波畸变率(并网前):<5%; g) 输出电压总谐波畸变率(并网后):<3%; h) 输出电流总谐波畸变率:<3%; i) 输出电压不对称度:<1%; j) 效率:>99%; k) 环境温度:-25℃~+40℃; l) 人机界面:采用中文显示操作界面
冷却系统
• 冷却系统分为风冷和水冷两种方式。风冷 系统由散热风机和控制电路组成。
七.装置的控制面板
• • • • • • • • • • • • • • • • • • • • • • • • 装置的运行状态 SVG 装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。各状态 说明和转换关系如下。 1) 待机状态 装置上电后立即进入待机状态,然后进行自检。若无任何故障且状态正常,则点亮 就绪灯。若在就绪情况下收到用户启机命令,则闭合主断路器。主断路器闭合后即转入 充电状态。 2) 充电状态 表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已 经进入了充电状态。若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合 启动开关以短路充电电阻,启动开关闭合后延时 10s 自动转入并网运行状态。 3) 运行状态 表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无 功、负序或谐波的效果。若在此过程中出现报警,报警指示灯亮,不影响装置正常运行; 若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除 故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发 跳闸命令,并转到跳闸状态。 4) 跳闸状态 表示装置正在执行跳闸指令。一进入跳闸状态,装置就立刻发跳闸命令。检测到主 断路器断开后进入放电状态。 5) 放电状态 表示装置正在放电。主断路器断开后,直流电容将缓慢下降直至为 0。该状态时持 续 10s 后装置自动转入待机状态。注意,功率单元完全放电需要时间,停机后要等待 15 分钟后再对功率柜进行操作。
静止型动态SVC无功补偿装置培训
一、无功补偿基础知识: 1、什么是功率、功率因数 2、提高功率因数的意义 3、无功补偿的基本原理和方法 4、无功补偿在系统中的作用
1、功率、功率因数
在电网中,功率分为有功功率、无功功率和视在功 率。交流电网中,由于有阻抗和电抗(感抗和容抗) 的同时存在,所以电源输送到电器的电功率并不完 全做功。因为,其中有一部分电功率(电感和电容 所储的电能)仍能回输到电网,因此,凡实际为电 器(电阻性质)所吸收的电功率叫有功功率。电感和电 容所储的电能仍能回输到电网,这部分功率在电源 与电抗之间进行交换,交换而不消耗,称为无功功 率。
实际工程中晶闸管的控制角仅一般工作在1OO 度~165度,在电网电压基本不变的前提下。增大 控制角,将减小TCR电流,减小装置的感性无功功 率。反之减小控制角,将增大TCR电流。
从而使得相控电抗器提供(吸收)的无功能 够满足SVC的整体补偿目标要求。
可见: TCR是向电网提供在一定范围内可调的感性无功
控制目标
220kV侧 110 kV侧 35 kV侧
1、设备投运 确认设备正常及补偿装置断路器处于分闸位; 依次合上隔离刀闸; 关好滤波补偿装置门锁; 确认各种指示和监控正常; 断路器合闸送电。
2、设备退出 (1)切除电容器组支路; (2)按TCR控制柜停止按钮;
(3)如需检修设备,断开上级隔离刀闸,然后挂 接地线,分别在电容器组进出线端挂地线。
(1)断路器的检修主要包括:断路器电磁机构、 传动机构箱等的检修。
(2)电容器和电抗器的检修主要包括:电容器 有无鼓肚、喷油、渗漏油、过热;电容器、电 抗器外观检查是否良好、清洁,瓷质无裂纹和 破损;电容器、电抗器台架、基础是否牢固稳 定;电容器的保护装置是否相应均全投入运行。
SVG动态无功补偿培训教程
无功补偿基础知识:
在交流电网中,如负载是纯电阻,电压和电 流是同相位,那么电压和电流的乘积就是有功功 率,但在有电感或电容的电路中,电压和电流有 着相位差,所以电压和电流的乘积并不是负载电 路实际吸收的电功率,而是表面上的数值,叫做 视在功率,用字母S表示。通常视在功率的单位用 千伏安,用字母kVA表示。 有功功率与视在功率的比值就是功率因数, 用COSφ 表示,它是没有单位的。 cosφ =P/S (%)
无功补偿基础知识:
提高功率因数的意义: 在一定的有功功率下,当用户的cosφ 比较小,视在功率比较大,为了满足用电 的需要,供电线路和变压器的容量需要大, 这样,增加了供电投资、降低设备利用率, 也增加线路网损。负载的功率因数过低, 供电设备的容量不能充分利用,在一定的 电压下向负载输送一定的有功功率时,通 过输电线路的电流增大,导线电阻的能量 损耗和导线阻抗会造成电压下降。所以, 功率因数是电力系统中的一个重要指标。
无功补偿基础知识:
当电网电压为正弦波形,并且电压和电流同 相位时,电阻性电气设备从电网吸收的功率P等于 电压U和电流I的乘积,即:P=U×I 电阻性电气设备包括白炽灯、电热器等。 电动机和变压器运行时需要建立磁场,这部 分能量不能转化为有功功率,因此称之为无功功 率Q。此时电流滞后电压一个角度φ 。 在选择变配电设备时应按视在功率S,即有功 功率和无功功率的几何和:S=√ P2 + Q2
五.无功补偿装置的技术条件
1.环境条件
a)工作环境温度:-25℃~+40℃,贮存环境温度-40℃~+70℃,在极限值下不施加 激励量,装置不出现不可逆的变化,温度恢复后,装置应能正常工作; b) 相对湿度:最湿月的月平均最大相对湿度为 75%,同时该月的月平均最低温度为 25℃且表面无凝露; c) 大气压力:80kPa~110kPa(相对于海拔高度为 2km 及以下); d) 使用场所不得有火灾、爆炸、腐蚀等危及装置安全的危险和超出本手册规定的振 动、冲击和碰撞。
动态补偿和静态补偿
动态补偿与静态补偿在我们的供配电系统当中,无功功率对供配电系统和负载的安全、有效的运行,是非常重要的。
在电力系统中,大部分变电设备和用电设备的阻抗是感性的,也就意味着它们需要消耗无功功率,很显然,这些无功功率通过供电系统由发电机提供并且通过长距离的传送是非常不合理的,在大容量的系统中也是不可能的,所以,合理的方法就是在需要无功功率的地方向系统提供无功,即我们平时所说的无功补偿。
无功补偿在系统中是必不可少的,它的主要作用是提高供配电系统的功率因数,从而提高输电设备和变电设备的利用率,提高用电效率,降低用电成本;另外,在长距离输电线路中,在合适的地点加装动态无功补偿装置,还可以改善输电系统的稳定性,提高输电能力,稳定受电端及电网的电压。
产生无功功率的方法有三种:1、早期的典型代表为同步调相机,体积庞大造价高,已渐渐淘汰;2、第二种是并联电容器的方法,主要的优点是成本低,易于安装使用,但是需要根据系统可能存在谐波等电能质量问题,根据不同用户的供电情况、负荷情况、电压等级等条件,进行设计;串联电抗器的电容器补偿装置是提高功率因数Z广泛的一种方式,当用户系统负荷为连续性生产,负载变化率不高时,一般建议采用FC的固定补偿方式,也可以采用由接触器控制的分步投切的自动补偿方式(例如50kvar、100kvar、200kvar、600…),这个对于中压、低压供配电系统都适用;主要应用在大部分的用电场所,石油化工、水处理、公共建筑、水泥、造纸等。
当负荷变化较快,或者为冲击性负荷时,需要快速补偿,例如橡胶行业的密炼机,通常在1-2分钟内系统对于无功功率的需求从0kvar上升至1500kvar,然后又下降至0kvar。
但是由于一般的无功自动补偿系统所采用的电容器,从运行状态断开,退出电网后,在电容器的两极之间存有残压,残压的大小无法预知,需要1-3分钟的放电时间,所以再次投入电网的间隔至少要等到残压通过电容器内部的放电电阻消耗至50V以下时才能进行第二次投入使用,所以无法做到快速响应;另外,由于系统存在大量谐波,由电容器串联电抗器组成的LC调谐式滤波补偿装置需要大容量的投入来保证电容器的安全,但是同时也有可能造成系统过度补偿,呈容性;于是,也就有了通常所说的静止功补偿装置:(SVC---Static Var Compensator)诞生了,其典型的SVC代表是由TCR(Thyristor Controlled Reactor)+FC(Fixed Capacitor)组成的,即晶闸管控制电抗器+固定电容器组(通常需要串联一定比例的电抗器),静止无功补偿装置的重要性是它能够通过调节TCR中晶闸管的触发延迟角来连续调节补偿装置的无功功率;SVC这种补偿形式目前主要在中高压配电系统中应用,对于负载容量大、谐波问题严重、冲击性负荷、负载变化率高的场合特别适用,例如钢厂、橡胶、有色冶金、金属加工、高铁等;除了SVC,还有TSC(Thyristor Switch Capacitor),即晶闸管投切的电容器组,采用晶闸管来代替接触器的快速投切方式,主要使用在低压配电系统,例如焊接设备特别多的汽车制造、造船、机械加工等;MCR(Magnetic Controlled Reactor)即磁阀式可控电抗器,通常与FC配合使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 动态无功功率补偿的原理
系统、负载和补偿器 的单相等效电路图:
U0
反映系统电压与无功功率动态补偿关系的特
性曲线如图:
完全补
U
偿
C
U0
B
A
Z=R+jX
QL
Qr
系统电压U Q
Qr
QL
补
负
偿
载
器
QA
Q
投入补偿器之后,系统供给的无功功率
为负载和补偿无功功率之和,即:
Q QL Qr
系统的特性曲线可以近似用下式表示:
IC
0
IL
I
QC
QL
Q
Us为等效前连接点处未接 补偿器时的电压。
Uref为电压值等于系统的正常工作电压,补偿 器未接且负载 无功功率不变时的供电电压。
★无功补偿器所吸收的无功功率:
Qr
U sUref Xs
★一台可吸收无功功率Qr的补偿器,可以补偿的系统电压变化为:
U s
X sQr U ref
3.3 动态无功功率补偿的原理
3.2 动态无功功率补偿的主要功能
1、改善功率因数 可以对动态无功负荷的功率因数进行校正。不但能把平均功率因数补偿
到所需的值,而且使动态功率因数保持在一定的范围内。
2、改善电压调整 能通过发出和吸收无功功率来提高电压和降低电压,防止过电压和欠
电压。
3、减少电压波动 由于反应迅速,所以能补偿快速变化的电压波动,减少电压闪烁,如
与理想补偿器相比,所 需吸收的无功功率减小
连接点电压并不像理想补偿时那 样保持原正常值不变,而是变化了
U
U s
Xr Xs Xr
3.3 动态无功功率补偿的原理
★例:吸收50Mvar容性无功功率时补偿器电压下降0.05pu,则:
XS
U
系统
I
U S Uref U S
Xr
补偿器 U ref
Xr
0.05Uref QC
关动作时间限制,响应速度慢,不能满足对波动较频繁的无功负荷补偿 要求,即不能实现对无功功率的动态补偿,还有可能与系统发生谐波放 大甚至并联谐振。
★ 有些负荷的有功与无功功率随时间作快速变化,导致供电电压的波动 和闪变、供电电压的波形畸变、功率因数恶化以及不平衡负荷引起三 相供电电压的动态不平衡,需要发展能对无功功率进行快速跟踪补偿 的动态无功功率补偿。
★例:一台+50Mvar、-20Mvar的补偿器(即可输出+50~- 20Mvar的无功功率,
或者说最大可吸收容性无功功率50Mvar,感性无功功率20Mvar),接在短
路容量为1000MVA的系统母线上,容量基准值取100MVA,电压基准值取Uref,
则
U2 ref
Xs
Ssc U2
ref
Sb 100 0.1 pu Ssc 1000
Sb
故该补偿器可以补偿的电压升高为
U s
X sQL U ref
0.1 0.2 1
0.02 pu
故该补偿器可以补偿的电压下降为
U s
X sQC U ref
0.1 0.5 1
0.05 pu
3.3 动态无功功率补偿的原理
★实际补偿器等效电路及特性
以上所讨论的补偿器具有水平的电压—电流特性曲线,能维持连接
点电压恒定不变,被称为完全补偿器或理想补偿器,而实际的静止无功
功率补偿装置设计成倾斜特性,倾斜的方向是电压随吸收的感性电流的
增加而升高。
U
XS
U
Xr
Uref
系统
I
U S Uref U S
补偿器 U ref
IC QC
投入补偿器后补偿器吸收的无功功率为:
Qr
U sUref Xs Xr
0
IL
I
QL
Q
3.3 动态无功功率补偿的原理
可见,所需容量分别比理想补偿器所需容量减小了 一半。但是连接点电压也不能像理想补偿那样保持恒定。 当系统电压下降5%时,连接点电压下降2.5%;而当系统 电压上升1%时,连接点电压上升0.5%。
也就是说,能维持连接点电压变化为系统电源电压 变化一半的补偿器,所需容量为理想补偿器的一半。这 就是所谓的补偿器容量与电压调整之间的折衷问题。
3.3 动态无功功率补偿的原理
斜线l1是系统中无功负载正常的负载特
斜线l2是系统中无功负载增大时的负载特
斜线l3是理想补偿器的电压—电流特性 斜线l4是有一定斜率的实际补偿器
的电压—电流特性
系统无功负载正常时的工作点(A):
系统无功负载正常时的特性与
补偿器特性都交与纵轴上电压为Uref 的A点。无需补偿器提供无功功率。
电弧炉产生的闪变电压。 4、减少谐波 5、提高系统的稳定极限值
经过一次的快速调压,极大地改善了故障中和故障后的系统电压和局 部电压水平,增加了系统稳定的极限,提高了电力系统的静态和动态稳 定性。
3.2 动态无功功率补偿的主要功能
6、抑制电压崩溃 可以对动态无功负荷的功率因数进行校正。不但能把平均功率因数补偿
0.05 0.1 pu 0.5
当电源电压下降5%时补偿器所吸收的容性无功功率为:
QC
U sUref XS Xr
0.051 0.025 pu(25M var) 0.1 0.1
当电源电压上升5%时补偿器所吸收的感性无功功率为:
QL
U sUref XS Xr
0.021 0.01 pu(10M var) 0.1 0.1
到所需的值,而且使动态功率因数保持在一定的范围内。
7、提高系统的三相平衡化 三相平衡化就是指在系统负荷不平衡时,经过静止无功功率补偿,使
系统供电电压电流变成三相平衡。
★应当指出,以上这些功能虽然是相互关联的,但实际的动态无功功率
补偿装置往往只能以其中某一条或某几条为直接控制目标,其控制策略 也因此而不同。
系统无功负载增大时: 假设没有补偿器而无功负载增大
至特性l2,则系统工作点变为纵轴与l2 的交点B;采用理想补偿器C点;实际
★可以看出,理想补偿器与有一定斜 率特性的实际补偿器在对补偿器容量 的要求以及改善电压调整的程度这两 方面的不同。
Q
U
ห้องสมุดไป่ตู้U0
1
SSC
或
U Q
U0
SSC
动态无功补偿原理: 当负载无功功率QL变化时,如果补偿 器的无功功率Qr总能够弥补QL的变化, 从而使Q维持不变,则供电电压保持 恒定。
3.3 动态无功功率补偿的原理
★理想补偿器等效电路及特性
XS
U
系统
I
U S Uref U S
补偿器 U ref
U Uref
无功补偿技术
第三章 动态无功功率补偿
3.1 基本概念
1、动态无功功率补偿定义: 阻抗可调,其补偿容量能够快速实时跟踪负荷无功功率的变化而变化
的一种无功功率补偿方式。
2、动态无功功率补偿的最大特征: 其输出能够自动跟踪给定的控制目标
3、并联电容器缺点: 采用常规接触器,进行电容投切只能进行有级调节,并且受机械开