高中数学立体几何知识点复习总结(Word版)
高中立体几何知识点总结
一、空间点、线、面的位置关系1.1 点与点•点的定义:空间中的任意一点。
•点的坐标表示:a⃗=(a x,a y,a z)。
1.2 直线与直线•直线的定义:无限延伸的平面内的所有点。
•直线的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.3 直线与平面•直线的平面方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
•直线与平面的交点表示:设直线上的点为P(x0,y0,z0),则有Ax0+ By0+Cz0+D=0。
1.4 平面与平面•平面的定义:无限延伸的平面内的所有点。
•平面的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.5 平面与空间体•平面与空间体的交线表示:设空间体上的点为P(x0,y0,z0),则有Ax0+By0+Cz0+D=0。
二、空间几何体2.1 柱体•柱体的定义:底面为圆形或矩形,顶面与底面平行的空间几何体。
•柱体的体积公式:V=底面积×高。
2.2 锥体•锥体的定义:底面为圆形或三角形,顶点在底面内的空间几何体。
•锥体的体积公式:V=1底面积×高。
32.3 球体•球体的定义:所有点与球心等距的空间几何体。
•球体的体积公式:V=4πR3。
32.4 空间四边形•空间四边形的定义:四个顶点在空间中的四边形。
•空间四边形的面积公式:S=12|a⃗×b⃗⃗|,其中a⃗和b⃗⃗为四边形的两条对角线。
三、空间角的计算3.1 线线角•线线角的定义:两条直线之间的夹角。
•线线角的计算公式:θ=arccos(|a⃗⃗⋅b⃗⃗||a⃗⃗||b⃗⃗|),其中a⃗和b⃗⃗为两条直线的方向向量。
3.2 线面角•线面角的定义:直线与平面之间的夹角。
•线面角的计算公式:θ=arccos(|n⃗⃗⋅a⃗⃗||n⃗⃗||a⃗⃗|),其中n⃗⃗为平面的法向量,a⃗为直线的方向向量。
3.3 面面角•面面角的定义:两个平面之间的夹角。
•面面角的计算公式:θ=arccos(|n⃗⃗1⋅n⃗⃗2||n⃗⃗1||n⃗⃗2|),其中n⃗⃗1和n⃗⃗2为两个平面的法向量。
(完整word版)高中数学立体几何知识点总结,推荐文档
高中数学之立体几何平面的基天性质公义 1假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在这个平面内 .公义 2假如两个平面有一个公共点,那么它们有且只有一条经过这个点的公共直线 .公义 3经过不在同向来线上的三个点,有且只有一个平面.依据上边的公义,可得以下推论.推论 1经过一条直线和这条直线外一点,有且只有一个平面.推论 2经过两条订交直线,有且只有一个平面.推论 3经过两条平行直线,有且只有一个平面.空间线面的地点关系共面平行—没有公共点(1)直线与直线订交—有且只有一个公共点异面 ( 既不平行,又不订交 )直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外 )订交—有且只有一公共点(3)平面与平面订交—有一条公共直线(无数个公共点)平行—没有公共点异面直线的判断证明两条直线是异面直线往常采纳反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线” .线面平行与垂直的判断(1)两直线平行的判断①定义:在同一个平面内,且没有公共点的两条直线平行 .那②假如一条直线和一个平面平行,经过这条直线的平面和这个平面订交,么这条直线和交线平行,即若 a∥α ,a β,α∩β =b, 则 a∥b. ③平行于同向来线的两直线平行,即若 a∥b,b ∥ c, 则 a∥ c. ④垂直于同一平面的两直线平行,即若 a⊥α, b⊥α,则 a∥b⑤两平行平面与同一个平面订交,那么两条交线平行,即若α∥β , α∩γ , β∩γ =b, 则 a∥ b⑥假如一条直线和两个订交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β =b,a ∥α ,a ∥β,则 a∥b.(2)两直线垂直的判断1.定义:若两直线成 90°角,则这两直线相互垂直 .2.一条直线与两条平行直线中的一条垂直,也必与另一条垂直 . 即若 b∥ c,a ⊥b, 则 a⊥ c3.一条直线垂直于一个平面,则垂直于这个平面内的随意一条直线. 即若 a⊥α ,bα,a⊥b.4.假如一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直 . 即若a∥α ,b ⊥α , 则 a⊥b.5.三个两两垂直的平面的交线两两垂直,即若α⊥β , β⊥γ,γ⊥α , 且α∩β =a, β∩γ =b, γ∩α =c,则 a⊥b,b ⊥c,c ⊥a.(3) 直线与平面平行的判断①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②假如平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行 . 即若 aα,bα,a∥b,则a∥α.③两个平面平行,此中一个平面内的直线平行于另一个平面,即若α∥β ,lα,则l∥β.④假如一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行 . 即若α⊥β ,l ⊥β, lα,则l∥α.⑤在一个平面同侧的两个点,假如它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若 A α, B α, A、B 在α同侧,且 A、B 到α等距,则 AB∥α .⑥两个平行平面外的一条直线与此中一个平面平行,也与另一个平面平行,即若α∥β ,aα,aβ,a∥α,则α∥β.⑦假如一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若 a⊥α ,bα,b⊥ a,则b∥α.⑧假如两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面 ( 或在这个平面内 ) ,即若 a∥b,a ∥α ,b ∥α ( 或 bα)(4)直线与平面垂直的判断①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直 .②假如一条直线和一个平面内的两条订交直线都垂直,那么这条直线垂直于这个平面 . 即若 m α, n α, m∩n=B,l ⊥m,l ⊥n, 则 l ⊥α .③假如两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若 l ∥a,a ⊥α , 则 l ⊥α .④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β ,l ⊥β,则 l ⊥α .⑤假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a ∩β =α, lβ,l⊥ a,则l⊥α .⑥假如两个订交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ , β⊥γ , 且 a∩β =α , 则 a⊥γ .(5)两平面平行的判断①定义:假如两个平面没有公共点,那么这两个平面平行,即无公共点α∥β .②假如一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行,即若 a,bα,a∩ b=P,a∥β ,b∥β ,则α∥β .③垂直于同向来线的两平面平行. 即若α⊥ a, β⊥ a, 则α∥β .④平行于同一平面的两平面平行. 即若α∥β , β∥γ , 则α∥γ .⑤一个平面内的两条直线分别平行于另一平面内的两条订交直线,则这两个平面平行,即若a,bα,c,dβ ,a∩b=P,a∥c,b∥d,则α∥β .(6) 两平面垂直的判断①定义:两个平面订交,假如所成的二面角是直二面角,那么这两个平面相互垂直,即二面角α- a-β =90° α⊥β .②假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直,即若 l ⊥β ,lα,则α⊥β.. 即若α∥β,③一个平面垂直于两个平行平面中的一个,也垂直于另一个α⊥γ,则β⊥γ .直线在平面内的判断(1)利用公义 1:向来线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面相互垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β ,A ∈α, AB⊥β,则 AB α.(3)过一点和一条已知直线垂直的全部直线,都在过此点而垂直于已知直线的平面内,即若 A∈ a,a ⊥b,A∈α ,b ⊥α,则 a α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若 P α, P∈β,β∥α, P∈a,a ∥α,则 a β .(5)假如一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α ,A ∈α, A∈b,b ∥a, 则 bα .存在性和独一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直订交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条相互垂直的异面直线中的一条而与另一条垂直的平面有且只有一个 .射影及相关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点 .(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影 .和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线 .(3)图形在平面上的射影一个平面图形上全部的点在一个平面上的射影的会合叫做这个平面图形在该平面上的射影 .当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影还是一个图形.(4)射影的相关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短 .空间中的各样角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,而且方向同样,则这两个角相等 .推论若两条订交直线和另两条订交直线分别平行,则这两组直线所成的锐角( 或直角 ) 相等.异面直线所成的角(1)定义: a、b 是两条异面直线,经过空间随意一点 O,分别引直线 a′∥a,b ′∥ b, 则 a′和 b′所成的锐角 ( 或直角 ) 叫做异面直线 a 和 b 所成的角 .(2)取值范围: 0°<θ≤ 90°.(3)求解方法①依据定义,经过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小 .直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角 .(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角 .(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角 .(2)取值范围 0°≤θ≤ 90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ .②解含θ的三角形,求出其大小.二面角及二面角的平面角(1)半平面直线把平面分红两个部分,每一部分都叫做半平面 .(2)二面角条直线出发的两个半平面所构成的图形叫做二面角 . 这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面构成 .若两个平面订交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来胸怀,往常以为二面角的平面角θ的取值范围是0°<θ≤ 180°(3)二面角的平面角①以二面角棱上随意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所构成的角叫做二面角的平面角 .②二面角的平面角拥有以下性质:(i)二面角的棱垂直于它的平面角所在的平面,即 AB⊥平面 PCD.(ii)从二面角的平面角的一边上随意一点 ( 异于角的极点 ) 作另一面的垂线,垂足必在平面角的另一边 ( 或其反向延伸线 ) 上 .(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面 PCD⊥β .③找 ( 或作 ) 二面角的平面角的主要方法.(i)定义法(ii)垂面法(4)求二面角大小的常有方法①先找 ( 或作 ) 出二面角的平面角θ,再经过解三角形求得θ的值.②利用面积射影定理S′=S·cosα此中 S 为二面角一个面内平面图形的面积, S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小 .③利用异面直线上两点间的距离公式求二面角的大小.空间的各样距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离 .(2)求点面距离常用的方法:1)直接利用定义求①找到 ( 或作出 ) 表示距离的线段;②抓住线段 ( 所求距离 ) 所在三角形解之 .2)利用两平面相互垂直的性质 . 即假如已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离 .3)体积法其步骤是:①在平面内选用适合三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S;③由V=1S·h,求出h 即3为所求 . 这类方法的长处是不用作出垂线即可求点面距离 . 难点在于怎样结构适合的三棱锥以便于计算 .4)转变法将点到平面的距离转变为 ( 平行 ) 直线与平面的距离来求 .直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上随意一点到平面的距离,叫做这条直线和平面的距离 .(2)求线面距离常用的方法①直接利用定义求证 ( 或连或作 ) 某线段为距离,而后经过解三角形计算之.②将线面距离转变为点面距离,而后运用解三角形或体积法求解之.③作协助垂直平面,把求线面距离转变为求点线距离.空间几何体的三视图和直观图1三视图:正视图:以前去后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3 直观图:斜二测画法(角度等于45 或许 135)4斜二测画法的步骤:(1).平行于坐标轴的线依旧平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于x 轴的线长度不变;(3).画法要写好。
高中立体几何知识点总结(通用5篇)精选全文完整版
可编辑修改精选全文完整版高中立体几何知识点总结(通用5篇)高中立体几何知识点总结(通用5篇)总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。
你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
高中立体几何知识点总结篇11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学 立体几何知识点总结
立体几何一、空间位置关系的证明(一)平行关系的证明1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理3.重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)几何体中线面平行的证明常利用平行四边形的定义、性质或三角形中位线(二)垂直关系的证明1.直线与平面垂直(1)定义::如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角. (2)范围:[0,π2]. 3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理4.重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. (5)在几何体中垂直关系的证明中要重视勾股定理及平面几何知识的应用,如:菱形的对角线互相垂直,等腰三角形底边上的中线垂直于底边等。
二、立体几何中的向量方法 (一)证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (二)求空间角1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).。
高中立体几何基础知识点全集(图文并茂)
立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
高中数学立体几何知识点总结大全
高中数学几何知识点总结一、空间点、直线、平面之间的位置关系 1.平面的基本性质 1如果一条直线上的两点在同一个平面内,那么这条直线在这个平面内2过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面⇒面,使推论3经过两条平行直线,有且只有一个平面3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,b P =αa ⊂,OA O A OB O B ''''∥∥则或.图(1) 图(2)3.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:(2)从是否共面的角度分类:4.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .5.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类AOB AOB ∠=∠'''180AOB AO B ∠+∠'''=︒⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线π(0,]2①按公共点个数分类:②按是否平行分类:③按直线是否在平面内分类:(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线.(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行. ②过直线外一点有且只有一个平面与已知直线垂直. ③过平面外一点有且只有一个平面与已知平面平行. ④过平面外一点有且只有一条直线与已知平面垂直. (2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 二、直线、平面平行的判定及其性质 1.直线与平面平行的判定定理⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行2.直线与平面平行的性质定理3.平面与平面平行的判定定理,b β=⇒b P =4.平面与平面平行的性质定理证明线线平行三、直线、平面垂直的判定及其性质,a b a γβγ==⇒∥1.直线与平面垂直的定义如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.记作:l ⊥α.图形表示如下:定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语. 2.直线与平面垂直的判定定理⇒判断直线与平面垂直在应用该定理判断一条直线和一个平面垂直时,一定要注意是这条直线和平面内的两条相交直线垂直,3.直线与平面垂直的性质定理b P4.平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作.图形表示如下:5.平面与平面垂直的判定定理6.平面与平面垂直的性质定理αβ⊥7.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于;一条直线和平面平行,或在平面内,我们说它们所成的角等于.因此,直线与平面所成的角.........α.的范围是.....8.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角.(3)二面角的范围:.1.垂直问题的转化关系=llβα⎪⎪⇒⎬⊂⎪⎪⊥⎭90π[0,]2[0,π]2.常用结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线.(3)过空间任一点有且只有一条直线与已知平面垂直.(4)过空间任一点有且只有一个平面与已知直线垂直.(5)两平面垂直的性质定理是把面面垂直转化为线面垂直.(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.(7)如果两个平面互相垂直,那么过第一个平面内的一点且垂直于第二个平面的直线在第一个平面内.四、空间向量与立体几何1.空间直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系,如图所示.2.空间一点M 的坐标(1)空间一点M 的坐标可以用有序实数组来表示,记作,其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.(2)建立了空间直角坐标系后,空间中的点M 与有序实数组可建立一一对应的关系. 3.空间两点间的距离公式、中点公式 (1)距离公式①设点,为空间两点,则两点间的距离. ②设点,则点与坐标原点O 之间的距离为.(2)中点公式设点为,的中点,则. 4.共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 牢记两个推论:(1)对空间任意一点O ,点P 在直线AB 上的充要条件是存在实数t ,使或(其中).(2)如果l 为经过已知点A 且平行于已知非零向量的直线,那么对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使,其中向量叫做直线l 的方向向量,该式称为直线方程的向量表示式. 5.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使.牢记推论:空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使;(,,)x y z (),,M x y z (,,)x y z 111(,,)A x y z 222(,,)B x y z ,AB ||AB =(),,P x y z (),,P x yz ||OP =(),,P x y z 1111,),(P x y z 2222,),(P x y z 121212222x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩(1)OP t OA tOB =-+OP xOA yOB =+1x y +=a OP OA t =+a a x y =+p a b AP xAB y AC =+或对空间任意一点O ,有.6.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.(1)空间任意三个不共面的向量都可构成基底.(2)基底选定后,空间的所有向量均可由基底唯一表示.(3)不能作为基向量.7.空间向量的运算(1)空间向量的加法、减法、数乘及数量积运算都可类比平面向量.(2)空间向量的坐标运算设,则,,,OP OA x AB y AC =++0123123(,,),(,,)a a a b b b ==a b 112233(,,)a b a b a b ±=±±±a b 123(,,)()a a a λλλλλ=∈R a 112233a b a b a b ⋅=++a b,,. 8.直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为.在平面内找出(或求出)两个不共线的向量,根据定义建立方程组,得到,通过赋值,取其中一组解,得到平面的法向量.9.利用空间向量表示空间线面平行、垂直设直线的方向向量分别为,平面的法向量分别为.(1)线线平行:若,则;线面平行:若,则;面面平行:若,则.(2)线线垂直:若,则;线面垂直:若,则;面面垂直:若,则.10.利用空间向量求空间角设直线的方向向量分别为,平面的法向量分别为.(1)直线所成的角为,则,计算方法:; 112233,,()b a b a b a λλλλλ⇔=⇔===∈R a b b a 1122330a b a b a b ⊥⇔⋅=++=a b a b ==a cos ,⋅==a b a b a b l l α⊥l α(,,)x y z =α123123(,,),(,,)a a a b b b ==a b 00⋅=⎧⎨⋅=⎩a b αα,l m ,l m ,αβ,αβ//l m ()λλ⇔=∈R l m l m //l α0⊥⇔⋅=l l αα//αβ()λλ⇔=∈R αβαβl m ⊥0⊥⇔⋅=l m l m l α⊥()λλ⇔=∈R l l αααβ⊥0⊥⇔⋅=αβαβ,l m ,l m ,αβ12,n n ,l m θπ02θ≤≤cos θ⋅=l m l m(2)直线与平面所成的角为,则,计算方法:; (3)平面所成的二面角为,则,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=.如图②③,分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 11.利用空间向量求距离(1)两点间的距离设点,为空间两点,则两点间的距离.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为.l αθπ02θ≤≤11sin θ⋅=l n l n ,αβθ0πθ≤≤,〈〉ABCD 12,n n 1212⋅n n n n 111(,,)A x y z 222(,,)B x y z ,A B ||||(AB AB x ==||||||AB BO ⋅=n n。
立体几何初步知识点全总结
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
立体几何知识点总结
立体几何知识点总结立体几何知识点总结「篇一」(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的.圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
立体几何知识点总结「篇二」1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
高中数学立体几何知识点总结(全)
高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。
XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。
四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。
改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。
其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。
在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。
二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。
基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。
在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。
直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。
三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。
圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。
球的表面积和体积分别为4πR²和(4/3)πR³。
四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。
高中数学立体几何知识点总结大全
高中数学立体几何知识点总结大全数学立体几何知识点1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;会求异面直线所成的'角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3.直线与平面①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的证明方法有哪些?④直线与平面所成的角:关键是找它在平面内的射影,范围是⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.4.平面与平面(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。
尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→(5)二面角。
二面角的平面交的作法及求法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。
高中数学立体几何知识点数学知识点1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
高中数学立体几何知识点归纳总结教学提纲
高中数学立体几何知识点归纳总结高中数学立体几何知识点归纳总结一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩L底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为平行四边形侧棱垂直于底面底面为矩形收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除1.3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱收集于网络,如有侵权请联系管理员删除2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
高中数学立体几何总结
高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
(完整版)立体几何知识点总结完整版
立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、 空间两条直线的三种位置关系,并会判定。
3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。
4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。
5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。
完整word版,高中数学立体几何知识点归纳总结,推荐文档
高中数学立体几何知识点归纳总结一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩L底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA=++②(了解)长方体的一条对角线1AC与过顶点A的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
高中数学立体几何知识点
高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
(2):棱柱中除底面的各个面。
(3):相邻侧面的公共边叫做棱柱的侧棱。
(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱(1):旋转轴叫做圆柱的轴。
(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
圆锥(1):作为旋转轴的直角边叫做圆锥的轴。
(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。
(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
(4):作为旋转轴的直角边与斜边的交点。
(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。
高考立体几何知识点详细复习总结
立体几何知识点一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。
⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑿垂直于同一平面的两直线平行。
(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
(6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
高中数学立体几何知识点复习总结
高中课程复习专题——数学立体几何一空间几何体㈠空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡几种空间几何体的结构特征1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类1.3 棱柱的性质⑴侧棱都相等,侧面是平行四边形;⑵两个底面与平行于底面的截面是全等的多边形;⑶过不相邻的两条侧棱的截面是平行四边形;⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴长方体的一条对角线的长的平方等于一个顶点上三条棱的平方和:AC12 = AB2 + AC2 + AA12⑵长方体的一条对角线AC1与过定点A的三条棱所成的角分别是α、β、γ,那么:cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则:cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 11.5 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。
1.6 棱柱的面积和体积公式S直棱柱侧面= c·h (c为底面周长,h为棱柱的高)S直棱柱全= c·h+ 2S底V棱柱= S底·h2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
2-2 圆柱的性质⑴上、下底及平行于底面的截面都是等圆;⑵过轴的截面(轴截面)是全等的矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。
图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
2-2 圆柱的性质⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。
2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。
2-4 圆柱的面积和体积公式S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。
3-2 正棱锥的结构特征⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。
3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。
3-4 正棱锥的面积和体积公式S 正棱锥侧 = 0.5 c h ’ (c 为底面周长,h ’为侧面斜高) S 正棱锥全 = 0.5 c h ’ + S 底面V 棱锥 = 1/3 S 底面·h (h 为棱锥的高) 4 圆锥的结构特征图1-3 圆柱图1-4 棱锥4-1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。
4-2 圆锥的结构特征⑴ 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 轴截面是等腰三角形;⑶ 母线的平方等于底面半径与高的平方和: l 2 = r 2 + h 24-3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
4-4 圆锥的面积和体积的公式S 圆锥侧 = π r ·l (r 为底面半径,l 为母线长) S 圆锥全 = πr ·(r + l)V 圆锥 = 1/3 πr 2·h (h 为圆锥高) 5 棱台的结构特征5.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。
5.2 正棱台的结构特征⑴ 各侧棱相等,各侧面都是全等的等腰梯形; ⑵ 正棱台的两个底面和平行于底面的截面都是正多边形;⑶ 正棱台的对角面也是等腰梯形;⑷ 棱台经常被补成棱锥,然后利用形似三角形进行研究。
5-3 正棱台的面积和体积公式S 棱台侧= n/2 (a + b)·h ’ (a 为上底边长,b 为下底边长,h ’为棱台的斜高,n 为边数) S 棱台全 = S 上底 + S 下底 + S 侧 V 棱台 =6 圆台的结构特征6-1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。
6-2 圆台的结构特征⑴ 圆台的上下底面和平行于底面的截面都是圆; ⑵ 圆台的截面是等腰梯形;⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究。
6-3 圆台的面积和体积公式S 圆台侧 = π·(R + r)·l (r 、R 为上下底面半径)图1-5 圆锥图1-6 棱台图1-7 圆台S 圆台全 = π·r 2 + π·R 2 + π·(R + r)·lV 圆台 = 1/3 (π r 2 + π R 2 + π r R) h (h 为圆台的高) 7 球的结构特征7-1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。
空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。
7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是: ⑴ 根据题意,确定是内接还是外切,画出立体图形;⑵ 找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图; ⑶ 将立体问题转化为平面几何中圆与多边形的问题;⑷ 注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。
7-4 球的面积和体积公式 S 球面 = 4 π R 2 (R 为球半径) V 球 = 4/3 π R 3㈢ 空间几何体的视图1 三视图:观察者从三个不同的位置观察同一个空间几何体而画出的图形。
正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
注意:⑴ 俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右方,“高度”与正视图相等,“宽度”与俯视图相等。
(正侧一样高,正俯一样长,俯侧一样宽) ⑵ 正视图、侧视图、俯视图都是平面图形,而不是直观图。
2 直观图2-1 直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2 斜二测法做空间几何体的直观图⑴ 在已知图形中取互相垂直的轴Ox 、Oy ,即取∠xOy = 90°;⑵ 画直观图时,把它画成对应的轴O ’x ’、O ’y ,取∠x ’O ’y ’ = 45°或135°,它们确定的平面表示水平平面;图1-8 球⑶在坐标系x’o’y’中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用斜二测法作出的直观图的面积是原平面图形的2-3 解决关于直观图问题的注意事项⑴由几何体的三视图画直观图时,一般先考虑“俯视图”;⑵由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
二点、直线、平面之间的关系㈠平面的基本性质1 立体几何中图形语言、文字语言和符号语言的转化BBab★2 平面的基本性质公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理二:不共线的三点确定一个平面。
推论一:直线与直线外一点确定一个平面。
推论二:两条相交直线确定一个平面。
推论三:两条平行直线确定一个平面。
公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。
㈡ 空间图形的位置关系1 空间直线的位置关系(相交、平行、异面)1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。
即:a ∥b ,b ∥c a ∥c1.2 等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3 异面直线⑴ 定义:不在任何一个平面内的两条直线称为异面直线。
⑵ 判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线为异面直线。
即:1.4 异面直线所成的角⑴ 异面直线成角的范围:(0°,90°]. ⑵ 作异面直线成角的方法:平移法。
注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。
2 直线与平面的位置关系(直线在平面内、相交、平行)3 平面与平面的位置关系(平行、斜交、垂直)㈢ 平行关系(包括线面平行和面面平行) 1 线面平行图2-1 异面直线图2-2 直线与平面的位置关系1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。
1.2 判定定理:1.3 性质定理:1.4 判断或证明线面平行的方法⑴ 利用定义(反证法):l ∩ α = ф ,l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。
2 线面斜交和线面角:l ∩ α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。
2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°; 当直线垂直于平面时,θ=90° 3 面面平行3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。