2016河南数学中考22题的争议

合集下载

2016河南中考数学22题及解答

2016河南中考数学22题及解答

22.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).。

2016年河南中考数学试题及答案-难点解析

2016年河南中考数学试题及答案-难点解析

2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是( ) (A )31- (B )31(C )3-(D )32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( )(A )7105.9-⨯(B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )(A ) (B )(C )(D )4.下列计算正确的是( ) (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴 于点B ,连接AO ,若S △AOB =2,则k 的值为( )(A )2 (B )3 (C )4 (D )56.如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为( ) (A )6 (B )5 (C )4 (D )37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) (A )甲 (B )乙 (C )丙 (D )丁8.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时, 菱形的对角线交点D 的坐标为( ) (A )(1,-1) (B )(-1,-1) (C )(2,0)(D )(0,-2)二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--10. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E , 若∠1=20°,则∠2的度数是_________.11.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.13.已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点, 该抛物线的顶点坐标是_________.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心, OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影 部分的面积为___________.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上 一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处, 过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′ 为线段MN 的三等分点时,BE 的长为__________________. 三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。

2016年河南省中考数学试卷分析

2016年河南省中考数学试卷分析

2016年河南省中考数学试卷分析巩义市第二初级中学李荣有一、命题的指导思想:2016年中考数学试卷依照《新课程标准》为出题依据,坚持从学生实际出发,考查学生在义务教育阶段学习的基础知识、基本技能、基本数学思想与方法;考查学生的运算能力、思维能力、空间想象能力;考查学生用数学知识和思维方法分析解决生活问题的应用能力。

试卷全面落实《课程标准》所设立的课程目标,改善学生学习数学的方式,提高学习效率。

二、试卷的结构和特点:1.试卷的整体结构:全卷共有三种题型,23个题目,其中选择题8个,填空题7个,解答题8个,这与以往的中考试卷相同。

但今年的选择题和填空题相对去年较为简单,尤其是选择题,填空题虽然也出现了折叠和分类讨论题(15题),但难度有所降低。

题号分值分布如下:2016年中考数学试卷总体保持稳定,稳中有变、变中有新。

例如21题就给人耳目一新的感觉,虽然中学阶段不断渗透数形结合思想,但以这种大视角重分数出现还是第一次。

由于数形结合是一种重要的数学思想,对学生的思维训练有着重要的意义,从这个角度来讲试卷体现了义务教育课程改革的新理念。

另外试卷的22题和23题的第3问难度偏大,能够正确写出答案的的学生很少,从选拔的角度讲。

试卷需要有难度的试题,但难度过大就失去了选拔的意义。

2.试卷的具体特点:(1)注重基础,突出对基础知识、基础技能的考查,有较好的教学导向作用。

在命题方向上,中考试题没有太多的起伏,从内容和知识点上看,试题覆盖面广,涉及到初中六册教材的核心内容,比如填空题中考查科学计数法、勾股定理、实数的运算等,选择题中考查平行四边形、一元二次方程、概率等,计算题中考查圆的证明和计算、方程组、三角函数、化简求值等。

对这些知识点的考查,并不是对概念、性质的记忆上进行考查,而是对概念、性质的理解与运用上进行考查。

始终体现了“基础知识、基本技能”的基础要求,有利于引导学生摆脱题海,落实“减负”要求,试题设计循序渐进,坡度缓,有层次,有节奏,难易适中。

关于河南中考数学22题的解题心得

关于河南中考数学22题的解题心得

关于河南中考数学22题的解题心得:纵观近几年的22题发现解题的基本思路是和我们平时学习的过程一样,即发现问题,探究问题,应用解决问题。

一般这种类型题往往是有一般到特殊的数学思想,那么这类题目如何处理呢?首先要把问题弄清楚,已知是什么,结论是什么,其次,在应用该结论解决问题时,一定要把已知搞清楚,看是否符合已知条件,如果不符合已知条件,那么还要添加辅助线,使其符合已知条件,才能直接应用结论解决问题,例题22.(10分)(1)问题如图1,点A 为线段BC 外一动点,且BC=a,AB=b 。

填空:当点A 位于 时线段AC 的长取得最大值,且最大值为(用含a ,b 的式子表示)分析:∵a+b >AC ∴只有AC=a+b 时,AC 才最大。

∴A 位于CB 的延长线上,且最大值是a+b(2)应用点A 为线段B 除外一动点,且BC=3,AB=1.如图2所示,分别以AB ,AC 为边,作等边三角形ABD和等边三角形ACE ,连接CD,BE.①请找出图中与BE 相等的线段,并说明理由②直接写出线段BE 长的最大值.(1)这一问较简单,这很明显是连体图形问题,只需证明两个三角形全等即可, (2)求BE 的最大值就是求CD 的最大值,这样就符合了问题中的条件, CD=DB+BC=3+1=4(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=900.请直接写出线段AM 长的最大值及此时点P 的坐标。

分析:欲求AM 的最大值,结合已知条件,就应该考虑A 、B 、P 三点,可以把△MPA 绕点P 旋转,使PM 与PB 重合即可在求点P 的坐标时,关键要理解题目中的“此时”两个字的含义,此时也就是图2CD 图1bA B CAM 取得最大值时,即点N 在BA 的延长线上时,△APN 是等腰直角△解:(1)CB 的延长线上,a+b ;………………………………………2分(2)①DC=BE,理由如下∵△ABD 和△ACE 都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=600,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB, ……………5分∴△CAD ≌△EAB (SAS ),∴DC=BE ………………………………6分②BE 长的最大值是4. …………………………………………………8分(3)AM 的最大值为3+,点P 的坐标为()……10分【提示】如图3,构造△BNP ≌△MAP,则NB=AM,由(1)知,当点N 在BA 的延长线上时,NB 有最大值(如备用图)。

16年河南中招数学试题分析

16年河南中招数学试题分析

2016年河南省中招数学试题解析中考数学命题研究组(一)试卷综述本试卷满分120分,考试时间100分钟,闭卷笔试形式.试卷题型结构仍是8+7+8的设计,8道选择题、7道填空题和8道解答题。

试题的难易度呈梯度上升,符合学生的思维特征,既面对全体,又兼顾了选拔区分功能,有利于教师教学和学生答题。

和往年试卷相比,核心命题点(题型)的考查在本试卷中都有体现,往年的高频点在2016试卷中也做了重点考查。

2016年考查学生对基础知识和基本技能的掌握程度,同时考查学生的数感、符号意识、空间观念、几何直观、数据分析能力、运算能力、建模思想、应用意识和创新意识。

难度适中,整体难度控制在0.7左右。

但是灵活性要求更高。

2016年中招紧扣考纲,体现新课标的理念,突出素质立意,能力立意,关注学生情感、态度、价值观的同时,注重考查学生基础知识、基本技能,同时加大解决实际问题能力的考查力度和对数学思想、方法和学生综合分析和解决问题能力的考察。

(二)、试题比例:1、从各能力层次上看,了解约占10%,理解约占20%,掌握约占60%,灵活运用约占10%,分值分别为:12分、24分、72分、12分,总体上易中难所占比例7:2:12、从各知识板块上看,数与代数约43%(50分以上),几何与图形约占44%(50分以上),统计与概率约占13%(15分右左),其中函数占30分以上,图形变化占20分以上。

3、从各学段上看,七年级知识约占15%,八年级约占25%,九年级占60%。

(三)中考数学试卷解析特点(1)命题基调:立足双基注重能力从命题趋势与内容来看,初一是基础、初二是关键、初三是冲刺。

通过今年的试题可以看出,对学生动手能力有更高的要求。

试卷中对函数、方程与不等式、图形的变换、概念与统计等主干知识进行了重点考查。

例如:几何方面,考查的题目有:3、5、6、8、10、14、15、18、19、22、23共计60分右左,重点突出了三角形、四边形、圆、图形的变换投影与视图知识的考查;例如:代数方面,考查的题目有:1、2、4、7、9、11、12、13、16、17、20、21共计60分右左,重点考查了数与式、方程与不等式、函数、统计与概率等。

2024年河南省中考真题数学试卷含答案解析

2024年河南省中考真题数学试卷含答案解析

2024年河南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点P表示的数是()A.1-B.0C.1D.2【答案】A【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P表示的数为1-,从而求解.【详解】解:根据题意可知点P表示的数为1-,故选:A.2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8⨯D.12⨯0.5784105.78410⨯C.11⨯B.105784105.784103.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A .60︒B .50︒C .40︒D .30︒【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A .B .C .D .【答案】A【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5.下列不等式中,与1x ->组成的不等式组无解的是( )A .2x >B .0x <C .<2x -D .3x >-【答案】A 【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <-,不符合题意;C 、此不等式组解集为<2x -,不符合题意;D 、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A .12B .1C .43D .2故选:B .7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭ 个的结果是( )A .5a B .6a C .3a a +D .3aa 【答案】D 【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A .19B .16C .15D .13【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,9.如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A .8π3B .4πC .16π3D .16π∵O 是边长为43∴43B C =,A ∠=∴120BDC ∠=︒,∵点D 是 BC的中点,10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A .当440W P =时,2A I =B .Q 随I 的增大而增大C .I 每增加1A ,Q 的增加量相同D .P 越大,插线板电源线产生的热量Q 越多【答案】C 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题11.请写出2m 的一个同类项: .【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.【答案】9【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案为:9.13.若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .14.如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=︒,∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20-,,点F 的坐标为()06,,∴2AO =,6FO =,∴2BO AB AO a =-=-,在Rt BOF △中,222BO FO BF +=,∴()22226a a -+=,解得10a =,∴4FG OG OF =-=,8GE CD DG CE CE =--=-,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE -+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15.如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .则CD AE ⊥,∴90ADE CDE ∠=∠=︒,∴222231AD AC CD =-=-∵ AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =-=-=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒-=︒∠∠,∴18045CED CEA =︒-=︒∠∠,∵90CDE ∠=︒,三、解答题16.(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.【答案】(1)9(2)2a +【分析】本题考查了实数的运算,分式的运算,解题的关键是:17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18.如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:9.19.如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是:(2)证明:∵ECM A ∠=∠∴CM AB ∥,∵∥B E DC ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边20.如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.(2)解:在Rt AHP 中,APH ∠∵tan AH APH PH∠=,答:塑像AB的高约为6.9m.21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?【答案】(1)选用A种食品4包,B种食品2包(2)选用A种食品3包,B种食品4包【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入4600kJ热量和70g蛋白质”列方程组求解即可;(2)设选用A种食品a包,则选用B种食品()7-a包,根据“每份午餐中的蛋白质含量不低于90g”列不等式求解即可.【详解】(1)解:设选用A种食品x包,B种食品y包,根据题意,得7009004600, 101570.x yx y+=⎧⎨+=⎩解方程组,得4,2. xy=⎧⎨=⎩答:选用A种食品4包,B种食品2包.(2)解:设选用A种食品a包,则选用B种食品()7-a包,根据题意,得()1015790a a +-≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∵2000-<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a -=-=.答:选用A 种食品3包,B 种食品4包.22.从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=︒,∵180ABC ABE ∠+∠=︒,∴ABE D ∠=∠,∵AE AC =,∴()()1112222m n CF CE BC BE BC DC +==+=+=,∵2BCD θ∠=,∴ACD ACB θ∠=∠=,∴22218AM AB BM =+=,在Rt AMN 中22MN AM AN =-在Rt CMN 中22MN CM CN =-∴()()22218435AN AN -=---∵AM AM =,∵90MNC ABC ∠=∠=︒,C ∠∴CMN CAB ∽△△,∴CN MN BC AB=,即543CN CN -=解得20CN =,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;。

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

押中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)专题诠释:实数、整式与三视图是中考必考题型。

在历年的中考中,主要以选择题的形式出现,内容较为简单,因此是中考数学中必须做对的题型。

考法上上主要以识记和理解的考察为主,区分不同的定义和运算规律,练出手感,保证全对!知识点一:锐角三角函数〖押题冲关〗1.(2023·山东济宁·统考二模)酒驾猛于虎,但很多人不以为是,为了加强人们对酒驾危害的认识,交警部门加大了对酒驾的检查力度,某市交警在2023年2月28日这天对本市各大主要交通路口进行车辆检查,如图,AC是该市解放路的一段,AE,BF,CD都是南北方向的街道,与解放路AC的交叉路口分别是A,B,C.已知出警点D位于点A的北偏东45∘方向、点B的北偏东30∘方向上,BD=2km,∠DBC=30∘.(1)求A、B的距离;(2)第一组交警负责路口A,求该组从出警点D到路口A的路程(行驶路线为D−C−B−A).(结果保留根号)2.(2023·湖北襄阳·统考模拟预测)小军与小明放学后看见楼前的小广场上有一架无人机正在定点拍摄小区全景,此时如图所示,小军在一楼B处测得无人机C的仰角∠CBE=60°,在楼顶A处的小明测得无人机C的仰角∠CAD=28°,他们所在的楼高约为120米,求此时无人机C离地面BE的高度.(参考数据:√3≈1.73,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(1)求点B到点C之间的距离(结果保留根号);5.(2023·浙江绍兴·统考一模)某次科学实验中,小王将某个棱长为10cm正方体木块固定于水平木板OM上,OB=50cm,将木板OM绕一端点O旋转40°至OM′(即∠MOM′=40°)(如图为该操作的截面示意图).(1)求点C到C′竖直方向上升高度(即过点C,C′水平线之间的距离);(2)求点D到D′竖直方向上升高度(即过点D,D′水平线之间的距离).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,(1)(2)题中结果精确到个位)6.(2023·河南新乡·统考二模)图1是一款摆臂遮阳篷的实物图,图2是其侧面示意图.如图2,点A,O为墙壁上的固定点,AO=1.5m,摆臂OB可绕点O旋转,旋转过程中遮阳篷AB可自由伸缩,篷面始终保持平整,当摆臂OB与墙壁垂直时,身高为1.65m的同学(MN=1.65m)站在遮阳篷下距离墙角1.2m(EN=1.2m)处,刚好不被阳光照射到,测得此时AB与摆臂OB的夹角∠ABO=45°,光线与水平地面EF的夹角∠BNF=71°,求AE的高度.(结果精确到0.1m.参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90,√2≈1.41)7.(2023·四川成都·统考二模)如图是一座人行天桥的示意图,已知天桥的高度CD=6米,坡面BC的倾斜角∠CBD=45°,距B点8米处有一建筑物NM,为了方便行人推自行车过天桥,市政府决定降低坡面BC的坡度,把倾斜角由45°减至30°,即使得新坡面AC的倾斜角为∠CAD=30°.若新坡面底端A处与建筑物NM之间需要留下至少3米宽的人行道,那么该建筑物是否需要拆除?请说明理由.(结果精确到0.1米;参考数据:√2≈1.14,√3≈1.73)8.(2023·江苏宿迁·统考二模)如图,在坡角α为30°的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为18米,求大树AB的高.(结果精确到0.1米,√2≈1.414,√3≈1.732)9.(2023·四川成都·统考二模)如图,为了测量河对岸A,B两点间的距离,数学综合实践小组在河岸南侧选定观测点C,测得A,B均在C的东偏北60°方向上,沿正东方向行走60米至观测点D,测得B在D的西偏北30°方向上,A在D的西偏北69°方向上.求A,B两点间的距离是多少米(精确到个位)?(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,sin51°≈0.78,cos51°≈0.63,tan51°≈1.23,√3≈1.73)10.(2023·安徽滁州·统考二模)某学校数学活动小组决定利用所学的解直角三角形知识测量校园内一棵树AB的高度.如图,他们在地面上C处测得树顶A的仰角为30°,再往树的方向前进20m至D处,测得仰角为60°,点C,D,B在同一直线上,求树高AB.(身高忽略不计,结果保留根号)知识点二:反比例和一次函数综合模块二〖押题冲关〗(1)求一次函数的表达式:(1)求一次函数和反比例函数的解析式;(1)求m,n的值及反比例函数的解析式;(1)求直线和双曲线的解析式及点B的坐标;(1)求m的值;(1)求k的值;(2)求△ODE的面积.(x<0)上,点B在x轴上.将7.(2023·四川南充·统考二模)如图,点A(m,1)在双曲线y=kx线段AB平移到CD,点C仍在双曲线上,点D在y轴上,OB=2OD=2.(1)求m和k的值;(2)直线AC与x轴交于E,与y轴交于F.求证:OE=2OF.8.(2023·河南洛阳·东方二中校考二模)如图,在平面直角坐标系中,一次函数y=k1x+b的的图象的两个交点为A(−1,3)和B.图象与反比例函数y=k2x(1)求反比例函数的关系式;=2;(2)若一次函数y=k1x+b与x轴交于点C,且ABBC①求出k1与b的值;的解集为__________;②直接写出不等式k1x+b>k2x(3)若点F是直线OA上一点,F点的横坐标为m,连接AF,BF,△ABF的面积记为S,当S=2时,请直接写出m值__________.9.(2023·江苏苏州·校考一模)如图,在平面直角坐标系中,直线y1=k1x+b与反比例函的图象交于A、B两点,已知A(1,3m−4),B(m,1).数y2=k2x(1)求k1与k2的值;(2)直线DE在直线AB的下方且与AB平行,与x轴、y轴分别交于点D、E,点P是直线AB上的一动点,当△PDE的面积为1时,求直线DE的解析式.0.(2023·河南安阳·统考二模)如图,在平面直角坐标系中,一次函数y=kx+2(k≠0)的(x>0)的图象交于点A(a,3),与x轴交于点B(−4,0),与y轴交图象与反比例函数y=mx于点C.求:(1)k,m的值;(2)直线OP过原点,交反比例函数于点P,且OP∥AB,△PAC的面积.。

波利亚“怎样解题”表在中学几何题中的运用——以2016年山西中考数学22题为例

波利亚“怎样解题”表在中学几何题中的运用——以2016年山西中考数学22题为例

波利亚“怎样解题”表在中学几何题中的运用——以2016年山西中考数学22题为例韩婷婷【摘要】波利亚“怎样解题”表广泛运用于数学解题教学中,解题表给予师生一种思维方式,能够高效帮助学生解答问题.以一道山西省中考题中典型的几何题目为例,以波利亚解题理论为支撑,分析解题思路,得到解题思路自然生成的启示,更好地辅助教师进行解题教学.【期刊名称】《甘肃高师学报》【年(卷),期】2017(022)012【总页数】5页(P63-67)【关键词】“怎样解题”表;解题反思;自然生成【作者】韩婷婷【作者单位】太原师范学院教师教育学院,山西长治030600【正文语种】中文【中图分类】G633.61 波利亚“怎样解题”表及分析数学是一门逻辑思维见长的学科,解题对于数学学习极其重要.图形与几何是课程标准中重要领域之一,中考几何证明题能够有效锻炼学生的思维,但同时是一个难点,怎样能使解题思路自然生成,在教学中就显得尤为重要.美籍匈牙利数学家、数学教育家乔治·波利亚在《怎样解题》一书中给出怎样解题的思路,在数学教学中被广泛使用.怎样解题表将解题过程分为四步.第一步:理解题目未知量是什么?已知数据是什么?条件是什么?条件有可能满足吗?条件是否足以确定未知量?或者它不够充分?或者多余?或者矛盾?画一张图,引入适当的符号.将条件的不同部分分开.你能把它们写出来么?第二步:拟定方案你以前见过它吗?或者你见过同样的题目以一种稍有不同的形式出现吗?你知道一道与它有关的题目吗?你知道一条可能有用的定理吗?观察未知量,并尽量想出一道你所熟悉的具有相同或相似未知量的题目.这里有一道题目和你的题目有关而且以前解过.你能利用它吗?你能利用它的结果吗?你能利用它的方法吗?为了有可能应用它,你是否应该引入某个辅助元素?你能重新叙述这道题目吗?你还能以不同的方式叙述它吗?回到定义上去.如果你不能解所提的题目,先尝试去解某道有关的题目.你能否想出一道更容易着手的相关题目?一道更为普遍化的题目?一道更为特殊化的题目?一道类似的题目?你能解出这道题目的一部分吗?只保留条件的一部分,而丢掉其它部分,那么未知量可以确定到什么程度,它能怎样变化?你能从已知数据中得出一些有用的东西吗?你能想到合适的已知数据来确定该未知量吗?你能改变未知量或已知数据,或者有必要的话把两者都改变,从而使新的未知量和新的已知数据彼此更接近吗?你用到所有已知数据了吗?你用到全部的条件了吗?你把题目中所有关键概念都考虑到了吗?第三步:执行方案执行你的解题方案,检验每一个步骤.你能清楚地看出这一步骤是正确的吗?你能否证明它是正确的?第四步:回顾你能检验这个结果吗?你能检验这个论证吗?你能以不同的方式推导这个结果吗?你能一眼就看出它来吗?你能在别的什么题目中利用这个结果或这种方法吗?[1] “怎样解题”表中,宏观解题步骤分为四步,理解题目是解题的基础,理解题目、分析已知条件、挖掘隐含条件,才能更好将题目与之前所学内容形成联系;拟定方案环节是解题过程中最关键的一个环节,这个环节需要学生有一定的知识基础,需要将现有的题目与已有资源进行合理整合,方案拟定的合理,才能顺利解答题目;回顾是一个较容易被忽略却很重要的环节,回顾不仅是对本道题目的总结,更是提炼题目精髓的过程,需要通过对题目以及其变式总结出一类题目的解题思路,从而打开学生的思维.以山西省2016年中考数学题22题为例,来具体说明波利亚“怎样解题”在几何证明题中的应用.2 波利亚“怎样解题”表在解题中应用2.1 题目呈现问题情境:在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片 ABCD(∠BAD>90°)沿对角线 AC 剪开,得到△ABC和△ACD.操作发现:(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于 E,则四边形ACEC′的形状是_________;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接 DB,C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究:(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D 沿着射线 DB 方向平移 acm,得到△A′C″D′,连接BD′、CC″使四边形BCC″D′恰好为正方形,求 a 的值.请你解答此问题;(4)请你将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D′,如图4是平移的一种情况,试再画出至少两种情况,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.第22题图2.2 根据波利亚“怎样解题”表进行解题思路分析将上述题目的四问用波利亚“怎样解题”表的四个步骤来进行分析.2.2.1 第一问思路分析与解法展示(1)第一步:理解题意已知条件:图1中四边形ABCD为菱形,即图2中,AC=AC′.当△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,即∠BAC=α=∠DAC′.求解问题:四边形ACEC′的形状.将已知角标在图2上(如图5).图5(2)第二步:拟定计划将题目和图5中隐含条件列出:可用得上的定义、公理或公式:两组对边分别平行的四边形叫做平行四边形;一组邻边相等的平行四边形叫做菱形.(3)第三步:执行方案因为四边形ABCD为菱形,所以根据菱形的定义可得四边形ACEC′为菱形.(4)第四步:回顾思考因为AC=AC′,故解题思路可优先考虑用菱形的定义来判定图形为菱形,证明平行四边形时可采用不同判定方法,上述方案采用两组对边分别平行来判定四边形为平行四边形,除此之外根据题目给出的多角关系,也可用两组对角分别相等来判定四边形为平行四边形.2.2.2 第二问思路分析与解法展示(1)第一步:理解题意已知条件:图1中的四边形ABCD为菱形,即AC=AC′,当△ACD以A为旋转中心,逆时针方向旋转角α,使α=2∠BCA.求解问题:连接 DB,C′C,证明四边形BCC′D 是矩形.将已知条件标在图3上,第一问已经设∠BCA=α,本题中不妨设旋转角为2α,如图6.图6图7(2)第二步:拟订方案将题目和图6中的隐含条件列出又∠BCC′和∠DC′C为同旁内角,即可证明.是否有与此相近的题目:如图7,在平行四边形ABCD 中,DE⊥AB,BF⊥CD,垂足分别为 E、F.求证:四边形EBFD为矩形.学生对于此题很熟悉,比较容易发现,相似例题中也含有一组全等三角形,根据全等关系得出证明矩形的关键条件,对证明原题目有一定启发.可用得上的定义、公理或公式:同旁内角互补,两直线平行;一组对边平行且相等的四边形是平行四边形;有一个角是直角的平行四边形叫做矩形.(3)第三步:执行方案(如图6)同理得∠BCC′=90°.所以四边形BCC′D为平行四边形,且有一个内角为90°.根据矩形定义,四边形BCC′D为矩形.(4)第四步:回顾思考(如图6)究其本质,此题要证明一个四边形为矩形.矩形证明有多种思路,此题采用一个角为直角的平行四边形是矩形或三个角为直角的四边形是矩形的思路.上述执行方案中能证得两个角为直角,即再证明一个角为直角的方法也可行.题目中根据三角形内角和关系可将∠ADC′表示为180°-2α,根据周角为360°,将∠DAB 表示为360°-4α,在等腰△DAB 中由此证明第三个角为直角,四边形BCC′D为矩形.进一步思考本题,若绕A点旋转使AD和AB边重合,能得到筝形,根据筝形对角线互相垂直,筝形是轴对称图形等特征又可以有新的命题方式.2.2.3 第三问思路分析与解法展示(1)第一步:理解题意(如图8)已知条件:四边形BCC′D是矩形,△AC′D 沿射线 DB 方向平移,得到△A′C″D′,连接BD′,CC″使四边形BCC″D′为正方形.求解问题:求△AC′D平移的距离a.将已知条件标于图3上(如图8),本题涉及平移,故将平移后的情况都画出,如图9和图10,便于理解.图8图9图10四边形BCC′D是矩形.BC=13cm,是矩形的宽,AC=10cm是等腰三角形△ABC 的底边的长.△AC′D沿着射线DB方向平移,会出现两种情况,一种C″在线段C′C 上,D′在线段 BD 上(如图9);另一种C″在线段C′C延长线上,D′在线段 DB 延长线上(如图 10).(2)第二步:拟订方案(如图9、图 10)将题目中隐含条件列出:△AC′D沿射线DB方向平移会出现两种情况,即移动距离会有两个值;移动后CC″=BC=13cm;由图9、图10知,求a值还需求矩形BCC′D 的长CC′.题目的分析:经过理解题意,将隐含条件列出,不难发现题目最终聚焦于求矩形的长,矩形的长是定值,即题目由动态的平移变为静态的长度求解.如图8,CC′和DB分别为两等腰△ACC′与△ADB的底边,题目中已知AC=AC′=10cm,从而将求矩形边长又转化为求等腰三角形的底边长度.可能用到的定理、公理或公式:勾股定理;等腰三角形三线合一;相似三角形对应边的比等于相似比;两个角分别相等的两个三角形相似.(3)第三步:执行方案在图8中,过B作等腰△ABC底边上的高,交AC于F,F为AC的中点,过A作等腰△ACC′底边上高交CC′于E,E点为CC′的中点,由勾股定理得BF=12cm.因为在△CBF中,∠CBF=90°-α,则∠CBF=∠ACE,又∠CFB=∠CEA=90°,所以△BFC~△CEA,所以,可得.则C″在线段C′C 上,D′在线段DB上时,有C″在线段 C′C延长线上,D′在线段DB延长线上时,有综合上述,a的值为或.(4)第四步:回顾思考本题深度考察学生思维能力,首先针对分类讨论,要做到不重不漏,其次要明白图形平移过程中的变量和不变量,精准把握题目中要求平移的程度,最后是对相似三角形的证明.此题最终落足于求等腰三角形底边长,根据解题经验知,求解三角形底边长度时通常有等面积和相似三角形等方法,观察图8,目标三角形在矩形中,矩形中还包含多个其它等腰三角形,同时根据条件发现面积法不易求解,故将思维转向相似关系.2.2.4 第四问思路分析与解法展示(1)第一步:弄清题意已知条件:四边形ABCD为菱形,△ACD在同一平面内进行一次平移,得到△A′C′D′.求解问题:平移构造出新图形,说明平移构图方法.本题是开放性试题,画图方式不唯一.(2)第二步:拟定方案题目中隐含条件:平移时应注意菱形各边长度及对应关系不变.事实上,△ACD可以在平面上沿任意方向平移任意长度.题目的分析:通过平移的性质知,平移不改变图形的形状和大小,经过平移,图形对应线段相等,对应角相等,即线段间平行且相等的本质不会改变。

专题22 平行四边形的存在性问题-备战2022年中考数学母题题源解密(解析版

专题22 平行四边形的存在性问题-备战2022年中考数学母题题源解密(解析版

专题22 平行四边形的存在性问题考向二次函数中的平行四边形的存在性问题【母题来源】2021年中考西藏卷【母题题文】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点.与y轴交于点C.且点A 的坐标为(﹣1,0),点C的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时,求点P的坐标;(3)图(乙)中,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使得以B,C,M,N 为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)将A的坐标(﹣1,0),点C的坐(0,5)代入y=﹣x2+bx+c得:{0=−1−b+c5=c,解得{b=4 c=5,∴抛物线的解析式为y=﹣x2+4x+5;(2)过P作PD⊥x轴于D,交BC于Q,过P作PH⊥BC于H,如图:在y=﹣x2+4x+5中,令y=0得﹣x2+4x+5=0,解得x=5或x=﹣1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形, ∴∠CBO =45°,∵PD ⊥x 轴, ∴∠BQD =45°=∠PQH , ∴△PHQ 是等腰直角三角形,∴PH =√2, ∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx+5,将B (5,0)代入得0=5k+5, ∴k =﹣1,∴直线BC 解析式为y =﹣x+5,设P (m ,﹣m 2+4m+5),(0<m <5),则Q (m ,﹣m+5), ∴PQ =(﹣m 2+4m+5)﹣(﹣m+5)=﹣m 2+5m =﹣(m −52)2+254, ∵a =﹣1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P (52,354);(3)存在,理由如下:抛物线y =﹣x 2+4x+5对称轴为直线x =2,设M (s ,﹣s 2+4s+5),N (2,t ),而B (5,0),C (0,5), ①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴{s+22=5+02−s 2+4s+5+t 2=0+52,解得{s =3t =−3,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴{s+52=2+02−s 2+4s+4+02=t+52,解得{s =−3t =−21,∴M (﹣3,﹣16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:{s+02=2+52−s 2+4s+5+52=t+02,解得{s =7t =−11, ∴M (7,﹣16);综上所述,M 的坐标为:(3,8)或(﹣3,﹣16)或(7,﹣16).【试题解析】(1)将A 的坐标(﹣1,0),点C 的坐(0,5)代入y =﹣x 2+bx+c ,即可得抛物线的解析式为y =﹣x 2+4x+5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =﹣x 2+4x+5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =√2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx+5,将B (5,0)代入得直线BC 解析式为y =﹣x+5,设P (m ,﹣m 2+4m+5),(0<m <5),则Q (m ,﹣m+5),PQ =﹣(m −52)2+254,故当m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P (52,354);(3)抛物线y =﹣x 2+4x+5对称轴为直线x =2,设M (s ,﹣s 2+4s+5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组{s+22=5+02−s 2+4s+5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得{s+52=2+02−s 2+4s+4+02=t+52,解得M (﹣3,﹣16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则{s+02=2+52−s 2+4s+5+52=t+02,解得M (7,﹣16).【命题意图】数形结合;分类讨论;待定系数法;函数的综合应用;多边形与平行四边形;几何直观;应用意识.【命题方向】二次函数综合题,一般为压轴题.命题形式有:(1)“三个定点、一个动点”的平行四边形存在性问题;(2)“两个定点、两个动点”的平行四边形存在性问题. 【得分要点】(1)“三个定点、一个动点”的平行四边形存在性问题:以A ,B ,C 三点为顶点的平行四边形构造方法有:①作平行线:如图,连结AB ,BC ,AC ,分别过点A ,B ,C 作其对边的平行线,三条直线的交点为D ,E ,F .则四边形ABCD ,ACBE ,ABFC 均为平行四边形.②倍长中线:如图,延长边AC ,AB ,BC 上的中线,使延长部分与中线相等,得点D ,E ,F ,连结DE ,EF ,FD .则四边形ABCD ,ACBE,ABFC 均为平行四边形.FEDCBA(2)“两个定点、两个动点”的平行四边形存在性问题:先确定其中一个动点的位置,转化为“三个定点、一个动点”的平行四边形存在性问题,再构造平行四边形.解平行四边形存在性问题,无论是以上哪种类型,若没有指定四边形顶点顺序,都需要分类讨论.通常这类问题的解题策略有:(1)几何法:先分类,再画出平行四边形,然后根据平行四边形的性质来解答.如图,若AB ∥CD 且AB =CD ,分别过点B ,C 作一组平行线BE ,CF ,分别过点A ,D 作一组平行线AE ,DF ,则△AEB ≌△DFC ,从而得到线段间的关系式解决问题.(2)代数法:先罗列四个顶点的坐标,再分类讨论列方程,然后解方程并检验.如图.已知平行四边形ABCD .连结AC ,BD 交于点O .设顶点坐标为A (x A ,y A ).B (x B ,y B ),C (x C ,y C ),D (x D ,y D ).用平移的性质求未知点的坐标:,,.B ACD B C A D BACDBCAD x x x x x x x x y y y y y y y y 或②利用中点坐标公式求未知点的坐标:,22.22AC BD AC BDx x x x y y y y有时候几何法和代数法相结合,可以使得解题又快又好.ABCDEFABCDEFODCBA1.(2021•陕西模拟)如图,抛物线y =﹣x 2+2x+3与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点.设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、点B 、点C 及抛物线的顶点坐标;(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形?解:(1)在y =﹣x 2+2x+3中,令x =0得y =3,令y =0得x =﹣1或x =3, ∴A (﹣1,0),B (3,0),C (0,3), ∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴抛物线的顶点坐标为(1,4); (2)∵点D 与点C 关于x 轴对称, ∴D (0,﹣3),设直线BD 为y =kx+b ,将B (3,0),D (0,﹣3)代入得: {3k +b =0b =−3,解得{k =1b =−3, ∴直线BD 为y =x ﹣3,∵点P 的坐标为(m ,0), ∴M (m ,m ﹣3),Q (m ,﹣m 2+2m+3), ∵四边形CQMD 是平行四边形, ∴CM 的中点即是QD 的中点,而CM 的中点为(m2,m2),QD 的中点为(m2,−m 2+2m2),∴m 2=−m 2+2m2,解得m =0(舍去)或m =1,∴m 的值为1.2. (2021•重庆模拟)如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3交x 轴于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,顶点是D . (1)求抛物线顶点D 的坐标;(2)若P 是抛物线在第四象限内的一点,设点P 的横坐标是m ,连接AC 、CP 、BP ,当四边形ACPB 面积最大时,求点P 的坐标和最大面积;(3)若N 是抛物线对称轴上一点,在抛物线上是否存在点M ,使得以B 、C 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出线段CN 的长度;若不存在,请说明理由.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令x=0,则y=﹣3,∴C(0,﹣3),如图1,过点P作PG⊥AB于G,设P(m,m2﹣2m﹣3),∴OG=m,PG=﹣m2+2m+3,∴S四边形ACPB=S△AOC+S梯形OCPG+S△BGP=12×1×3+12m(3﹣m2+2m+3)+12(3﹣m)(﹣m2+2m+3)=−32m2+92m+6=−32(m−32)2+758,∵−32<0,∴当m=32时,S四边形ACPB的最大值为758,此时P(32,−154)(3)点C(0,﹣3),点B(3,0),设点M(t,n),n=t2﹣2t﹣3,点N(1,s),①当BC是边时,点C向右平移3个单位,向上平移3个单位得到B,同样点M(N)向右平移3个单位,向上平移3个单位得到N(M),即t ±3=1,n ±3=s ,解得:t =﹣2或4,s =8或2, ∴点N (1,2)或(1,8),∴CN =√12+(2+3)2=√26或CN =√12+(8+3)2=√122; ②当BC 是对角线时,由中点公式得:3=t+1,﹣3=s+n , 解得:s =0,∴点N (1,0),∴CN =√12+(0+3)2=√10. ∴CN 的长为√26或√122或√10.3.(2021•重庆模拟)如图,抛物线y =ax 2+bx+4经过点A (﹣1,0),B (2,0)两点,与y 轴交于点C ,点D 是抛物线在x 轴上方对称轴右侧上的一个动点,设点D 的横坐标为m .连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式;(2)当△BCD 的面积与△AOC 的面积和为72时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.解:(1)将点A (﹣1,0),B (2,0)代入y =ax 2+bx+4, ∴{a −b +4=04a +2b +c =0,∴{b =2a =−2, ∴y =﹣2x 2+2x+4;(2)令x =0,则y =4, ∴C (0,4),∴OC =4, ∵A (﹣1,0),∴OA =1, ∴S △OAC =12×1×4=2, ∵△BCD 的面积与△AOC 的面积和为72,∴S △BCD =32, 过点D 作DE ⊥x 轴交BC 于点E ,设直线BC 的解析式为y =kx+b , ∴{b =42k +b =0,∴{k =−2b =4, ∴y =﹣2x+4,∵D (m ,﹣2m 2+2m+4),则E (m ,﹣2m+4),∴DE =﹣2m 2+4m , ∴S △BCD =12×2×ED =32, ∴﹣2m 2+4m =32,∴m =12或m =32,∵y =﹣2x 2+2x+4的对称轴为直线x =1,D 点在对称轴右侧, ∴m =32;(3)存在点M 使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,理由如下: ∵m =32,∴D (32,52),设M (t ,0),N (n ,﹣2n 2+2n+4), ①当DM 和BN 为平行四边形对角线时,此时{32+t =n +252=−2n 2+2n +4, ∴{n =−12t =0或{n =32t =2,∴M (0,0)或M (2,0);②当DB 和MN 为平行四边形的对角线时,此时{32+2=t +n 52=−2n 2+2n +4, ∴{n =−12t =4或{n =32t =2,∴M (4,0)或M (2,0);③当DN 和BM 为平行四边形的对角线时,此时{32+n =t +252−2n 2+2n +4=0,∴{n =1+√142t =√142或{n =1−√142t =−√142, ∴M (√142,0)或M (−√142,0); 综上所述:M 点的坐标为(0,0)或(2,0)或(4,0)或(√142,0)或(−√142,0). 4.(2021•河南南阳模拟)如图,抛物线y =−12x 2+bx+c 与x 轴交于点A 和点B (1,0),交y 轴于点C ,连接AC ,BC ,已知OA =2OC ,且△ABC 的面积为212.(1)求抛物线的解析式;(2)点P 是直线AC 上方抛物线上一动点,过点P 作PQ ∥y 轴,交直线AC 于点Q .抛物线上是否存在点P ,使以P ,Q ,O ,C 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线交y 轴于点C , ∴C (0,c ),∴OC =c , ∵OA =2OC ,∴OA =2c , ∴A (﹣2c ,0),∵S △ABC =12AB •OC =12×(2c+1)•c =c 2+12c =212, ∴c =−72(舍去)或c =3, ∴C (0,3),A (﹣6,0),将c =3,B (1,0)代入y =−12x 2+bx+c 得, {−12+b +c =0c =3,∴{b =−52c =3∴抛物线的解析式为:y =−12x 2−52x+3. (2)设AC :y =kx+b ,将点A 、C 的坐标代入y =kx+b 得, y =12x+3,设P (m ,−12m 2−52m+3), ∴Q (m ,12m+3),∴PQ =(−12m 2−52m+3)﹣(12m+3)=−12m 2﹣3m ,令PQ =OC ,∴−12m 2﹣3m =3, ∴m 1=﹣3+√3,m =﹣3−√3, ∴P (﹣3+√3,√3+92)或(﹣3−√3,−√3+92). ∵PQ ∥OC ,∴四边形PQOC 是平行四边形.5.(2021•黑龙江大庆模拟)如图,抛物线y =ax 2+bx+c (a ≠0)的图象经过A (1,0),B (3,0),C (0,6)三点,直线y =2x+b ′经过点A ,交抛物线于点D . (1)求抛物线的解析式;(2)点E 在线段AD 上,且满足S △BDE =2S △ABE ,点F 在x 轴下方的抛物线上,设点F 的横坐标为t ,当t 为何值时,△FBE 的面积最大?并求出最大值;(3)P 为抛物线上的一动点,Q 为对称轴上一动点,若以A ,D ,P ,Q 为顶点的四边形为平行四边形,求出点P 的坐标.解:(1)∵抛物线 y =ax 2+bx+c (a ≠0)的图象经过点 A (1,0),B (3,0),∴设抛物线的解析式为 y =a (x ﹣1)(x ﹣3),把点 C (0,6)代入,∴6=a (0﹣1)(0﹣3),∴a =2,∴抛物线的解析式为 y =2(x ﹣1)(x ﹣3)=2x 2﹣8x+6.(2)∵直线 y =2x+b ′经过点 A (1,0),∴0=2+b ′,∴b ′=﹣2,∴直线 AD 的解析式为 y =2x ﹣2,联立{y =2x −2y =2x 2−8x +6,解得:{x 1=1y 1=0, ∴点 D (4,6),∵A (1,0),B (3,0),∴AB =2,∴S △ABD =12×2×6=6, 设点 E (m ,2m ﹣2),∵S △BDE =2S △ABE ,∴S △ABE =13S △ABD =2,∴12×2×(2m −2)=2, ∴m =2,∴点 E (2,2),∴直线 BE 的解析式为 y =﹣2x+6,过点 F 作 FG ∥y 轴交直线 BE 于点 G ,∵点 F (t ,2t 2﹣8t+6)(1<t <3),∴G (t ,﹣2t+6).∴FG =﹣2t+6﹣(2t 2﹣8t+6)=﹣2t 2+6t ,设点B 的横坐标为x B ,点E 的坐标为x E ,当1<t <2时,S △FBE =S △FBG ﹣S △FEG =12FG •(x B ﹣x F )−12FG •(x E ﹣x F )=12FG •(x B ﹣x E )=12(﹣2t 2+6t )•(3﹣2)=−(t −32)2+94, ∴当 t =32 时,S △FBE 有最大值为 94. 当2≤t <3时,S △FBE =S △FBG +△FEG =12FG •(x B ﹣x F )+12FG •(x F ﹣x E )=12FG •(x B ﹣x E )=12(﹣2t 2+6t )•(3﹣2)=−(t −32)2+94,∴当t =2时,S △FBE 有最大值为 2,综上所述,当 t =32 时,△FBE 的最大面积为94.(3)由(2)知,A (1,0),D (4,6),设Q (2,m ),P (x ,2x 2﹣8x+6),①以AD 为对角线时,∵以 A ,D ,P ,Q 为顶点的四边形为平行四边形,∴{1+4=2+x 0+6=m +2x 2−8x +6,解得:{x =3m =6,∴P (3,0);②以AP 为对角线时,∵以 A ,D ,P ,Q 为顶点的四边形为平行四边形,∴{1+x =2+40+2x 2−8x +6=m +6,解得:{x =5m =10,∴P (5,16);③以AQ 为对角线时,∵以 A ,D ,P ,Q 为顶点的四边形为平行四边形,∴{1+2=4+x 0+m =2x 2−8x +6+6,解得:{x =−1m =22,∴P (﹣1,16);综上所述,当点 P 的坐标为 (5,16)或 (﹣1,16)或(3,0)时,以 A ,D ,P ,Q 为顶点的四边形为平行四边形.5.(2021•四川南充模拟)如图,在平面直角坐标系中,抛物线y =﹣x 2+bx+c 经过点A (4,0)、B (0,4)、C .其对称轴l 交x 轴于点D ,交直线AB 于点F ,交抛物线于点E .(1)求抛物线的解析式;(2)点P 为直线l 上的动点,求△PBC 周长的最小值;(3)点N 为直线AB 上的一点(点N 不与点F 重合),在抛物线上是否存在一点M ,使以点E 、F 、N 、M 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标,不存在,说明理由.解:(1)把点A (4,0)、B (0,4)代入抛物线y =﹣x 2+bx+c 中,得,{−16+4b +c =0c =4,解得{b =3c =4, ∴抛物线的解析式为:y =﹣x 2+3x+4,(2)由抛物线解析式可知,l :x =32,C (﹣1,0),如图,作点B 关于直线l 的对称轴B ′,连接B ′C 交l 于一点P ,点P 即为使△PBC 周长最小的点,此时B ′(3,4),直线B ′C :y =x+1,∴P (32,52), ∵B (0,4),C (﹣1,0),B ′(3,4),∴BC =√17,CB ′=4√2,∴△PBC 周长的最小值为:√17+4√2.(3)存在,以点E 、F 、N 、M 为顶点的四边形为平行四边形的点M 的坐标为(4+√312,−7+2√314),(4−√312,−7−2√314)或(52,214).理由如下: 由抛物线解析式可知,E (32,254),∵A (4,0)、B (0,4),∴直线AB 的解析式为:y =﹣x+4,∴F (32,52). ∴EF =154. 设M (m ,﹣m 2+3m+4),①当EF 为边时,则EF ∥MN ,∴N (m ,﹣m+4),∴NM =EF =154,即|﹣m 2+3m+4﹣(﹣m+4)|=154, 解得m =32(舍)或52或4+√312或4−√312, ∴M (52,214)或(4+√312,7+2√314),(4−√312,−7−2√314)). ②当EF 为对角线时,EF 的中点为(32,358),∴点N 的坐标为(3﹣m ,m 2﹣3m +194), ∴﹣3+m+4=m 2﹣3m +194,解得m =32(舍),m =52, ∴M 3(52,214).综上,满足以点E 、F 、N 、M 为顶点的四边形为平行四边形的点M 的坐标为(4+√312,−7+2√314),(4−√312,−7−2√314)或(52,214).。

2019年中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题课件[精品课件]

2019年中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题课件[精品课件]
13
类型二 几何图形动态探究(2016.22,2014、2013、2012.22) 【例2】(2017·河南)如图①,在Rt△ABC中,∠A=90°,AB=AC,点D, E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC, BC的中点. (1)观察猜想 图 ① 中 , 线 段 PM 与 PN 的 数 量 关 系 是 ______________________________________________, 位置关系是________;
∴S△PMN 最大=12PM2=12×12MN2=14×(7 2)2=429.
19
【对应训练】 1.(2017·濮阳模拟)(1)【问题发现】
如图①,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中 点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF 的数量关系为________; (2)【拓展研究】 在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线 段BE与AF的数量关系有无变化?请仅就图②的情形给出证明; (3)【问题发现】 当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC
=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,
17
(2) 由旋转知,∠BAD=∠CAE, ∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE,

河南省中考数学模拟试题(22)

河南省中考数学模拟试题(22)

河南省中考数学模拟试题(22)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知a•b≠0,则的值不可能等于()A.2B.﹣2C.1D.02.(3分)我国是世界上免费为国民接种新冠疫苗最多的国家,截至2021年9月13日,太原市累计接种新冠疫苗828.5万剂次.将828.5万用科学记数法表示为()A.828.5×104B.82.85×105C.8.285×104D.8.285×106 3.(3分)如图,由五个相同的立方体搭成的几何体,它的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣15.(3分)如图,一副三角板按图中位置摆放.若AB∥CE,则∠1的度数是()A.95°B.100°C.105°D.120°6.(3分)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形7.(3分)关于x的一元二次方程﹣3x2﹣2x+2=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定8.(3分)如图所示的转盘被均匀的分为4部分,每个扇形部分都表示一个数字.转动转盘两次,分别记录停止后的数字(若停在线上则重新转),则两次转动的数字之和大于6的概率是()A.B.C.D.9.(3分)如图,将平行四边形ABCD绕点D逆时针旋转150°,得到平行四边形DEFG,这时点C,E,G恰好在同一直线上,延长AD交CG于点H.若AD=2,∠A=75°,则HG的长是()A.B.C.D.10.(3分)如图1,在等边三角形ABC和矩形DEFG中,AC=DE,点C,D,G都在直线l上,且AC⊥l于点C,DE⊥l于点D,且D,B,E三点共线,将矩形DEFG以每秒1个单位长度的速度从左向右匀速运动,直至矩形DEFG和△ABC无重叠部分,设矩形DEFG运动的时间为t秒,矩形DEFG和△ABC重叠部分的面积为S,图2为S随t的变化而变化的函数图象,则函数图象中点H的纵坐标是()A.B.2 C.D.3二.填空题(共5小题,满分15分,每小题3分)11.(3分)当x时,分式有意义.12.(3分)请写出一个图象经过原点的函数的解析式.13.(3分)甲、乙两人进行射击测试,每人10次射击的平均数都是8环,方差分别为s甲2=0.65,s乙2=0.54,则成绩最稳定的是.14.(3分)一只挂钟的分针长5cm,从14:00到15:00,分针尖端走了cm.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,当折叠后△EP A′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三.解答题(共8小题,满分75分)16.(10分)(1)计算:;(2)化简:.17.(9分)“武汉告急”,新型冠状病毒的肆虐,使武汉医疗设备严重缺乏,某校号召全校师生捐款购买医用口罩支援疫区,由于学生不能到校捐款,校方采用网上捐款的办法,设置了四个捐款按钮,A:5元;B:10元;C:20元;D:50元,最终全校2000名学生全部参与捐款,活动结束后校团委随机抽查了20名学生捐款数额,根据各捐款数额对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)在图1中,捐款20元所对应的圆心角度数为,将条形统计图补充完整.(2)这20名学生捐款的众数为,中位数为.(3)在求这20名学生捐款的平均数时,小亮是这样分析的:第一步:求平均数的公式是=;第二步:此问题中n=4,x1=5,x2=10,x3=20,x4=50;第三步:==21.25(元).①小亮的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这2000名学生共捐款多少元?18.(9分)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.19.(9分)某数学兴趣小组准备测量学校旗杆的高度.如图所示,左、右两楼AB、CD的高度均为13米,旗杆FG在两楼之间,甲同学在左楼阳台E处测得旗杆顶点F的仰角为45°,且阳台的高度AE为3.1米,乙同学在右楼楼顶D处测得旗杆顶点F的俯角为8°(点A、G、C在同一条直线上),已知两楼间的距离AC为30米,请你帮助该数学兴趣小组计算旗杆FG的高.(精确到1米.参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.14)20.(9分)如图,AB是⊙O的直径,AC与⊙O相切,切点为A,D为⊙O上一点,AD与OC相交于点E,且∠DAB=∠C.求证:OC∥BD.21.(9分)某经销商经销的冰箱二月份每台的售价比一月份每台的售价少500元,已知一月份卖出20台冰箱,二月份卖出25台冰箱,二月份的销售额比一月份多1万元.(1)一、二月份冰箱每台售价各为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,在这种情况下,若(2)中各方案获得的利润相同,则a=.(直接写出结果)22.(10分)已知函数y=(m为常数),该函数的图象记为G.(1)当图象G经过点A(﹣1,1)时,①求m的值;②当﹣2≤x≤2时,求函数值y的取值范围;(2)图象G分别与直线x=4和直线x=﹣4相交于点M、N,若﹣2<m<2,且OM=ON,求:m的值.(3)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m 的取值范围.23.(10分)如图,在平面直角坐标系中,点P的坐标为(a、b),且a、b满足a2+4a+4=+,点B为x轴上动点,过点P作PC⊥y轴于点C.(1)求O、P两点间的距离;(2)如图1,点A为y轴上一点,连接P A、PB、AB,若B(﹣4,0),且∠APB=45°+∠P AC,求点A的坐标;(3)如图2,过点P作PD⊥PB交y轴正半轴于点D,点M为BD的中点,点N(﹣1,0),则MN的最小值为(请直接写出结果).。

河南省中考数学专题复习专题三几何图形的折叠与动点问题训练

河南省中考数学专题复习专题三几何图形的折叠与动点问题训练

专题三几何图形的折叠与动点问题类型一与特殊图形有关(2018·河南)如图.∠MAN=90°.点C在边AM上.AC=4.点B为边AN上一动点.连接BC.△A′BC与△ABC关于BC所在直线对称.点D.E分别为AC.BC的中点.连接DE并延长交A′B所在直线于点F.连接A′E.当△A′EF为直角三角形时.AB的长为________.【分析】当△A′EF为直角三角形时.存在两种情况:①∠A′EF=90°.②∠A′FE=90°进行讨论.【自主解答】当△A′EF为直角三角形时.存在两种情况:①当∠A′EF=90°时.如解图①.∵△A′BC与△ABC关于BC所在直线对称.∴A′C=AC=4.∠ACB=∠A′CB.∵点D.E分别为AC.BC的中点.∴D、E是△ABC的中位线.∴DE∥AB.∴∠CDE=∠MAN=90°.∴∠CDE=∠A′EF.∴AC∥A′E.∴∠ACB=∠A′EC.∴∠A′CB=∠A′EC.∴A′C=A′E=4.在Rt△A′CB中.∵E是斜边BC的中点.∴BC=2A′E=8.由勾股定理.得AB2=BC2-AC2.∴AB=82-42=43;②当∠A′FE=90°时.如解图②.∵∠ADF=∠A=∠DFB=90°.∴∠ABF=90°.∵△A′BC与△ABC关于BC所在直线对称.∴∠ABC=∠CBA′=45°.∴△ABC是等腰直角三角形.∴AB=AC=4;综上所述.AB的长为43或4.图①图②1.如图.四边形ABCD是菱形.AB=2.∠ABC=30°.点E是射线DA上一动点.把△CDE沿CE折叠.其中点D 的对应点为D′.连接D′B. 若使△D′BC为等边三角形.则DE=________________.2.如图.在Rt△ABC中.∠ACB=90°.AB=5.AC=4.E、F分别为AB、AC上的点.沿直线EF将∠B折叠.使点B恰好落在AC上的D处.当△ADE恰好为直角三角形时.BE的长为______.3.(2017·河南)如图.在Rt△ABC中.∠A=90°.AB=AC.BC=2+1.点M.N分别是边BC.AB上的动点.沿MN所在的直线折叠∠B.使点B的对应点B′始终落在边AC上.若△MB′C为直角三角形.则BM的长为__________.4.(2018·新乡一模)菱形ABCD的边长是4.∠DAB=60°.点M、N分别在边AD、AB上.且MN⊥AC.垂足为P.把△AMN沿MN折叠得到△A′MN.若△A′DC恰为等腰三角形.则AP的长为____________.5.(2017·三门峡一模)如图.在Rt△ABC中.∠ACB=90°.AB=5.AC=3.点D是BC上一动点.连接AD.将△ACD沿AD折叠.点C落在点C′.连接C′D交AB于点E.连接BC′.当△BC′D是直角三角形时.DE的长为______.6.(2018·盘锦)如图.已知Rt△ABC中.∠B=90°.∠A=60°.AC=23+4.点M、N分别在线段AC、AB 上.将△ANM沿直线MN折叠.使点A的对应点D恰好落在线段BC上.当△DCM为直角三角形时.折痕MN的长为__________.7.(2018·乌鲁木齐)如图.在Rt△ABC中.∠C=90°.BC=2 3.AC=2.点D是BC的中点.点E是边AB上一动点.沿DE所在直线把△BDE翻折到△B′DE的位置.B′D交AB于点F.若△AB′F为直角三角形.则AE的长为________.8.(2017·洛阳一模)在菱形ABCD 中.AB =5.AC =8.点P 是对角线AC 上的一个动点.过点P 作EF 垂直AC 交AD 于点E.交AB 于点F.将△AEF 折叠.使点A 落在点A′处.当△A′CD 为等腰三角形时.AP 的长为______.9.(2018·濮阳一模)如图.在Rt△ABC 中.∠C=90°.AC =3.BC =4.点D.E 为AC.BC 上两个动点.若将∠C 沿DE 折叠.点C 的对应点C′恰好落在AB 上.且△ADC′恰好为直角三角形.则此时CD 的长为__________.类型二 点的位置不确定(2016·河南)如图.已知AD∥BC .AB⊥BC .AB =3.点E 为射线BC 上一个动点.连接AE.将△ABE 沿AE折叠.点B 落在点B′处.过点B′作AD 的垂线.分别交AD.BC 于点M.N.当点B′为线段MN 的三等分点时.BE 的长为________.【分析】 根据勾股定理.可得EB′.根据相似三角形的性质.可得EN 的长.根据勾股定理.可得答案.【自主解答】 由翻折的性质.得AB =AB′.BE =B′E.①当MB′=2.B′N=1时.设EN =x.得B′E=x 2+1.由△B′EN~△AB′M .EN B′M =B′E AB′.即x 2=x 2+13.x 2=45.BE =B′E=45+1=355; ②当MB′=1.B′N=2时.设EN =x.得B′E=x 2+22.△B′EN∽△AB′M .EN B′M =B′E AB′.即x 1=x 2+43.解得x 2=12.BE =B′E=12+4=322.故答案为:322或355.1.如图.正方形ABCD 的边长为9.将正方形折叠.使D 点落在BC 边上的点E 处.折痕为GH.若点E 是BC 的三等分点.则线段CH 的长是_______.2.(2018·林州一模)在矩形ABCD中.AB=4.BC=9.点E是AD边上一动点.将边AB沿BE折叠.点A的对应点为A′.若点A′到矩形较长两对边的距离之比为1∶3.则AE的长为__________.3.(2015·河南)如图.矩形ABCD中.AD=5.AB=7.点E为DC上一个动点.把△ADE沿AE折叠.当点D的对应点D′落在∠ABC的平分线上时.DE的长为______.4.(2017·商丘模拟)如图.在矩形ABCD中.AD=5.AB=8.点E为射线DC上一个动点.把△ADE沿直线AE 折叠.当点D的对应点F刚好落在线段AB的垂直平分线上时.则DE的长为__________.5.如图.在矩形ABCD中.BC=6.CD=8.点P是AB上(不含端点A.B)任意一点.把△PBC沿PC折叠.当点B 的对应点B′落在矩形ABCD对角线上时.BP=________.6.(2018·河南模拟)如图.△ABC中.AB= 5.AC=5.tan A=2.D是BC中点.点P是AC上一个动点.将△BPD 沿PD折叠.折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半.则AP的长为____________.7.在矩形ABCD中.AB=6.BC=12.点E在边BC上.且BE=2CE.将矩形沿过点E的直线折叠.点C.D的对应点分别为C′.D′.折痕与边AD交于点 F.当点 B.C′.D′恰好在同一直线上时.AF的长为__________________.类型三根据图形折叠探究最值问题如图.在矩形纸片ABCD中.AB=2.AD=3.点E是AB的中点.点F是AD边上的一个动点.将△AEF沿EF所在直线翻折.得到△A′EF.则A′C的长的最小值是________.【分析】以点E为圆心.AE长度为半径作圆.连接CE.当点A′在线段CE上时.A′C的长取最小值.根据折叠的性质可知A′E=1.在Rt△BCE中利用勾股定理可求出CE的长度.用CE-A′E即可求出结论.例3题解图【自主解答】以点E为圆心.AE长度为半径作圆.连接CE.当点A′在线段CE上时.A′C的长取最小值.如解图所示.根据折叠可知:A′E=AE=12AB=1.在Rt△BCE中.BE=12AB=1.BC=3.∠B=90°.∴CE=BE2+BC2=10.∴A′C的最小值=CE-A′E=10-1.故答案为10-1.1.(2019·原创)如图.在边长为10的等边三角形△ABC中.D是AB边上的动点.E是AC边的中点.将△ADE 沿DE翻折得到△A′DE.连接BA′.则BA′的最小值是__________.2.在矩形ABCD中.AD=12.E是AB边上的点.AE=5.点P在AD边上.将△AEP沿EP折叠.使得点A落在点A′的位置.如图.当A′与点D的距离最短时.△A′PD的面积为________.3.如图.在边长为4的正方形ABCD中.E为AB边的中点.F是BC边上的动点.将△EBF沿EF所在直线折叠得到△EB′F.连接B′D.则当B′D取得最小值时.tan∠BEF的值为__________.4.(2017·河南模拟)如图.在Rt△ABC中.∠ACB=90°.AC=4.BC=6.点D是边BC的中点.点E是边AB上的任意一点(点E不与点B重合).沿DE翻折△DBE使点B落在点F处.连接AF.则线段AF的长取最小值时.BF 的长为_________.参考答案类型一针对训练1.3+1或23-2 【解析】(1)当点E在边AD上时.过点E作EF⊥CD于F.如解图①.设CF=x.第1题解图①∵∠ABC=30°.∴∠BCD=150°.∵△BCD′是等边三角形.∴∠DCD′=90°.由折叠可知.∠ECD=∠D′CE=45°.∵EF=CF=x.在直角三角形DEF中.∠D=30°.∴DE=2x.∴DF=3x.∴CD=CF+DF=x+3x=2.解得x=3x-1.∴DE=2x=23-2.(2)当E在DA的延长线上时.如解图②.第1题解图②过点B作BF⊥DA于点F.根据折叠可知.∠ED′C=∠D=30°.又∵三角形BD′C是等边三角形.∴D′E垂直平分BC.∵AD∥BC.∴D′E⊥AD.∵∠ABC=30°∴∠BAF=30°.又∵AB=2.∴AF= 3.令D′E与BC的交点为G.则易知EF =BG =12BC =1.∴AE=3-1.∴DE=3+1.综上所述.DE 的长度为3+1或23-2. 2.158或157【解析】在Rt△ABC 中.∵∠C=90°.AB =5.AC =4.∴BC=3.沿直线EF 将∠B 折叠.使点B 恰好落在BC 上的D 处.当△ADE 恰好为直角三角形时.根据折叠的性质:BE =DE.设BE =x.则DE =x.AE =5-x.①当∠ADE=90°时.则DE∥BC .∴DE CB =AE AB .∴x 3=5-x 5.解得x =158;②当∠AED=90°时.则△AED∽△ACB .∴DE BC=AE AC .∴x 3=5-x 4.解得x =157.故所求BE 的长度为:158或157. 3.122+12或1 【解析】①如解图①.当∠B′MC=90°.B′与A 重合.M 是BC 的中点.∴BM=12BC =122+12;②如解图②.当∠MB′C=90°.∵∠A=90°.AB =AC.∴∠C=45°.∴△CMB′是等腰直角三角形.∴CM=2MB′.∵沿MN 所在的直线折叠∠B.使点B 的对应点为B′.∴BM=B′M .∴CM=2BM.∵BC=2+1.∴CM +BM =2BM +BM =2+1.∴BM=1.综上所述.若△MB′C 为直角三角形.则BM 的长为122+12或1.图①图②第3题解图 4.433或23-2 【解析】①如解图①.当A′D=A′C 时.∠A′DC=∠A′CD=30°.∴∠AA′D=60°.又∵∠CAD=30°.∴∠ADA′=90°.在Rt△ADA′中.AA′=AD cos 30°=432=833.由折叠可得AP =12AA′=433;图①图②第4题解图②如解图②.当CD =CA′=4时.连接BD 交AC 于O.则Rt△COD 中.CO =CD×cos 30°=4×32=2 3.∴AC =4 3.∴AA′=AC -A′C=43-4.由折叠可得AP =12AA′=23-2;故答案为433或23-2. 5 .32或34【解析】如解图①所示.点E 与点C′重合时.在Rt△ABC 中.BC =AB 2-AC 2=4.由翻折的性质可知;AE =AC =3、DC =DE.则EB =2.设DC =ED =x.则BD =4-x.在Rt△DBE 中.DE 2+BE 2=DB 2.即x 2+22=(4-x)2.解得x =32.∴DE=32.图①图②第5题解图如解图②所示:∠EDB=90°时.由翻折的性质可知:AC =AC′.∠C=∠AC′D=90°.∵∠C=∠AC′D =∠CDC′=90°.∴四边形ACDC′为矩形.又∵AC=AC′.∴四边形ACDC′为正方形.∴CD=AC =3.∴DB=BC -DC =4-3=1.∵DE∥AC .∴△BDE∽△BCA.∴DE AC =DB CB =14.即ED 3=14.解得DE =34.点D 在CB 上运动.∠DBC′<90°.故∠DBC′不可能为直角.故答案为:32或34. 6.23+43或 6 【解析】分两种情况:①如解图①.当∠CDM=90°.△CDM 是直角三角形.∵在Rt△ABC 中.∠B=90°.∠A=60°.AC =23+4.∴∠C=30°.AB =12AC =3+2.由折叠可得.∠MDN=∠A=60°.∴∠BDN=30°.∴BN=12DN =12AN.∴BN=13AB =3+23.∴AN=2BN =233+43.∵∠DNB=60°.∴∠ANM =∠DNM=60°.∴∠ANM=60°.∴AN=MN =23+43.②如解图②.当∠CMD=90°时.△CDM 是直角三角形.由题可得∠CDM=60°.∠A=∠MDN=60°.∴∠BDN=60°.∠BND=30°.∴BD=12DN =12AN.BN =3BD.又∵AB=3+2.∴AN=2.BN = 3.过N 作NH⊥AM 于H.则∠ANH=30°.∴AH=12AN =1.HN = 3.由折叠可得∠AMN=∠DMN=45°.∴△MNH 是等腰直角三角形.∴HM=HN = 3.∴MN= 6.故答案为23+43或 6.图①图②第6题解图7.3或145 【解析】∴∠C=90°.BC =2 3.AC =2.∴tan B=AC BC =223=33.∴∠B=30°.∴AB=2AC =4.∵点D 是BC 的中点.沿DE 所在直线把△BDE 翻折到△B′D′E 的位置.B′D 交AB 于点F.∴DB=DC = 3.EB′=EB.∠DB′E=∠B=30°.设AE =x.则BE =4-x.EB′=4-x.当∠AFB′=90°时.在Rt△BDF 中.cos B =BF BD .∴BF=3cos 30°=32.∴EF=32-(4-x)=x -52.在Rt△B′EF 中.∵∠EB′F=30°.∴EB′=2EF. 则4-x =2(x -52).解得x =3.此时AE 为3;第7题解图当∠FB′A=90°时.作EH⊥AB′于H.连接AD.如解图.∵DC=DB′.AD =AD.∴Rt△ADB′≌Rt△ADC .∴AB′=AC =2.∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°.∴∠EB′H=60°.在Rt△EHB′中.B′H=12B ′E =12(4-x).EH =3B′H=32(4-x).在Rt△AEH 中.∵EH 2+AH 2=AE 2.∴34(4-x)2+[12(4-x)+2]2=x 2.解得x =145.此时AE 为145.综上所述.AE 的长为3或145. 8.32或3916【解析】∵四边形ABCD 是菱形.∴AB=BC =CD =AD =5.∠DAC=∠BAC.∵EF⊥AA′.∴∠EPA=∠FPA′=90°.∴∠EAP+∠AEP=90°.∠FAP+∠AFP=90°.∴∠AEP=∠AFP .∴AE=AF.∵△A′EF 是由△AEF 翻折.∴AE=EA′.AF =FA′.∴AE=EA′=A′F=FA.∴四边形AEA′F 是菱形.∴AP=PA′.①当CD=CA′时.∵AA′=AC -CA′=3.∴AP =12AA′=32.②当A′C =A′D 时.∵∠A′CD =∠A′DC =∠DAC .∴△A′CD∽△DAC.∴A′C AD =DC AC .∴A′C=258.∴AA′=8-258=398.∴AP=12AA′=3916.故答案为32或3916. 9.127或43【解析】①如解图①.当∠ADC′=90°时.∠ADC′=∠C .第9题解图①∴DC′∥CB .∴△ADC′∽△ACB.又∵AC=3.BC =4.∴AD DC′=34.设CD =C′D=x.则AD =3-x.∴3-x x =34.解得x =127.经检验:x =127是所列方程的解.∴CD=127;②如解图②.当∠DC′A=90°时.∠DCB=90°.第9题解图②由折叠可得.∠C =∠DC′E =90°.∴C′B 与CE 重合.由∠C =∠AC′D =90°.∠A =∠A .可得△ADC′∽△ABC .在Rt △ABC 中.AB =5.∴AD C′D =AB CB =54.设CD =C′D=x.则AD =3-x.∴3-x x =54.解得x =43.∴CD=43.综上所述.CD 的长为127或43. 类型二针对训练1.4或52 【解析】设CH =x.则DH =EH =9-x.当BE∶EC=2∶1时.BC =9.∴CE=13BC =3.在Rt△ECH 中.EH 2=EC 2+CH 2.即(9-x)2=32+x 2.解得x =4.即CH =4.当BE∶EC=1∶2时.CE =23BC =6.在Rt△ECH 中.EH 2=EC 2+CH 2.即(9-x)2=62+x 2.解得:x =52.即CH =52.故CH 的长为4或52. 2.477或4155【解析】如解图.过点A′作A′M⊥AD 于M 交BC 于N.则四边形ABNM 是矩形.∴AB=MN =4.∵若点A′到矩形较长两对边的距离之比为1∶3.∴A′M=1.A′N=3或A′M=3.A′N=1.①当A′M=1.A′N =3时.在Rt△BA′N 中.BN =42-32=7.∴AM =BN =7.由△A′EM~△BA′N .∴EM A′N =A′M BN .∴EM 3=17.∴EM=377.∴AE=477;②当A′M=3.A′N=1时.同理可得AE =4155.,第2题解图)第3题解图3.52或53【解析】如解图.连接BD′.过D′作MN⊥AB .交AB 于点M.CD 于点N.作D′P⊥BC 交BC 于点P.∵点D 的对应点D′落在∠ABC 的平分线上.∴MD′=PD′.设MD′=x.则PD′=BM =x.∴AM=AB -BM =7-x.又由折叠图形可得AD =AD′=5.∴x 2+(7-x)2=25.解得x =3或4.即MD′=3或4.在Rt△END′中.设ED′=a.①当MD′=3时.AM =7-3=4.D′N=5-3=2.EN =4-a.∴a 2=22+(4-a)2.解得a =52.即DE =52;②当MD′=4时.AM =7-4=3.D′N=5-4=1.EN =3-a.∴a 2=12+(3-a)2.解得a =53.即DE =53.综上所述.DE 的长为52或53. 4.52或10 【解析】分两种情况:①如解图①.当点F 在矩形内部时.∵点F 在AB 的垂直平分线MN 上.∴AN =4.∵AF=AD =5.由勾股定理得FN =3.∴FM=2.设DE 为x.则EM =4-x.FE =x.在△EMF 中.由勾股定理.得x 2=(4-x)2+22.∴x=52.即DE 的长为52;图①图②第4题解图②如解图②.当点F 在矩形外部时.同①的方法可得FN =3.∴FM=8.设DE 为y.则EM =y -4.FE =y.在△EMF 中.由勾股定理.得y 2=(y -4)2+82.∴y=10.即DE 的长为10.综上所述.点F 刚好落在线段AB 的垂直平分线上时.DE 的长为52或10. 5.3或92【解析】①点A 落在矩形对角线BD 上.如解图①.∵在矩形ABCD 中.AB =8.BC =6∴∠ABC=90°.AC =BD.∴AC=BD =62+82=10.根据折叠的性质.得PC⊥BB′.∴∠PBD=∠BCP .∴△BCP∽△ABD .∴BP AD =BC AB.即BP 6=68.解得BP =92;②点A 落在矩形对角线AC 上.如解图②.根据折叠的性质.得BP =B′P .∠B=∠PB′C =90°.∴∠AB′A=90°.∴△APB′∽△ACB .∴B′P BC =AP AC .即BP 6=8-BP 10.解得BP =3.故答案为:3或92.图①图②第5题解图6.2或5- 5 【解析】分两种情况:①当点B′在AC 的下方时.如解图①.∵D 是BC 中点.∴S △BPD =S △PDC .∵S △PDF =12S △BPD .∴S △PDF =12S △PDC .∴F 是PC 的中点.∴DF 是△BPC 的中位线.∴DF∥BP .∴∠BPD=∠PDF .由折叠得:∠BPD=∠B′PD .∴∠B′PD=∠PDF .∴PB′=B′D .即PB =BD.过B 作BE⊥AC 于E.在Rt△ABE中.tan A =BE AE=2.∵AB= 5.∴AE=1.BE =2.∴EC=5-1=4.由勾股定理.得BC =BE 2+EC 2=22+42=2 5.∵D 为BC 的中点.∴BD= 5.∴PB=BD = 5.在Rt△BPE 中.PE =1.∴AP=AE +PE =1+1=2;图①图②第6题解图②当点B′在AC 的上方时.如解图②.连接B′C .同理得:F 是DC 的中点.F 是PB′的中点.∴DF=FC.PF =FB′.∴四边形DPCB′是平行四边形.∴PC=B′D=BD= 5.∴AP=5- 5.综上所述.AP的长为2或5-5.7.8+23或8-2 3 【解析】由折叠的性质得.∠EC′D′=∠C=90°.C′E=CE.∵点B、C′、D′在同一直线上.∴∠BC′E=90°.∵BC=12.BE=2CE.∴BE=8.C′E=CE=4.在Rt△BC′E中.BE C′E=2.∴∠C′BE=30°.①当点C′在BC的上方时.如解图①.过E作EG⊥AD于G.延长EC′交AD于H.则四边形ABEG是矩形.∴EG=AB=6.AG=BE=8.∵∠C′BE=30°.∠BC′E=90°.∴∠BEC′=60°.由折叠的性质得.∠C′EF=∠CEF=60°.∵AD∥BC.∴∠HFE=∠CEF=60°.∴△EFH是等边三角形.∴在Rt△EFG 中.EG=6.∴GF=23.∴AF=8+23;②当点C′在BC的下方时.如解图②.过F作FG⊥AD于G.D′F交BE于H.同①可得.四边形ABGF是矩形.△EFH是等边三角形.∴AF=BG.FG=AB=6.∠FEH=60°.在Rt△EFG 中.GE=23.∵BE=8.∴BG=8-2 3.∴AF=8-2 3.图①图②第7题解图类型三针对训练1.53-5 【解析】如解图.连接BE.第1题解图∵AB=BC=AC=10.∴∠C=60°.∵AB=BC.E是AC的中点.∴BE⊥AC.∴BE=BC2-EC2=102-52=53.∵AC=10.E是AC边的中点.∴AE=5.由翻折的性质可知A′E=AE=5.∵BA′+A′E≥BE.∴当点B、A′、E在一条直线上时.BA′有最小值.最小值=BE-A′E=53-5.2.403【解析】连接DE.DE=52+122=13.∵将△AEP沿FP折叠.使得点A落在点A′的位置.∴EA′=EA=5.∵A′D≥DE-EA′第2题解图(当且仅当A′点在DE 上时.取等号).∴当A′与点D 的距离最短时.A′点在DE 上.∴DA′=13-5=8.设PA′=x.则PA =x.PD =12-x.在Rt△DPA′中.x 2+82=(12-x)2.解得x =103.∴△A′PD 的面积=12×8×103=403. 3.1+52【解析】在Rt△ADE 中.DE =22+42=2 5.当B′在ED 上时.B′D 最小.在ED 上截取EB′=EB =2.连接B′F .FD.则B′D=ED -EB′=25-2.设BF =x.则B′F=x.CF =4-x.在Rt△B′FD 和Rt△FCD 中.利用勾股定理.可得DB′2+B′F 2=DF 2=CF 2+DC 2.即(25-2)2+x 2=(4-x)2+42.解得x =5+1.∴Rt△BEF 中.tan∠BEF=BF BE =1+52.第3题解图4.1255【解析】由题意得:DF =DB.第4题解图∴点F 在以D 为圆心.BD 为半径的圆上.作⊙D; 连接AD 交⊙D 于点F.此时AF 值最小.∵点D 是边BC 的中点.∴CD=BD =3;而AC =4.由勾股定理得:AD 2=AC 2+CD 2.∴AD=5.而FD =3.∴FA=5-3=2.即线段AF长的最小值是2.连接BF.过F 作FH⊥BC 于H.∵∠ACB=90°.∴FH∥AC .∴△DFH∽△DAC .∴DF AD =DH CD =HF AC.即35=DH 3=HF 4.∴HF=125.DH =95.∴BH=245.∴BF=BH 2+HF 2=1255.。

中考数学第22题专题训练(圆及平行四边形)

中考数学第22题专题训练(圆及平行四边形)

22题如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.娄底市卷(2016)如图,将等腰∠ABC绕顶点B逆时针方向旋转α度到∠A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:∠BCF∠∠BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.邵阳市卷(2016)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.如图,点O是线段AB和线段CD的中点.第17题图(1)求证:△AOD ≌△BOC ; (2)求证:AD ∥BC .如图,在中,AE ⊥BD 于E ,CF ⊥BD 于F , 连接AF ,CE . 求证:AF =CE .如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF ,若BF∠AE ,∠BEA=60°,AB=4,求平行四边形ABCD 的面积.如图,在菱形ABCD 中,AB=2,∠ABC=60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F。

(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度。

如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,AB=3,求△ACO的面积;如图,A,P,B,C是半径为8的∠O上的四点,且满足∠BAC=∠APC=60°,(1)求证:∠ABC是等边三角形;(2)求圆心O到BC的距离OD.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。

河南省中考数学试卷(含解析答案)

河南省中考数学试卷(含解析答案)

河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。

河南中考数学分析

河南中考数学分析

河南中考数学分析河南中考数学一直是考生和家长们的焦点,因为它不仅是对学生数学能力的考核,也是衡量教育质量的重要指标。

本文将对河南中考数学进行深入分析,旨在帮助考生更好地了解中考数学的命题趋势和应试策略。

一、命题趋势近年来,河南中考数学的命题趋势呈现出以下特点:1、注重基础知识的考核:中考数学试题中,基础知识的考核占据了很大的比例。

命题者会围绕初中数学的核心知识点进行命题,考查学生对基础概念的理解和运用能力。

2、强调数学思维:随着教育改革的深入,河南中考数学越来越注重对学生数学思维的考查。

试题中会设置一些开放性、探究性的题目,要求学生具备分析问题、解决问题的能力。

3、与生活实际相结合:中考数学试题越来越注重与生活实际的,通过实际问题来考查学生的数学知识应用能力。

二、应试策略针对以上命题趋势,考生可以采取以下应试策略:1、夯实基础知识:考生在备考过程中,要加强对基础知识的掌握和理解。

特别是对于一些易错、易混淆的概念,更要反复巩固,确保在考试中能够准确运用。

2、培养数学思维:考生要多做习题,通过解题实践来培养自己的数学思维。

在解题过程中,要注意分析问题的方法和步骤,总结解题规律,提高自己的解题速度。

3、生活实际:考生要生活中的数学问题,学会运用所学的数学知识来解决实际问题。

这不仅有助于提高应试能力,还能够培养自己的数学兴趣。

4、合理规划时间:在考试过程中,考生要合理规划时间,根据题目的难易程度和自己的掌握情况来分配时间。

避免因为时间分配不合理而造成不必要的失分。

5、保持良好心态:中考数学虽然重要,但也不是唯一的评价标准。

考生要保持良好心态,不要因为一次成绩不理想而丧失信心。

要善于总结经验教训,不断调整自己的学习状态。

三、总结河南中考数学虽然具有一定的难度和挑战性,但只要考生掌握正确的学习方法和应试策略,就能够取得理想的成绩。

希望本文的分析能够帮助广大考生更好地应对中考数学的挑战。

河南中考数学试卷标题:桥梁工程施工工艺标准化手册桥梁工程是连接交通的重要枢纽,其质量直接关系到道路交通的安全与畅通。

河南省中考数学专题复习专题三几何图形的折叠与动点问题训练

河南省中考数学专题复习专题三几何图形的折叠与动点问题训练

专题三几何图形的折叠与动点问题类型一与特殊图形有关(2018·河南)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E。

当△A′EF为直角三角形时,AB的长为________.【分析】当△A′EF为直角三角形时,存在两种情况:①∠A′EF=90°,②∠A′FE=90°进行讨论.【自主解答】当△A′EF为直角三角形时,存在两种情况:①当∠A′EF=90°时,如解图①,∵△A′BC 与△ABC关于BC所在直线对称,∴A′C=AC=4,∠ACB=∠A′CB。

∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A′EF,∴AC∥A′E,∴∠ACB=∠A′EC,∴∠A′CB=∠A′EC,∴A′C=A′E=4。

在Rt△A′CB中,∵E是斜边BC的中点,∴BC=2A′E =8,由勾股定理,得AB2=BC2-AC2,∴AB=错误!=4错误!;②当∠A′FE=90°时,如解图②,∵∠ADF=∠A=∠DFB=90°.∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA′=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4错误!或4.图①图②1.如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上一动点,把△CDE沿CE折叠,其中点D的对应点为D′,连接D′B. 若使△D′BC为等边三角形,则DE=________________.2.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处.当△ADE恰好为直角三角形时,BE的长为______.3.(2017·河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=错误!+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上.若△MB′C为直角三角形,则BM 的长为__________.4.(2018·新乡一模)菱形ABCD的边长是4,∠DAB=60°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△A′MN。

这道中考题得分为什么如此之低--由2016年贵州省黔东南州数学中考第22题引发的思考

这道中考题得分为什么如此之低--由2016年贵州省黔东南州数学中考第22题引发的思考

这道中考题得分为什么如此之低--由2016年贵州省黔东南州数学中考第22题引发的思考徐瑰瑰;罗永超;张洪【摘要】Through the analysis of the twenty-second questions in the senior high school entrance ex-amination of Qiandongnan state in Guizhou Province in 2016 ,we studied the characteristics of the ex-amination question along with the answer situations and the open questions of the students ,and then put forward to the teaching thinking and suggestions.%通过对2016年贵州省黔东南州数学中考第22题进行分析,研究了试题的特点和学生答题情况以及存在的问题,进而提出教学思考和建议。

【期刊名称】《凯里学院学报》【年(卷),期】2016(034)006【总页数】3页(P178-180)【关键词】三角形相似;勾股定理;双基;一题多解【作者】徐瑰瑰;罗永超;张洪【作者单位】凯里学院,贵州凯里 556011;凯里学院,贵州凯里 556011;凯里学院,贵州凯里 556011【正文语种】中文2016年贵州省黔东南州数学中考第22题如下:如图1,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.本题以圆与三角形为背景,以三角形的相似为纽带,主要考查的知识点有圆与直线相切、直角三角形、勾股定理、三角函数、三角形的相似以及解方程.这道题并不刁钻古怪,所考查的知识点也是中学数学大纲要求学生必须掌握的,难度是中等偏上,而且在解答的时候,这道题入口很宽,可以从三角形相似、射影定理、勾股定理、面积相等以及三角函数等不同的方向入手.尽管这样,考生解答该题的情况很不理想,平均得分1.38分,其中得0分的占43.9%,得1分的占37.5%.为什么会有这样的结果呢?这道题的得分为什么会这么低呢?学生在解题过程中,主要出现什么问题呢?在第一问的证明过程中,考生主要有以下两方面的问题:第一,一部分同学不知道把等积式PC2=PE·PO化为等比式,这导致有些考生虽然看出了△PEC~△PCO,但是不知道从何下手去证明,第一问就只能东拼西凑去得到△PEC~△PCO.第二,一部分考生虽然由等积式写出了相应的等比式,即2个三角形的两边对应成比例,却忽略了夹角相等的条件∠P=∠P,这种情况的出现有两种可能,一是对三角形相似的条件掌握不熟练,二是对公共角相等这类条件的忽视.在解第二问的过程中,主要有以下情况出现:1.有部分考生想通过△CEO~△CE P得到,进而求出半径,但是在做题过程中,设OE=x,本来该得到,而有些考生由于把勾股定理用错了,却得到了,这一错误导致后面全错.2.有部分考生由Rt△PCO~Rt△CEO得到CO2=OE·OP,进而求出半径.但是有考生到最后却把方程解错了,还有考生由于在写Rt △ PCO~Rt △ CEO时,没把对应的顶点写在对应位置,导致比例式写错,后面也就不会对.3.有些考生想通过PC2=PO2-OC2以及题设条件知PC2=PE·PO,得到PO2-OC2=PE·PO,进而求出半径.但是有些考生虽然想到了用勾股定理求PC,却忽略了题设条件PC2=PE·PO,这就导致找不到等量关系,也就没有办法求出未知数x.还有一部分考生因为用错了勾股定理,得到了错误的PC,真是一步错全盘皆输.还有一部分考生由PO2-OC2=PE·PO写出了正确的方程,最后却把方程解错了.4.有考生想通过PC2=PE2+EC2和PC2=PE·PO得到PE2+EC2=PE·PO,进而求出OE.但是有些同学也出现了上面的问题,用错勾股定理、不会求解方程,导致失分.5.有考生想这样做:在Rt △ OCE中,由勾股定理得,CE2=OC2-OE2,在Rt △PCE中,由勾股定理得,CE2=PC2-PE2=PE·PO-PE2,于是OC2-OE2=PE·PO-PE2.但是有考生错就错在设OE=x之后,求出x.6.有考生连接BC,得到PC2=PA·PB,又由于PC2= PE·PO,于是PA·PB=PE·PO.在解题的过程中,有些考生虽然写出了正确的方程,却解错了一元二次方程.7. 有考生过A作AH⊥PC,然后由△PHA~△CEO得.有一部分同学在作AH⊥PC 之后不知道去证明AH=AE,只能凭空猜测,还有一部分同学证明AH=AE过程杂乱无章.这也导致考生失去一定的分数.8.有些考生这样做:首先由△PEC~△PCO得到∠PCE=∠POC,于是tan∠PCE=tan∠POC,进而就有了比例式,通过解方程就可以求出半径.但是在实际的解题过程中,有些考生求错了正切,得到了错误的比例式,还有部分考生虽然得到了正确的比例式,却求错了方程.9.由于在Rt △ PCO中,CD⊥AB,于是有同学就想着利用得到PO·CE=PC·OC,从而求出半径OC.但是事与愿违,不是求错了PC,就是解错了方程,只有极个别考生做对.这道题有这么多解法,很多教师都会认为这道题不难,但多数考生留下一片片白色的遗憾,这表明我们民族地区的课堂教学存在失误和不足.那么在实际教学中,我们该如何解决呢?首先,课堂教学要夯实基础.正确的解题思路源于对基础知识、基本技能的熟练掌握.这道题“活而不难”,只是在教材原有知识的基础上设置了一个台阶,很大一部分同学就一头雾水,无从下手.根本原因在于考生对“双基”掌握不牢固,比如很多考生在第一问中不知道等积式PC2=PE·PO有什么用,更不用说把它化为等比式,于是仅仅连接了半径CO;再比如第二问中,勾股定理用错,不知道是直角边的平方和等于斜边的平方,这就出现有些考生知道怎么求半径,却因为CE计算错而导致后面计算结果出错.还有一部分考生找到了相似三角形,却找不到对应边,写不出相应的比例式.这些问题说明学生在平时的学习中,对知识点的掌握有待于加强,对所学的基础知识掌握不牢固,因此在今后的教学中,教师仍要以教材为本,抓好双基,夯实基础,使学生不仅能很好记忆教材中的知识点,更要灵活运用,力争做到厚积薄发.其次,加强计算能力的培养.在阅卷时发现,考生计算能力薄弱,比如,从一元二次方程8x2=12x-4x2解出x=3,(6+2x)(6+3x)=36+30x+5x2等等,这些问题的出现都反映出学生计算能力薄弱,这就要求在课堂教学中,不仅要重视分析推理的过程,更要注重学生计算能力的培养.比如在方程、有理数计算的教学中,教师应该加强学生的实际动手能力,培养学生自查错误和更正错误的习惯. “授之以鱼不如授之以渔”,老师在教学过程中,应对不断地帮学生总结经验教训,让学生真正体会到“渔”的乐趣.再次,注重培养一题多解的能力.在平时的教学中,既要加深学生对知识的纵向认识,又要拓宽学生对知识点间的横向联系,同时还要注重培养学生做题后反思的习惯.在平时的教学过程中,尽量让学生分析在做这道题的过程中涉及了哪些数学知识和方法,还有没有其他的方法,让学生用尽可能多的方法去解决问题,做到一题多解,并且思考这些方法之间有什么共同点和区别,学会举一反三.这将有助于培养学生的思维能力、创新能力和解题的能力.总之,在教学过程中,教师不仅要坚持以学生为本,积极主动地引导学生去分析问题、解决问题,更要注重学生对基础知识的理解和运用.学生不仅要及时总结自己的错误,更要在老师引导下,及时纠正错误,提升自己.【相关文献】[1] 中华人民共和国教育部制定.义务教育数学课程标准(2011版)[M].北京:北京师范大学出版社,2010.[2] 人民教育出版社,课程教材研究所中学数学课程教材研发中心. 义务教育课程标准实验教科书·数学(八年级下册)[M]. 北京:人民教育出版社,2013.[3] 人民教育出版社,课程教材研究所中学数学课程教材研发中心. 义务教育课程标准实验教科书·数学(九年级下册)[M]. 北京:人民教育出版社,2013.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016河南中考第22题的争议(峻清)
2016河南中考题22题,题出得很质量很高,能充分考查学生综合运用能力,从简单的
(1)、(2)两问的类比探究到第(3)问的旋转构造全等,结合(1)、(2)两问解决问题,思维能力的考查上了两个台阶,这是本次试卷的一个亮点,得到了很多老师的好评,但也出现了美中不足的地方。

第(3)问中“如图3”叙述的不够准确,根据题意的叙述,并不排除PM 由PB 顺时针方向旋转90°得到,而评分标准里,只给了一种情况;当然也可理解为“如图”就是“PM 只是由PB 绕点P 逆时针旋转得到的”。

这个问题,不止出现在这里,许多涉及分类讨论的题目,出现“如图”字眼,是否还考虑另外的情况呢?这里应该明确的指出:“B 点绕P 点逆时针旋转90°得M 点”,或者干脆图中不出现线段PM ,这样就可避免了歧义了。

下面是本人的解析,偏向于尽管出现了“如图”还是应该分类讨论的。

22.(10分)(1)发现 如图1,点A 为线段BC 外一动点,且
BC =a ,AB =b .
填空:当点A 位于 CB 的延长线 时,线段AC 的长取得最
大值,且最大值为 a +b (用含a ,b 的式子表示).
(2)应用 点A 为线段BC 外一动点,且BC =3,AB =1,如图2所示,分别以AB ,AC 为 边作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①请找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0)点 P 为线段AB 外一动点,且P A =2,PM =PB ,PM =90°,请直接写出线段AM 长的最 大值及此时点P 的坐标.
A
B 图1 A D E
图2 图3 A 备用图
(2) 解:①CD =BE ,理由如下:
∵△ABD 、△ACE 是等边三角形,
∴AD =AB ,AC =AE ,∠DAB =60°,∠CAE =60°
∴∠DAC =∠BAE ,
∴△ADC ≌△ABE (SAS )
∴CD =BE .
②BE 长的最大值为4.
(3)AM 长的最大值为3+22 . P 点坐标为(2-2 ,2 )或(2-2 ,-2 )
提示:❶若点M 在点B 的逆时针方向90°把△P AB 绕点P 逆时针旋转90°到△P A ′M 位置,
显然A ′M =AB =3,AA ′=22 ,AM ≤A ′M + AA ′,当A ′点落在AM 时,AM 长的最大值为3+22 .此时∠MA ′P =135°,如下图易知:P 点坐标为(2-2 ,2 )
❷若点M 在点B 的顺时针方向90°,在把△P AB 绕点P 顺时针旋转90°到△P A ′M 位置,显然A ′M =AB =3,AA ′=22 ,AM ≤A ′M + AA ′,当A ′点落在AM 时,AM 长的最大值为3+22 .此时∠MA ′P =135°,如下图易知:P 点坐标为(2-2 ,-2 )。

相关文档
最新文档