【精品】高等数学第六版下册复习纲要
高等数学下册考试提纲
高等数学下册考试提纲第一篇:高等数学下册考试提纲高等数学下册考试提纲一、二元函数求极限二、求向量投影,已知一定条件求平面方程三、求方向导数最大值(梯度的模),隐函数求一阶偏导,多元抽象复合函数求二阶偏导四、二元分段函数在分界点连续,偏导数、可微性判断五、交换二重积分次序;二重积分在直角坐标计算六、三重积分计算(球面坐标)七、第一类曲线积分计算;第二类曲线积分计算(利用曲线积分与路径无关或格林公式)八、第一类曲面积分计算;第二类曲面积分计算(利用高斯公式)九、求数项级数的和;求幂级数的收敛域与和函数十、数项级数敛散性判断;利用比较法证明数项级数收敛十一、利用条件极值求最大、最小值在几何上的应用题第二篇:《高等数学》考试大纲《高等数学》考试大纲――各专业(工科及管理类专业)适用1.极限与连续数列极限和函数极限的概念和性质,函数的左、右极限概念,无穷小的概念及性质,无穷小与无穷大的关系,无穷小的比较,极限的四则运算,极限存在准则与两个重要极限,利用存在准则1及两个重要极限求极限。
函数连续的概念及运算,函数间断点及其分类,初等函数的连续性,利用初等函数的连续性求极限,闭区间上连续函数的性质。
2.导数与微分导数的概念,几何意义,可导与连续的关系,基本初等函数的导数公式,导数的四则运算,反函数的导数,复合函数的求导法则,隐函数的求导方法,对数求导法,高阶导数及其计算。
微分的概念,微分基本公式,微分运算法则,微分形式不变性,微分的计算。
3.中值定理及其导数应用罗尔定理、拉格朗日中值定理、柯西中值定理,利用洛必塔(罗彼塔)法则求极限。
函数单调性的判别法,函数单调区间的求法及利用单调性证明不等式,函数取极值的判别法及极值求法,函数最大值与最小值的求法,最值应用。
曲线的凹(上凹)、凸(下凹)的判别法,曲线凹(上凹)、凸(下凹)区间及拐点的求法。
4.不定积分原函数和不定积分的概念,不定积分的基本性质,基本积分公式,不定积分的第一、第二换元积分法,分部积分法,简单有理函数及无理函数的不定积分求法。
高等数学第六版下册复习纲要
若曲线 的参数方程是: , 分别对应曲线的两个端点,则第一型曲线积分
3.格林公式(联系曲线积分和二重积分)
设有界闭区域D由分段光滑曲线C所围成,C取正向,函数 在D上具有一阶连续偏导数,则有格林公式 .
注:1.可用第二型曲线积分计算该曲线所围成区域的面积:设有界闭区域D由取正向的光滑曲线C所围成,则区域D的面积为 .
2.聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点;
3.开集和闭集内的所有点都是聚点.
二、二元函数的极限、连续性的相关知识点
1.二元函数 在 点的二重极限: .
2.二元函数 在 点的连续性: .
3.二元初等函数在其定义区域内连续.
二、二元函数的偏导数的相关知识点
1.函数 对自变量 的偏导数: 及 .
切线方程:
法平面方程:
2). 以一般式方程 表示的曲线在点 的切线和法平面方程:
先用方程组 确定的隐函数组 微分法求出 ,然后得到切线的方向向量
切线方程:
法平面方程:
2.曲面的切平面方程和法线方程
1).以一般式方程 表示的曲面在点 的切平面和法线方程:
切平面线方程:
法方程:
2).以特殊式方程 表示的曲面在点 的切平面和法线方程:
2. 函数 对自变量 的二阶偏导数: 、 、 、
注:若二阶混合偏导数 与 连续,则二者相等.
三、二元函数的全微分:
四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系
1. 函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系.
2. 偏导数存在性与全微分存在性的关系:
全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在)
(整理)高等数学第六版下册复习纲要
第八章:空间解析几何与向量代数一、向量 ),,(),,,(),,,(c c c b b b a a a z y x c z y x b z y x a ===1.向量),,(a a a z y x a =与),,(b b b z y x b = 的数量积:b a b b b a z z y x x x b a b a ++==⋅ϕcos;2. 向量),,(a a a z y x a = 与),,(b b b z y x b = 的向量积:bb b a a a z y x z y x kj i b a=⨯.ϕsin b a b a=⨯的几何意义为以b a ,为邻边的平行四边形的面积.3. 向量),,(z y x r=的方向余弦:222222222cos ,cos ,cos zy x y zy x y zy x x ++=++=++=γβα,1cos cos cos 222=++γβα;2sin sin sin 222=++γβα. 4. 向量),,(a a a z y x a =与),,(b b b z y x b =垂直的判定:00=++⇔=⋅⇔⊥b a b b b a z z y x x x b a b a.5. 向量),,(a a a z y x a =与),,(b b b z y x b =平行的判定:k z z y x x x k b k a b a b a ba b b b a ===⇔≠=⇔=⨯⇔0,0//.6. 三向量共面的判定: ⇒=++0c n b m a k c b a ,,共面.7. 向量),,(a a a z y x a = 在),,(b b b z y x b = 上的投影:222Pr aa a ba b b b a a z y x z z y x x x a b a b j ++++=⋅= .二、平面1. 过点),,(000z y x P ,以),,(C B A n=为法向量的平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A .2. 以向量),,(C B A n=为法向量的平面的一般式方程:0=+++D Cz By Ax .3. 点),,(111z y x M 到平面0=+++D Cz By Ax 的距离222111CB A D cz By Ax d +++++=.4. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏平行的判定:212121212121////D D C C B B A A n n ≠==⇔⇔∏∏.5. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏垂直的判定:021********=++⇔⊥⇔⊥C C B B A A n n∏∏.6. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏的夹角:222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ三、直线1. 过点),,(000z y x P ,以),,(p n m s=为方向向量的直线的点向式(对称式、标准)方程:pz z n y y m x x 000-=-=-.2. 过点),,(000z y x P ,以),,(p n m s = 为方向向量的直线的参数式方程:⎪⎩⎪⎨⎧=-=-=-tpz z tn y y tm x x 000.3. 直线的一般式方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .方向向量为21n n s⨯=.4.直线方程之间的转化: i) 点向式↔参数式 ii) 一般式→点向式 第一步:找点 第二步:找方向向量21n n s⨯=5. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-平行的判定:2121212121////p pn n m m s s L L ==⇔⇔ .6. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-垂直的判定:021********=++⇔⊥⇔⊥p p n n m m s s L L.7. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-的夹角:222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ.8. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏垂直的判定: CnB m A l N S L ==⇔⇔⊥ //∏.9. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏平行的判定: 0//=++⇔⊥⇔Cn Bm Al N S L∏.10. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏的夹角:222222sin pn m C B A Cp Bn Am ++⋅++++=ϕ.11.点),,(000z y x P 到直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的距离:s s PM d⨯=,其中M是直线上任意一点,21n n s⨯=.四、曲线、曲面 1.yoz 平面上的曲线C :0),(=z y f 绕z 轴旋转一周所得的旋转曲面为S :0),(22=+±z y x f .2.空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 关于xoy 平面上的投影柱面方程为:0),(=y x H ;在xoy 平面上的投影曲线为C :⎩⎨⎧==00),(z y x H .第九章:多元函数微分法及其应用一、平面点集1.内点一定在点集内,但点集内的点未必是点集的内点,还有孤立点;2.聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点;3.开集和闭集内的所有点都是聚点. 二、二元函数的极限、连续性的相关知识点1.二元函数),(y x f 在),(00y x 点的二重极限:A y x f y x y x =→),(lim ),(),(00.2.二元函数),(y x f 在),(00y x 点的连续性:),(),(lim00),(),(00y x f y x f y x y x =→.3.二元初等函数在其定义区域内连续. 二、二元函数的偏导数的相关知识点 1.函数),(y x f z= 对自变量y x ,的偏导数:x z ∂∂及yz ∂∂. 2. 函数),(y x f z = 对自变量y x ,的二阶偏导数:22x z∂∂、22y z ∂∂、y x z ∂∂∂2、xy z ∂∂∂2 注:若二阶混合偏导数y x z ∂∂∂2与xy z∂∂∂2连续,则二者相等.三、二元函数的全微分:dy yz dx x z dz∂∂+∂∂=四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系 1. 函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系. 2. 偏导数存在性与全微分存在性的关系:全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在) 偏导数连续,全微分存在,反之未必. 3. 连续性与全微分存在性的关系:全微分存在,函数一定连续;(函数不连续,全微分一定不存在) 函数连续,全微分未必存在. 五、二元复合函数的偏(全)导数1.中间变量为两个,自变量为一个的复合函数的全导数:))(),((),(),(),,(t t f z t v t u v u f z ψϕψϕ====,dtdv v z dt du u z dt dz ∂∂+∂∂= 2.中间变量为两个,自变量为两个的复合函数的偏导数:)),(),,((),,(),,(),,(y x y x f z y x v y x u v u f z ψϕψϕ====,xv v z x u u z y z x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂+∂∂∂∂=∂∂, 六、隐函数微分法1.由一个方程确定的隐函数微分法:0),,(=z y x F 确定隐函数),(y x f z=,直接对方程左右两端关于自变量求偏导数,即0=∂∂∂∂+∂∂+∂∂xzz F dx dy y F dx dx x F ,即001=∂∂∂∂+⋅∂∂+⋅∂∂x z z F y F x F ,解得''zx F F x z-=∂∂2.由方程组确定的隐函数组微分法:⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 确定隐函数⎩⎨⎧==),(),(y x v v y x u u ,直接对方程组左右两端关于自变量求偏导数,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂+∂∂00xv v G x u u G dx dy y G dx dx x G x vv F x u u F dx dy y F dx dx x F ,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂00xv v G x u u G x G xvv F x u u F x F ,可以解出x v x u ∂∂∂∂,. 七、偏导数的几何应用 1.曲线的切线方程和法平面方程1). 以参数式方程⎪⎩⎪⎨⎧===)(),(),(t z t y t x χψϕ表示的曲线在0t t =对应的点),,(000z y x M 的切线方程:)()()(0'00'00'0t z z t y y t x x χψϕ-=-=- 法平面方程:0))(())(())((00'00'00'=-+-+-z z t y y t x x t χψϕ2). 以一般式方程⎩⎨⎧==0),,(0),,(z y x G z y x F 表示的曲线在点),,(000z y x M 的切线和法平面方程:先用方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数组⎩⎨⎧==)()(x g z x f y 微分法求出dx dzdx dy ,,然后得到切线的方向向量⎪⎭⎫ ⎝⎛===00,,1x x x x dxdz dxdy n切线方程:)()(10'00'00x g zz x f y y x x -=-=- 法平面方程:0))(())((00'00'0=-+-+-z z x g y y x f x x2.曲面的切平面方程和法线方程1).以一般式方程0),,(=z y x F 表示的曲面在点),,(000z y x M 的切平面和法线方程: 切平面线方程:0))(())(())((0'0'0'=-+-+-z z M F y y M F x x M F z y x法方程:)()()('0'0'0M F z z M F y y M F x x z x x -=-=-2).以特殊式方程),(y x f z =表示的曲面在点),,(000z y x M 的切平面和法线方程:令0),(),,(=-=z y x f z y x F ,有曲面在点),,(000z y x M 的切平面的法向量)1),,(),,(())(),(),((00'00''''-==y x f y x f M F M F M F N y x z y x切平面线方程:0)())(,())(,(0000'000'=---+-z z y y y x f x x y x f y x法方程:1),(),(000'000'0--=-=-z z y x f y y y x f x x x x .3.方向导数与梯度:1). 方向导数:ρ∆∆ρ).(),(lim 0y x f y y x x f l f -++=∂∂→ 2). 方向导数存在条件:可微分函数),(y x f z =在一点沿任意方向l 的方向导数都存在,并且βαcos cos yzx z l f ∂∂+∂∂=∂∂,其中βαcos ,cos 是方向l 的方向余弦.3). 梯度:函数),,(z y x f 在点),,(000z y x M 处的梯度k z y x f j z y x f i z y x f z y x f grad z y x ),,(),,(),,(),,(000000000000++=( ).4). 方向导数与梯度的关系: ①.函数),,(z y x f 在点),,(000z y x M 处增加最快的方向是其梯度),,(000z y x f grad 的方向,减小最快的方向是),,(000z y x f grad -的方向.②. 函数),,(z y x f 在点),,(000z y x M 沿任意方向的方向导数的最大值为),,(000z y x f grad .八、极值、条件极值 1. 函数),(y x f z=的极值点和驻点的关系:函数),(y x f z =的极值在其驻点或不可偏导点取得.2.求函数极值的步骤:(1).对函数),(y x f z =求偏导数,解方程组⎪⎩⎪⎨⎧==0),(0),(''y x f y x f y x ,得所有驻点),(i i y x .(2).对每一个驻点),(i i y x ,求出二阶偏导数的值),(),,(),,(''''''i i yy i i xy i i xx y x f C y x f B y x f A ===.(3).计算AC B -2,根据AC B -2以及A 的符号判定),(i i y x f 是否是极值:若0,02><-A AC B ,则),(i i y x f 是极小值; 若0,02<<-A AC B ,则),(i i y x f 是极大值; 若,02>-AC B ,则),(i i y x f 不是极小值;若,02=-AC B,则),(i i y x f 是否是极值不能判定,需其他方法验证.3.求函数),(y x f z =在附加条件0),(=y x ϕ下的条件极值的方法:做拉格朗日函数),(),(),(y x y x f y x F λϕ+=,对自变量y x ,求偏导,建立方程组⎪⎩⎪⎨⎧=+==+=0),(),(),(0),(),(),(''''''y x y x f y x F y x y x f y x F y y yx x x λϕλϕ 与附加条件联立的方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(''''''y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ,解出的y x ,就是函数),(y x f z =的可能极值点.第十章:重积分一、二重积分的相关性质 1.有界闭区域上的连续函数),(y x f 在该区域D 上二重积分⎰⎰Dd y x f σ),(存在;2.若函数),(y x f 在有界闭区域D 上二重积分存在⎰⎰Dd y x f σ),(,则),(y x f 在该区域上有界;3.中值性:若函数),(y x f 在有界闭区域D 上连续,区域D 的面积为σ,则在D 上至少存在一点),(ηξ,使得σσ⋅=⎰⎰),(),(y x f d y x f D.4.σσ=⎰⎰Dd 1,区域D 的面积为σ.二、二重积分的计算1.利用平面直角坐标计算二重积分 1).先对y 后对x 积分,由于积分区域:D b x a <<;)()(21x y x ϕϕ<<,有⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.2).先对x 后对y 积分,由于积分区域:D d y c <<;)()(21y x y ψψ<<,有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.3).积分换序:⎰⎰⎰⎰⎰⎰==dcy y Dbax x dx y x f dy d y x f dy y x f dx )()()()(2121),(),(),(ψψϕϕσ.2.利用极坐标计算二重积分令⎩⎨⎧==θρθρsin cos y x ,由于积分区域:D βθα<<;)()(21θρθρ<<x ,有⎰⎰⎰⎰=βαθρθρρρθρθρθσ)()(21)sin ,cos (),(d f d d y x f D.三、三重积分的相关性质:V dV =⎰⎰⎰Ω1,区域Ω的体积为V . 四、三重积分的计算1.利用直角坐标计算三重积分 积分区域V :b x a<<;)()(21x y y x y <<;),(),(21y x z z y x z <<,有⎰⎰⎰⎰⎰⎰=),(),()()(2121),,(),,(y x z y x z bax y x y dz z y x f dy dx dV x y x f Ω第十一章:曲线积分 曲面积分一、曲线积分的计算 1.第一型曲线积分的计算: 若曲线C 的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,则第一型曲线积分⎰⎰+=Ct t dt t t t t f ds y x f 10)()()](),([),(2'2'ψϕψϕ2.第二型曲线积分的计算:若曲线C 的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,B A t t t t ==10,分别对应曲线的两个端点,则第一型曲线积分⎰⎰+=+1)())(),(()())(),((),(),(''t t Cdt t t t Q t t t P dy y x Q dx y x P ψψϕϕψϕ3.格林公式(联系曲线积分和二重积分)设有界闭区域D 由分段光滑曲线C 所围成,C 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则有格林公式⎰=+CQdy Pdx dxdy y P x Q D ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂.注:1.可用第二型曲线积分计算该曲线所围成区域的面积:设有界闭区域D 由取正向的光滑曲线C 所围成,则区域D 的面积为⎰⎰⎰+-==CDxdy ydx dxdy 21σ. 2. 函数),(),,(y x Q y x P 在区域D 上连续. 二、曲面积分的计算 1.第一型曲面积分的计算: 若曲面S 的方程是:),(y x z z =具有连续偏导数,且在xoy 平面上的投影区域为xy D ,函数),,(z y x f 在S 上连续,则第一型曲面积分dxdy z z y z z y z f dS z y x f xyD y x S⎰⎰++=2'2'1)],(,,[),,(2.第二型曲面积分的计算: 若正向曲面S 的方程是:),(y x z z =,且在xoy 平面上的投影区域为xy D ,函数),,(z y x R 在S 上连续,则第二型曲面积分dxdy y x z y x R dxdy z y x R xyD S⎰⎰=)],(,,[),,(, 同理可得dydz z y z y x R dydz z y x P yzD S⎰⎰=)],),,([),,(;dzdx z x z y x Q dzdx z y x Q zxD S⎰⎰=)]),,(,[),,(3.高斯公式(联系曲面积分和三重积分)若函数),,(),,,(z y x Q z y x P 在空间有界闭区域Ω及其光滑边界曲面S 上具有连续偏导数,则有高斯公式:⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++S dxdydz z R y Q x P Rdxdy Qdzdx Pdydz Ω.注:设空间有界闭区域Ω由光滑封闭曲面S 所围成,则区域Ω的体积为⎰⎰++=Szdxdy ydzdx xdydz V 31. 4.斯托克斯公式(联系曲面积分和三重积分) 若函数),,(),,,(z y x Q z y x P 在光滑曲面S 及其光滑的边界曲线C 上具有连续偏导数,则有斯托克斯公式⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++L D dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx . 三、曲线积分与路径无关的条件 (1). 曲线积分⎰+),(),(),(B A C dy y x Q dx y x P 与路径无关;(2).0),(),(=+⎰Cdy y x Q dx y x P ;(3). 存在函数),(y x u ,使得dy y x Q dx y x P du ),(),(+=;(4).yPx Q ∂∂=∂∂ 第十二章:无穷级数一、级数敛散性的相关性质1.∑∞=1n n a 敛散⇔⎭⎬⎫⎩⎨⎧=∑=n k k n a S 1}{敛散 2.∑∞=1n na收敛⇒0lim =∞→n n a3. 0lim ≠∞→nn a ⇒∑∞=1n na 发散4. 正项级数∑=n i n a 1的部分和数列}{n S 有界⇒级数∑=ni n a 1收敛5. ∑=ni na 1收敛⇒∑=ni na 1收敛.二、级数敛散性判别 1.正项级数敛散性判别 (1).比较判别法; (2).比值判别法; (3).根值判别法.2.交错级数收敛性判别法:莱布尼兹判别法精品文档精品文档3.任意项级数敛性判别法:绝对收敛判别法4.两种常用级数收敛和发散的条件(1). 等比级数∑∞=-11n n aq收敛条件是1<q ;发散条件是1≥q .(2). p 级数∑=ni p n11收敛条件是1>p ;发散条件是1≤p .二、幂级数的相关概念 1.收敛域的求法 (1).对标准幂级数∑∞=0n nn xa ,先求其收敛半径nn n a a R 1lim11+∞→==ρ,再判断级数∑∞=0n nn Ra 以及∑∞=-0)(n nnR a的敛散性,最后确定收敛域是),(R R -、R],(R -、)R ,[R -以及]R ,[R -中的哪一个.(2). 对非标准幂级数∑∞=0)(n nx a,先求极限)()()(lim1x x a x a n n n ϕ=+∞→,当1)(<x ϕ时,∑∞=0)(n n x a 绝对收敛,解出),(b a x ∈,再判断级数∑∞=0n nn aa 以及∑∞=0n nn ba 的敛散性,最后确定收敛域是),(b a 、],(b a 、),[b a 以及],[b a 中的哪一个.2.和函数的求法:利用和函数的性质(1).连续性;(2).逐项可微分;(1).逐项可积分.3.函数的幂级数展开式.。
高数复习大纲同济六版下册
高等数学下册复习提纲 (向量代数—>无穷级数)第一次课1、向量与空间几何 向量:向量表示((a^b));向量的模: 向量的大小叫做向量的模.向量a 、→a 、→AB 的模分别记为|a |、||→a 、||→AB . 单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或→0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行. 向量运算(向量积); 1. 向量的加法 2. 向量的减法3.向量与数的乘法设a =(a x , a y , a z ), b =(b x , b y , b z )即 a =a x i +a y j +a z k , b =b x i +b y j +b z k ,则 a +b =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ). a -b = (a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ).λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ). 向量模的坐标表示式 222||z y x ++=r点A 与点B 间的距离为 →212212212)()()(||||z z y y x x AB AB -+-+-==向量的方向:向量a 与b 的夹角 当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ⋅b , 即a ·b =|a | |b | cos θ .数量积与投影:由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b .同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b 反之, 如果a ⊥b , 则a·b =0.如果认为零向量与任何向量都垂直, 则a ⊥b ⇔ a ·b =0. 两向量夹角的余弦的坐标表示:设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有222222||||cos zy x z y x zz y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ向量积: 设向量c 是由两个向量a 与b 按下列方式定出:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定.那么, 向量c 叫做向量a 与b 的向量积, 记作a ⨯b , 即 c = a ⨯b . 坐标表示:zy x z y x b b b a a a kj i b a =⨯=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . . 向量的方向余弦:设r =(x , y , z ), 则 x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.||cos r x =α, ||cos r y=β, ||cos r z =γ. 从而 r e r r ==||1)cos ,cos ,(cos γβα向量的投影向量在轴上的投影设点O 及单位向量e 确定u 轴.任给向量r , 作→r =OM , 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影), 则向量→M O '称为向量r 在u 轴上的分向量. 设→e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:性质1 (a )u =|a |cos ϕ (即Prj u a =|a |cos ϕ), 其中ϕ为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );空间方程:曲面方程(旋转曲面和垂直柱面); (1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面.(3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面. (4)双叶双曲面由方程1222=--cz b y a x 所表示的曲面称为双叶双曲面.(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面 (6)双曲抛物面.由方程z b y a x =-2222所表示的曲面称为双曲抛物面. 椭圆柱面12222=+b y a x ,双曲柱面122=-by a x , 抛物柱面ay x =2, .直线方程(参数方程和投影方程) 空间直线的一般方程空间直线L 可以看作是两个平面∏1和∏2的交线.如果两个相交平面∏1和∏2的方程分别为A 1x +B 1y +C 1z +D 1=0和A 2x +B 2y +C 2z +D 2=0, 那么直线L 上的任一点的坐标应同时满足这两个平面的方程, 即应满足方程组 ⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线, 这个向量就叫做这条直线的方向向量. 容易知道, 直线上任一向量都平行于该直线的方向向量.确定直线的条件: 当直线L 上一点M 0(x 0, y 0, x 0)和它的一方向向量s = (m , n , p )为已知时, 直线L 的位置就完全确定了.直线方程的确定: 已知直线L 通过点M 0(x 0, y 0, x 0), 且直线的方向向量为s = (m , n , p ), 求直线L 的方程.设M (x , y , z )在直线L 上的任一点, 那么(x -x 0, y -y 0, z -z 0)//s , 从而有pz z n y y m x x 000-=-=-. 这就是直线L 的方程, 叫做直线的对称式方程或点向式方程 ⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 直线L 1和L 2的夹角ϕ可由 |) ,cos(|cos 2^1s s =ϕ222222212121212121||p n m p n m p p n n m m ++⋅++++=直线与平面的夹角设直线的方向向量s =(m , n , p ), 平面的法线向量为n =(A , B , C ), 直线与平面的夹角为ϕ , 那么|) , (2|^n s -=πϕ, 因此|) , cos(|sin ^n s =ϕ. 按两向量夹角余弦的坐标表示式, 有222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ平面方程:点法式(法向量)、一般式、任一平面都可以用三元一次方程来表示 . Ax +By +Cz +D =0.其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ). 提示:D =0, 平面过原点.n =(0, B , C ), 法线向量垂直于x 轴, 平面平行于x 轴. n =(A , 0, C ), 法线向量垂直于y 轴, 平面平行于y 轴. n =(A , B , 0), 法线向量垂直于z 轴, 平面平行于z 轴.n =(0, 0, C ), 法线向量垂直于x 轴和y 轴, 平面平行于xOy 平面. n =(A , 0, 0), 法线向量垂直于y 轴和z 轴, 平面平行于yOz 平面. n =(0, B , 0), 法线向量垂直于x 轴和z 轴, 平面平行于zOx 平面.截距式;平面夹角和距离两平面的夹角: 两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面∏1和∏2的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2), 那么平面∏1和∏2的夹角θ 应是) ,(2^1n n 和) ,() ,(2^12^1n n n n -=-π两者中的锐角, 因此, |) ,cos(|cos 2^1n n =θ. 按两向量夹角余弦的坐标表示式, 平面∏1和∏2的夹角θ 可由2222222121212121212^1|||) ,cos(|cos C B A C B A C C B B A A ++⋅++++==n n θ.来确定.从两向量垂直、平行的充分必要条件立即推得下列结论: 平面∏1和∏2垂直相当于A 1 A 2 +B 1B 2 +C 1C 2=0;平面∏ 1和∏ 2平行或重合相当于212121C C B B A A == 空间曲线的一般方程空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F空间曲线的参数方程(33)空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程. 切平面和切线: 切线与法平面;设空间曲线Г的参数方程为),(),(),(t z t y t x ωφϕ=== 曲线在点),,(000z y x M 处的切线方程为)(00t x x ϕ'-=.)()(0000t z z t y y ωφ'-='- 向量 )}('),('),('{000t t t T ωφϕ=就是曲线Г在点M 处的一个切向量 法平面的方程为0))(('))(('))( ('000000=-+-+-z z t y y t x x t ωφϕ切平面与法线隐式给出曲面方程((,,)0F x y z =)法向量为:)},,,(),,,(),,,({000000000z y x Fz z y x F z y x F n y x = 切平面的方程是))(,,())(,,())(,,(000000000000z z z y x F y y z y x F x x z y x F z y x -+-+-法线方程是.),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-),(y x z =在点),(00y x如果用α、β、γ表示曲面的法向量的方向角,并假定法向量的方向是向上的,即使得它与z 轴的正向所成的角γ是一锐角,则法向量的方向余弦为 ,1cos 22yxx ff f ++-=α ,1c o s 22yxy ff f ++-=β.11cos 22yxff ++=γ2、多元函数微分学多元函数极限:简单复习讲解 偏微分全微分:如果三元函数),,(z y x u φ=可以微分,那么它的全微分就等于它的三个偏微分之和, du =x u ∂∂dx +y u ∂∂dy +zu ∂∂dz 第二次课3、重积分二重积分:利用直角坐标计算二重积分我们用几何观点来讨论二重积分f x y d D(,)σ⎰⎰的计算问题。
高数下册总结(同济第六版)
高数同济版下高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解. 一阶微分方程的解法小结:高数同济版下二阶微分方程的解法小结:非齐次方程的特解的形式为:高数同济版下主要一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解; 3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法 1、显函数的偏导数的求法时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运用的是一元函数的求导法则与求导公式2、复合函数的偏导数的求法设,,,则,几种特殊情况: 1),,,则2),,则 3),则3、隐函数求偏导数的求法 1)一个方程的情况,设是由方程唯一确定的隐函数,则,高数同济版下或者视,由方程两边同时对 2)方程组的情况由方程组 . 两边同时对求导解出即可二、全微分的求法方法1:利用公式方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为,则当时,在曲线上对应处的切线方向向量为,切线方程为法平面方程为2)若曲面的方程为,则在点处的法向,切平面方程为法线方程为高数同济版下若曲面的方程为,则在点处的法向,切平面方程为法线方程为四、多元函数极值(最值)的求法 1 无条件极值的求法设函数在点的某邻域内具有二阶连续偏导数,由,解出驻点,记, 1)若时有极小值 2)若,则在点处无极值 3)若,不能判定在点处是否取得极值,则在点处取得极值,且当时有极大值,当2 条件极值的求法函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法作辅助函数,其中为参数,解方程组高数同济版下求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要1、偏导数的求法与全微分的求法;2、空间曲线的切线及空间曲面的法平面的求法3、最大值与最小值的求法三、多元函数积分学复习要点七种积分的概念、计算方法及应用如下表所示:高数同济版下高数同济版下*定积分的几何应用定积分应用的常用公式: (1)面积 (2)体积(型区域的面积)(横截面面积已知的立体体积)(所围图形绕的立体体积)(所围图形绕体体积)(所围图形绕轴的立体体积)。
(完整版)高等数学(下)高等数学(下)教学大纲2.1教学大纲
《高等数学(下)》课程教学大纲课程编号:06066制定单位:统计学院制定人(执笔人):陈孝新审核人:徐慧值制定(或修订)时间:2012年9月6日江西财经大学教务处《高等数学下》(公共)课程教学大纲一、课程总述本课程大纲是以2012年统计学专业本科专业人才培养方案为依据编制的。
课程名称高等数学(下)课程代码06016英文名称Advanced Mathematics 开课阶段第二阶段课程性质学科基础课先修课程高等数学(上)总学时数96 周学时数 6开课院系统计学院任课教师高等数学课程组编写人陈孝新编写时间2012年9月课程负责人陈孝新大纲主审人徐慧值使用教材同济大学数学系:《高等数学》,高等教育出版社,2007年第六版教学参考资料刘明华,周晖杰,徐海勇:《高等数学同步辅导》,浙江大学出版社,2008年James Stewart:《Calculus》(Fifth Edition),高等教育出版社,2004年徐安农:《Mathematica 数学实验》,电子工业出版社,2004年课程教学目的通过本课程的教学,使学生掌握一元函数积分、空间解析几何、级数、微分方程的基本知识和基本理论。
通过各个教学环节,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析和解决问题的能力,为今后学习其它课程打下必要的基础。
课程教学要求1. 正确理解下列基本概念和它们之间的内在联系:不定积分、定积分、微元法、向量、级数、幂级数、傅立叶级数、微分方程, 向量,偏导数,全微分,条件极值,重积分,曲线积分,曲面积分;2.正确理解下列基本定理和公式并能正确运用:微积分基本定理,定积分的换元法和分布积分法,定积分作为其上限函数的求导定理,级数收敛判别定理,泰勒展开公式,全微分解微分方程公式, 泰勒定理,定积分作为其上限函数的求导定理,格林公式,高斯公式;3. 熟练运用下列法则和方法:定积分的换元法和分布积分法,定积分作为其上限函数的求导法,级数收敛的比较判别法、极限判别法、比值判别法、根植判别法,解微分方程的分离变量法、常数变易法、全微分法, 偏导数的四则运算法则和复合函数的求导法,换元积分法和分部积分法,二重积分的计算法;4. 会运用微元法与微积分以及常微分方程的方法解一些简单的几何、物理和力学问题。
高数下知识点复习
高数下知识点复习高等数学下册包含了许多重要的知识点,对于我们深入理解数学的应用和进一步学习其他学科都有着至关重要的作用。
下面就来对这些知识点进行一个系统的复习。
首先是多元函数的微积分学。
多元函数与一元函数有很多相似之处,但也存在着明显的差异。
对于多元函数的极限与连续,要理解多元函数极限的定义和存在条件。
它比一元函数的极限更为复杂,因为需要考虑多个方向上的趋近情况。
连续性的判断也是基于极限的概念,需要函数在某点的极限值等于该点的函数值。
多元函数的偏导数是重点之一。
偏导数表示函数在某一变量方向上的变化率。
计算偏导数时,将其他变量视为常数,只对关注的变量进行求导。
比如对于函数\(f(x,y)\),\(f_x\)表示对\(x\)的偏导数,\(f_y\)表示对\(y\)的偏导数。
偏导数的几何意义可以理解为曲面在某一坐标轴方向上的切线斜率。
全微分则是综合考虑了各个变量的变化对函数值的影响。
它的表达式为\(dz = f_x dx + f_y dy\)。
接着是多元函数的极值问题。
通过求解偏导数为零的方程组,得到驻点。
然后利用二阶偏导数判断驻点是否为极值点。
这里会涉及到判别式\(D = f_{xx}f_{yy} f_{xy}^2\)。
若\(D > 0\)且\(f_{xx} > 0\),则为极小值点;若\(D > 0\)且\(f_{xx} <0\),则为极大值点;若\(D < 0\),则不是极值点。
然后是重积分。
二重积分可以用于计算平面区域上的面积、质量等。
将二重积分化为累次积分是常见的计算方法,要根据积分区域的形状选择合适的积分顺序。
三重积分则是对空间区域的积分,其计算方法与二重积分类似,但更加复杂。
在重积分的应用中,求曲面的面积是一个重要的内容。
需要利用曲面的方程和相应的积分公式进行计算。
再来说说曲线积分和曲面积分。
曲线积分分为第一型曲线积分和第二型曲线积分。
第一型曲线积分与曲线的长度有关,常用于计算曲线的质量等。
高数下(同济六)知识点
高数下(同济六)知识点高等数学下册习题常见类型题型 1 求向量的坐标、模、方向角、方向余弦、数量积、向量积题型2 由已知条件求平面与直线方程题型3 计算一阶偏导数及高阶偏导数题型4 求多元复合函数的偏导数题型5 求方程所确定的隐函数的偏导数题型 6 求方向导数、梯度、曲线的切线、曲面的切平面题型7 求极值、利用拉格郎日乘数法求最值题型8 利用直角坐标计算二重积分题型9 利用极坐标计算二重积分题型10 计算带绝对值的二重积分题型11 利用二重积分证明恒等式题型12 利用对称性质计算二重积分题型13 只有一种积分次序可计算的积分例1、求24212xdx dx +⎰⎰解:(将二次积分交换顺序)12212242122211sin sin sin sin (1)sin cos1sin1xD D y y D D y ydx dx dxdy dxdyy y yy dxdy dy dx y ydy y y πππππ+=+===-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰U题型14 利用投影法计算三重积分 题型15 利用柱坐标计算三重积分 题型16 利用球坐标计算三重积分 题型17 利用切片法计算三重积分 题型18 利用三重积分计算立体的体积 题型19 计算对弧长的曲线积分 题型20 计算对面积的曲面积分 题型21 计算对坐标的曲线积分题型22 利用格林公式计算对坐标的曲线积分 题型23 曲线积分与路径无关及全微分求积 题型24 计算对坐标的曲面积分题型25 利用高斯公式计算对坐标的曲面积分 题型26 可分离变量的微分方程、齐次方程 题型27一阶线性微分方程题型29 可降阶方程题型30二阶常系数非齐次线性方程第八章 向量与解析几何向量代数定义定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB u u u ra (,,)xyzxyza i a j a k a a a =++=,,x x y y z za prj a a prj a a prj a ===r r r 模 向量a 的模记作aa 222x y za a a =++ 和差c a b =+ c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量a ≠,则a a e a=a e 222(,,)=++x y z x y za a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos cos y x za a aa a a αβγ===r r r ,cos ,coscos a e αβγ=(,cos ,cos )222cos 1αβγ+=+cos cos点乘(数量θcos b a b a =⋅, θ为向量a 与b 的夹角zz y y x x b a b a b a ++=⋅b a平面薄片的质量质量=面密度⨯面积21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤ 0θπ≤≤ 2πθπ≤≤(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论) 110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdyf x y x f x y f x y D D ⎧⎪⎪-=-⎪⎪=⎨⎪⎪-=⎪⎪⎩⎰⎰对于是奇函数,即对于是偶函数,即是的右半部分P141—例2应用该性质更方便计算步骤及注意事项1. 画出积分区域2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙4. 确定积分限 方法:图示法先积一条线,后扫积分域5. 计算要简便 注意:充分利用第十一章曲线积分与曲面积分所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
大一期末高数(同济第六版)复习提纲(精选5篇)
大一期末高数(同济第六版)复习提纲(精选5篇)第一篇:大一期末高数(同济第六版)复习提纲高数一期末考试复习大纲题型:解答题(共12小题)类型:求极限、求导数及微分(包括导数的应用)、求不定积分、求定积分(包括定积分的应用)、求解微分方程具体知识点第一章数列的极限、函数的极限(以上只需掌握求极限方法、极限定义了解即可)无穷小与无穷大、极限运算法则、极限存在准则,两个重要极限无穷小的比较、函数的连续性、连续函数的运算和初等函数的连续性第二章导数定义及几何意义、函数的求导法则、高阶导数、隐函数导数、参数方程所确定的函数的导数(会求二阶导数)、函数的微分公式第三章洛必达法则、函数的单调性与曲线的凹凸性、函数的极值与最值第四章求不定积分(换元法、分部积分法)、有理函数的积分第五章微积分基本公式、定积分的换元法和分部积分法第六章定积分在几何学上的应用第七章可分离变量微分方程、齐次方程、一阶线性微分方程第二篇:高数复习提纲第一章1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、五章不定积分:1、两类换元法2、分部积分法(注意加C)定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第三篇:高数(上)(复习提纲)《高等数学I》复习提纲一、基本概念、公式、法则:“极限,连续,导数,微分,积分”的定义、性质--------基础1、导数(微分)部分:无穷小之间的比较(高阶、同阶、等价、k 阶),常见的等价无穷小(x→0),两个重要极限,初等函数的连续性,闭区间上连续函数的介值定理,基本初等函数的求导公式,复合函数求导的链式法则,求极限的洛必达法则,微分中值定理(Rolle、Lagrange、Cauchy),泰勒公式(特别地,麦克劳林公式),函数的单调性与凹凸性,极值存在的必要条件与充分条件,曲线的水平(竖直)渐近线,平面曲线(直角坐标系、极坐标系、参数方程)的曲率公式、弧微分公式;求极限夹逼准则,可导与连续的关系,可导与可微的关系。
高等数学(下)总复习PPT(同济六版)
d.利用无穷小运算性质求极限;
e.利用左右极限求分段函数极限. 5、判定极限存在的准则
夹逼定理、单调有界原理
2016/8/10 3
6、两个重要极限
(1)
(2)
sin x lim 1 x0 x 1 x lim(1 ) e x x
某过程
3、求导法则
2016/8/10 19
(1) 函数的和、差、积、商的求导法则
(2) 反函数的求导法则 (3) 复合函数的求导法则——注意不要漏层 (4) 对数求导法——注意适用范围 (5) 隐函数求导法则——注意y的函数的求导 (6) 参变量函数的求导法则——注意不要漏乘
4、高阶导数 (二阶和二阶以上的导数统称为高阶导数)
无论x是自变量还是中间变量,函数y f ( x ) 的微分形式总是 dy f ( x )dx
2016/8/10 21
1 例12 设 f (a)存在,则 lim n[ f (a) f (a )]. n n
解
1 f (a ) f (a) n 原式= lim n 1 n
(
0 ) 0
sec 2 x 1 lim x 0 3x2
tan x 1 lim 2 x 0 3 x 3
2016/8/10
(
0 ) 0
2
12
1 例8 求极限 lim [ x x ln( 1 )]. ( ) x x
2
1 解: lim[ x x ln(1 )] x x
所以x k , k 0是第二类间断点
(3) x k
2
, k 0, 1, 2
x lim 0 x k tan x
《高等数学》下册期末总复习第六版
3)一般式方程: ⎨
⎧ A1 x + B1 y + C1 z + D1 = 0 ⎩ A2 x + B2 y + C2 z + D2 = 0
G G | n1 ⋅ n2 | G G n 1)面面: cos θ =| cos(n1 , n2 ) |= G G = | n1 || n2 |
G G | s1 ⋅ s2 | | m1m2 + n1n2 + p1 p2 | G G n ; 2)线线: cos θ =| cos( s1 , s2 ) |= G G = 2 | s1 || s2 | m1 + n12 + p12 m2 2 + n2 2 + p2 2 m n p G G G G (或重合) ⇔ s1 & s2 ⇔ 1 = 1 = 1 L1 ⊥ L2 ⇔ s1 ⋅ s2 = 0 ⇔ m1m2 + n1n2 + p1 p2 = 0 ; L1 & L 2 m2 n2 p2 G G | s ⋅n | G G m 3)线面: sin ϕ =| cos( s , n ) |= G G = | s || n | A B C G G L⊥Π⇔ s &n⇔ = = ; m n p
2、 隐函数: 1) 一个方程的情形:
Fx dy ⎧ ⎪公式法:dx = − F y ⎪ ⎪ y= y( x) 二元方程可确定一个一元隐函数: F ( x, y ) = 0 ⎯⎯⎯ → ⎨隐函数求导法:方程两边对x求导,注意y = ⎪微分法:方程两边取微分,F dx + F dy = 0 x y ⎪ ⎪ ⎩
2) 方程组的情形: (隐函数求导法)
⎧ F ( x, y, z ) = 0 ⎩ z = z ( x ) dy dz ⇒ , 三元方程组确定两个一元隐函数: ⎨ ⎩G ( x, y, z ) = 0 对x求导 dx dx
考研高等数学复习要点
考研高等数学复习要点考研高等数学复习要点(篇1)一、备考资料高等数学(上、下)第六版,同济大学数学系编高等数学习题全解指南(与上配套)工程数学-线性代数第五版,同济大学数学系编线性代数附册学习辅导与习题全解(与上配套)概率论与数理统计第四版,浙江大学盛骤概率论与数理统计习题全解指南(与上配套)考研数学复习全书考研数学复习全书分阶习题同步训练(与上配套)数学基础过关660题数学历年真题权威解析线性代数辅导讲义我用的都是最基础最核心的资料,没有买其它花哨的辅导书。
可能我整个备考规划中最明智的一个安排就是把大部分时间分配给了数学。
我想即使在一般情况下这也是个真理,应该把最多的时间花在最能拉开分数的科目上。
对一般人来说,在同等的付出下,数学拉开20分比英语拉开20分的可能性要大得多。
二、备考经验就备考经验来说,其实比起学习别人的经验,我认为大家更应该去努力养成自己良好的学习习惯。
就考研来说,我认为把你和别人区分开来的并不是一本二本三本,也不是你准备的时间有多长多短,而是你自己的学习态度和学习习惯。
这才是贯穿始终的东西。
1、钻研精神看书做题必须明白每一步是为什么,不懂得问题可以请教大神研友,实在不明白可以在旁边标注,也许下一轮复习再看时就想通了。
这样看书的确会很慢,但是学得很扎实。
后期做题时必会感激自己前期这样扎实的学习。
2、尽量独立做题包括第一轮看教材时,书上的例题也先盖住答案自己做。
包括教材的章节习题和复习全书的例题等等,切勿看完题目就看答案,给自己留时间思考。
拿出做不出来誓死不看答案的决心,和一些数学大神交流后我发现这是他们的共性,既然是大神们的共性,那必然有可取之处,就像我发现身边诸多英语口语很棒的大神都爱看美剧,于是想练口语的我自然就要多看美剧。
一些小伙伴像看小说一样全书,扫过题目和答案一页页翻过,貌似效率很高。
但看完之后把书拿开,会做的题目又有几道呢?不排除个别大神有特立独行的学习方式,但我认为对大多数人来说,拿出笔和纸,盖住答案先自己做题,做完拿自己的答案和例题答案比对,虽说看似低效,但做一道题就掌握一道题目其实是最高效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章:空间解析几何与向量代数一、向量),,(),,,(),,,(c c c b b b a a a z y x c z y x b z y x a ===1.向量),,(a a a z y x a = 与),,(b b b z y x b = 的数量积:b a b b b a z z y x x x b a b a ++==⋅ϕcos; 2。
向量),,(a a a z y x a = 与),,(b b b z y x b = 的向量积:bbba a az y x z y x k j ib a=⨯。
ϕsin b a b a =⨯的几何意义为以b a,为邻边的平行四边形的面积.3。
向量),,(z y x r =的方向余弦:222222222cos ,cos ,cos zy x y zy x y zy x x ++=++=++=γβα,1cos cos cos 222=++γβα;2sin sin sin 222=++γβα.4.向量),,(a a a z y x a =与),,(b b b z y x b = 垂直的判定:00=++⇔=⋅⇔⊥b a b b b a z z y x x x b a b a.5.向量),,(a a a z y x a =与),,(b b b z y x b = 平行的判定:k z z y x x x k b k a b a b a ba b b b a ===⇔≠=⇔=⨯⇔0,0//。
6。
三向量共面的判定:⇒=++0 c n b m a k c b a,,共面。
7.向量),,(a a a z y x a =在),,(b b b z y x b = 上的投影:222Pr aa a ba b b b a a z y x z z y x x x a b a b j ++++=⋅= 。
二、平面1。
过点),,(000z y x P ,以),,(C B A n=为法向量的平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A 。
2。
以向量),,(C B A n=为法向量的平面的一般式方程:0=+++D Cz By Ax 。
3.点),,(111z y x M 到平面0=+++D Cz By Ax 的距离222111CB A D cz By Ax d +++++=。
4.平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏平行的判定:212121212121////D D C C B B A A n n ≠==⇔⇔∏∏.5。
平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏垂直的判定:021********=++⇔⊥⇔⊥C C B B A A n n∏∏。
6。
平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏的夹角:222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ三、直线1。
过点),,(000z y x P ,以),,(p n m s=为方向向量的直线的点向式(对称式、标准)方程: pz z n y y m x x 000-=-=-。
2.过点),,(000z y x P ,以),,(p n m s = 为方向向量的直线的参数式方程:⎪⎩⎪⎨⎧=-=-=-tpz z tn y y tm x x 000。
3。
直线的一般式方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .方向向量为21n n s⨯=.4。
直线方程之间的转化: i )点向式↔参数式 ii )一般式→点向式第一步:找点 第二步:找方向向量21n n s⨯=5.直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-平行的判定:2121212121////p pn n m m s s L L ==⇔⇔ 。
6.直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-垂直的判定:021********=++⇔⊥⇔⊥p p n n m m s s L L。
7。
直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-的夹角:222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ。
8.直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏垂直的判定: CnB m A l N S L ==⇔⇔⊥ //∏.9.直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏平行的判定: 0//=++⇔⊥⇔Cn Bm Al N S L∏.10.直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏的夹角:222222sin pn m C B A Cp Bn Am ++⋅++++=ϕ。
11。
点),,(000z y x P 到直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的距离:d =,其中M是直线上任意一点,21n n s⨯=。
四、曲线、曲面 1。
yoz 平面上的曲线C :0),(=z y f 绕z 轴旋转一周所得的旋转曲面为S :0),(22=+±z y x f 。
2。
空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 关于xoy 平面上的投影柱面方程为:0),(=y x H ;在xoy 平面上的投影曲线为C :⎩⎨⎧==00),(z y x H 。
第九章:多元函数微分法及其应用一、平面点集1。
内点一定在点集内,但点集内的点未必是点集的内点,还有孤立点;2。
聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点; 3.开集和闭集内的所有点都是聚点。
二、二元函数的极限、连续性的相关知识点1。
二元函数),(y x f 在),(00y x 点的二重极限:A y x f y x y x =→),(lim ),(),(00。
2.二元函数),(y x f 在),(00y x 点的连续性:),(),(lim00),(),(00y x f y x f y x y x =→。
3。
二元初等函数在其定义区域内连续. 二、二元函数的偏导数的相关知识点 1。
函数),(y x f z=对自变量y x ,的偏导数:x z ∂∂及yz ∂∂. 2.函数),(y x f z =对自变量y x ,的二阶偏导数:22x z∂∂、22y z ∂∂、y x z ∂∂∂2、xy z ∂∂∂2 注:若二阶混合偏导数y x z ∂∂∂2与xy z∂∂∂2连续,则二者相等。
三、二元函数的全微分:dy yz dx x z dz∂∂+∂∂=四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系 1.函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系。
2。
偏导数存在性与全微分存在性的关系:全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在) 偏导数连续,全微分存在,反之未必. 3。
连续性与全微分存在性的关系:全微分存在,函数一定连续;(函数不连续,全微分一定不存在) 函数连续,全微分未必存在. 五、二元复合函数的偏(全)导数1.中间变量为两个,自变量为一个的复合函数的全导数:))(),((),(),(),,(t t f z t v t u v u f z ψϕψϕ====,dtdv v z dt du u z dt dz ∂∂+∂∂= 2.中间变量为两个,自变量为两个的复合函数的偏导数:)),(),,((),,(),,(),,(y x y x f z y x v y x u v u f z ψϕψϕ====, xv v z x u u z y z x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂+∂∂∂∂=∂∂, 六、隐函数微分法1。
由一个方程确定的隐函数微分法:0),,(=z y x F 确定隐函数),(y x f z=,直接对方程左右两端关于自变量求偏导数,即0=∂∂∂∂+∂∂+∂∂xzz F dx dy y F dx dx x F ,即001=∂∂∂∂+⋅∂∂+⋅∂∂x z z F y F x F ,解得''zx F F x z-=∂∂2.由方程组确定的隐函数组微分法:⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 确定隐函数⎩⎨⎧==),(),(y x v v y x u u ,直接对方程组左右两端关于自变量求偏导数,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂+∂∂00xv v G x u u G dx dy y G dx dx x G x vv F x u u F dx dy y F dx dx x F ,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂00xv v G x u u G x G xvv F x u u F x F ,可以解出x v x u ∂∂∂∂,。
七、偏导数的几何应用1.曲线的切线方程和法平面方程1)。
以参数式方程⎪⎩⎪⎨⎧===)(),(),(t z t y t x χψϕ表示的曲线在0t t =对应的点),,(000z y x M 的切线方程:)()()(0'00'00'0t z z t y y t x x χψϕ-=-=- 法平面方程:0))(())(())((00'00'00'=-+-+-z z t y y t x x t χψϕ2).以一般式方程⎩⎨⎧==0),,(0),,(z y x G z y x F 表示的曲线在点),,(000z y x M 的切线和法平面方程:先用方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数组⎩⎨⎧==)()(x g z x f y 微分法求出dx dzdx dy ,,然后得到切线的方向向量⎪⎭⎫ ⎝⎛===00,,1x x x x dxdz dxdy n切线方程:)()(10'00'00x g zz x f y y x x -=-=- 法平面方程:0))(())((00'00'0=-+-+-z z x g y y x f x x2。