第三章统计热力学

合集下载

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。

熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

这一判据称为自由能判据。

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。

熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

这一判据称为自由能判据。

统计热力学

统计热力学
⎝ ∂V ⎠T ,N
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+
NkTV ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )

q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
⎤ ⎥ ⎦
3.3 思 考 题
1.Stirling 公式 的适用条件是什么?
N!≈ ⎜⎛ N ⎟⎞N ⎝e⎠
2.对于由少数(例如 20 个)离域子构成的系统,我们能否用公式
∑∏ Ω =
g ni i
i ni!
计算其微观状态数?若不能用此式计算,请说应如何计算Ω。
3.什么是最可几分布?最可几分布的各能级分布数如何计算?
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N

热力学统计物理 第三章 课件

热力学统计物理 第三章 课件

故而,由δS=0可以得到平衡条件,由δ2S<0可以得到 平衡的稳定性条件。
熵判据是基本的平衡判据,适用于孤立系统。 自由能判据和吉布斯函数判据 自由能判据:等温等容系统处在稳定平衡状态的必要 和充分条件为 ΔF > 0
将F作泰勒展开,准确到二级,有 1 F F 2 F 2 由δF=0和δ2F>0可以确定平衡条件和平衡的稳定性条件。
在平衡曲线上两相的化学势相等,两相可以以任意比 例共存。两相平衡是一种中性平衡。
当系统缓慢地从外界吸收或放出热量时,物质将由一
相转变到另一相而始终保持在平衡态,称为平衡相变。
单元系三相共存时,三相的温度、压强和化学势都必须相等,即 Tα = Tβ = Tγ = T , p α = p β = p γ = p
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求 1 1 p p 0, 0, 0 T T T T T T 即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
吉布斯函数是一个广延量,当物质的量发生变化时,吉布斯函 数也将发生变化。
对于开系,上式应推广为
dG = -SdT + Vdp +μdn 式中第三项代表由于物质的量改变dn所引起的吉布斯函数 的改变,而
称为化学势。
G n T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物
H和F分别是以S、p、n和T、V、n为独立变量的特性函数。
定义一个热力学函数 J = F -μn 称为巨热力势。

第三章 统计热力学基础 (2)

第三章 统计热力学基础 (2)

第三章统计热力学基础返回上一页1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。

2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。

3. 对于双原子分子,证明:U r=NkT U v=NkT设基态振动能为零,≈1+x 。

4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×,(1) 计算气体温度。

(2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。

5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。

(1)写出A分子的总配分函数的表达式。

(2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。

(3)设ε=kT,试计算1 摩尔该气体的平均能量是多少?6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算(1)在300 K时,第一激发态分子所占的百分数?(2)若要使激发态的分子数占10%,则需多少温度?7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。

(1)写出氩分子的总的配分函数表达式。

(2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。

(3)计算1 mol Ar气在标准状态下的统计熵值。

设Ar 的核和电子的简并度均等于1。

8. Na原子气体(设为理想气体)凝聚成一表面膜(1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。

热力学_统计物理学答案第三章

热力学_统计物理学答案第三章


pv 3 = a(v − 2b)
RT a ⎛ p + a ⎞(v − b ) = RT ; p= − 2 ⎜ 2 ⎟ v ⎠ v −b v ⎝
极值点组成的曲线:
RT 2a RT a = 3 ;由 = p+ 2 2 v−b (v − b ) v v
⎞ ⎟ ⎟ ⎠V
⎛ ∂S ⎞ ⎛ ∂µ ⎞ ⎜ ⎟ = −⎜ ⎟ ⎝ ∂n ⎠T ,V ⎝ ∂T ⎠V ,n (2) 由式(3.2.6)得:
⎛ ∂ 2G ⎞ ⎛ ∂ 2G ⎞ ⎛ ∂µ ⎞ ⎛ ∂V ⎞ ⎟ ⎜ ⎟ = =⎜ ⎟ ⎜ ⎟ =⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ ∂n ⎠T , p ⎝ ∂p∂n ⎠ T ⎝ ∂n∂p ⎠ T ⎜ ⎝ ∂p ⎠T , n
ww
=⎜
∂(T , S ) ∂ (V , T ) ∂(T , S ) ⎛ ∂p ⎞ ⋅ ⋅ ⎟ + ⎝ ∂V ⎠ S ∂ (V , T ) ∂(V , S ) ∂(V , T )
∂ (V , T ) ⎛ ∂p ⎞ ⋅ =⎜ ⎟ + ⎝ ∂V ⎠ S ∂(V , S ) ⎛ ∂p ⎞ ⎛ ∂T ⎞ =⎜ ⎟ + ⎜ ⎟ ⎝ ∂V ⎠ S ⎝ ∂S ⎠ V
∂V ⎞ ⎛ ∂p ⎞ ⎛ ⎟ ⋅ CV =⎜ ⎟ ⋅⎜ ⎜ ⎝ ∂V ⎠ S ⎝ ∂p ⎟ ⎠T
w.
kh da
后 课
⎛ ∂G ⎞ ⎜ ⎟ =µ ⎝ ∂n ⎠T ,V
证:
(1) 开系吉布斯自由能
答 案
∂µ ⎞ ⎛ ∂µ ⎞ ⎛ ∂S ⎞ 习题 3.4 求 证 : ( 1) ⎛ ⎜ ⎟ = − ⎜ ⎟ ;( 2) ⎜ ⎜ ∂p ⎟ ⎟ =− ⎝ ∂T ⎠ V , n ⎝ ∂n ⎠T ,V ⎝ ⎠T,n

《统计热力学》课件

《统计热力学》课件
《统计热力学》PPT课件
欢迎来到《统计热力学》PPT课件!本课程将探索统计热力学的定义、原理、 应用领域,以及数学基础和研究方法。让我们开始这个精彩的学习之旅!
概述
介绍统计热力学的基本概念和作用。了解热力学与统计力学的关系以及统计热力学在物理、化学和生物等领域 的重要性。
定义
探索统计热力学的准确定义,包括如何描述微观粒子的状态、能量分布和统计规律。理解宏观热力学参数与微 观粒子行为之间的关系。
生物化学
探索统计热力学在生物大分子结构和功能研究中的重要性。
能源研究
研究统计热力学在能源转化、储存和优化中的应用及挑战。
数学基础
了解统计热力学所需的数学基础,包括概率论、统计学和微积分。探索数学 模型和统计方法在统计热力学中的应用。
研究方法
了解统计热力学的研究方法,包括计算模拟、实验技术和数据分析。探索如 何收集、处理和解释实验和模拟数据。
未来发展
展望统计热力学的未来发展方向,包括新的应用领域、研究技术和理论突破。让我们一起探索统计热力学的无 限可能!基本原理 Nhomakorabea1
统计力学
了解统计力学的基本原理,包括概率分布、平衡态和非平衡态,以及微正则、正 则和巨正则系综。
2
热力学基本定律
探索统计热力学与热力学基本定律的关系,包括熵增原理和热力学基本方程。
3
统计热力学的统一性
理解统计热力学与热力学之间的统一性,揭示宏观现象的微观基础。
应用领域
材料科学
了解统计热力学在材料制备、相变和材料性能预测中的应用。

《统计热力学》教学课件

《统计热力学》教学课件

《统计热力学》教学课件
欢迎来到《统计热力学》教学课件!在本课程中,我们将介绍统计热力学的 基本概念、方程和应用。让我们一起开始这个精彩的学习之旅吧!
统计热力学的介绍
统计热力学研究热力学现象的微观机制和宏观行为。它涉及热力学基本原理、熵、能量和热平衡等重要概念。通过 统计方法,我们可以深入理解物质的性质和相互之间的相互作用。
2
配分函数
配分函数是描述处于不同能级上的粒子分布情况和系统性质的重要函数。
3
巨正则系综
巨正则系综适用于描述粒子数、能级和粒子间相互作用等变量不固定的系统。
应用案例与实例分析
化学反应动力学
相变现象
量子统计
统计热力学可应用于描述化学反应
研究物质在不同温度下的相变行为, 应用量子统计原理分析高能物理、
动力学,预测反应速率和平衡位置。 如液体与气体的转变过程。
微观状态
微观系统的状态由分子或粒子的 位置、能量和动量等特性决定。
统计力学
通过统计方法研究大量粒子的平 均行为,为热力学定律提供微观 基础。 Nhomakorabea热力学均衡
系统在达到热力学平衡时,各种 宏观和微观性质达到稳定状态。
统计热力学方程
1
玻尔兹曼熵公式
熵是描述系统无序程度的物理量,玻尔兹曼熵公式给出了熵与微观状态数的关系。
材料科学等领域的问题和现象。
课堂互动与练习
• 与同学进行小组讨论,共同解决统计热力学的相关问题。 • 进行实验和模拟,观察统计热力学原理在实际系统中的应用。 • 完成课后练习和作业,巩固对统计热力学的理解和运用能力。
总结与展望
通过学习《统计热力学》,我们深入理解了热力学现象的微观机制和宏观行为。希望这门课程能给大家带来全新 的热力学视角和思考方式。

软件仓库-第三章统计热力学

软件仓库-第三章统计热力学

能量为
3
h2 8 mV
2
3
平动能级是多变的, t为一定值时, nx, ny, nz有 不同的取值, 对应着不同的量子态, 如
t 68m h22V 3, nx 2n2 ynz26
nx 取 值: ny
nz
112 1 2 1,是三重简并的. 211
第三章 统计热力学初步
物理化学电子教案
(2) 刚性转子的转动能
第三章 统计热力学初步
物理化学电子教案
(3) 一维谐振子的振动能
双原子分子中原子沿化学键方向在平衡位置 附近振动, 其振动运动的Schordonger方程为:
d d 2 x2 v8 h 2 2(v2 2v2x2)v0
解得振动能量为:
v
1 vhv 2
nx、ny、nz 分别为在 x 、y 、z 方向上平动量 子数, 若为立方体时
t 8m h2V 23 nx 2n2 ynz2
第三章 统计热力学初步
物理化学电子教案
可见平动能级是量子化的, 其值不能任意取,
由量子数 nx, ny, nz决定, 其基态对应着 nx= ny= nz
=
1的状态,
(1) 简单粒子体系
对于(U, V, N )一定的体系, 设有三个一维谐振子组成, 总能量为9hv/2. 确定体系的能量分布及微态数.
该体系应满足: Nt N3,
U N ii9 h/2 v
第三章 统计热力学初步
物理化学电子教案
每个粒子在定点附近作振动运动,并以a, b, c 加以区别, 若每个能级上粒子数不受限制, 系统能 量可按如下分布:
物理化学电子教案
§3.1 引 言
1.统计热力学的研究对象和方法

第三章 统计热力学

第三章  统计热力学

第三章 统计热力学一、内容提示统计热力学研究对象是由大量微观粒子(分子、原子)构成的宏观系统,统计热力学根据微观粒子遵循的力学定律、从微观性质和结构数据(核间距离、键角、振动频率等)出发,应用统计的方法,直接推求系统的宏观性质,从而建立宏观性质与微观性质的联系,要掌握的内容:统计单位的分类;一些基本概念:如能级、简并度、分布和微态,统计热力学的基本假定,最概率分布与平衡分布,玻尔兹曼分布和配分函数,配分函与热力学的关系配分函数的分离,分子全配分函数。

三、判断说明原因1、当系统折U 、N 、V 一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统总的微态数Ω不能确定;2、玻尔兹曼分布就是最概率分布,也是平衡分布;3、分子能量零点的选择不同,各能级的能量值也不同;4、分子能量零点的选择不同,分子的配分函数值也不同;5、由压力趋于零的氧气组成的系统是独立粒子系统;6、与分子运动空间有关的分子运动的配分函数是振动配分函数;7、分子的能量零点的选择不同,玻兹曼公式也不同;8、在低温下,可以用q r =Hr T来计算双原子分子的转动配分函数;9、一定量的纯理想气体恒温变化时平动配分函数q t 发生变化;10、全配分函数的q 总=qt+q r +q v +q e +q n 。

三、填空:1、由N 个分子组成的理想气体系统,一种分布的微态数为 ,N 个原子组成的原子晶体系统,一种分布的微态数为 ;2、由N 个分子组成的理想气体系统,具有微态数最多的分布是 ,这种分布的微态数W B = ;3、对于一个U 、V 、N 一定的系统,任何一种分布都必须满足的两个条件是和 ;4、CO 分子的平动自由度为 ,转动自由度为 ,振动自由度为 ;5、Cl 2分子的振动频率为1.663×1013S -1,300K 时,相邻两振动能级上分子数之比v v n n 1+= ;6、1mol 双原子理想气体的平动能U t = 转动能Ur= ;7、1mol 双原子理想气体常温下热力学能为 ;8、O 2的转动慢量I=19.3×10-47kg ,则O 2的转动特征温度是 ;9、下列物质中,298.15k 时标准摩尔熵S m 最大的是(He 、N 2、CO )。

第三章 统计热力学基础

第三章 统计热力学基础

陕西师范大学物理化学精品课程
能量量子化的概念引入统计热力学,对经典统计进行某些修正,发展成为麦克斯韦-玻 兹曼统计热力学方法。1924 年量子力学建立后,在统计力学中不但所依赖的力学基础要 改变,而且所用的统计方法也需要改变。由此产生了玻色-爱因斯坦(Bose-Einstein)统计 和费米-狄拉克(Fermi-Dirac)统计,分别适用于不同的体系。这两种统计方法都可以在 一定的条件下通过适当的近似而得到玻兹曼统计。本章的内容就是简要介绍麦克斯韦- 玻兹曼统计热力学的基本原理和应用。
n1 n2
……….ni
ε1
ε2
………. εi
φ1 φ2
………φi
简并度:一种能级有多种量子状态即一种能量对应多个波函数。
n1
n2 …………… ni
ε1
ε2 ………. εi
φ11φ12...φ1gi φ21φ22...φ2gi ……… φi1φi2...φigi 注:gi是能级εi具有的量子状态数,称该能级的简并度或者统计权重。
由大量粒子组成的体系的微观运动状态也是千变万化的,如何描述粒子及体系的微观运 动状态呢?经典力学与量子力学有不同的描述方法。
经典力学:粒子运动遵守牛顿运动方程,常用空间坐标(qx, qy, qz)、瞬时速度或动量 (px, py, pz)来描述粒子的运动状态。在经典力学中,可根据粒子的空间坐标识别它们,故 在经典力学中认为粒子是可别的。
系的总能量等于各个粒子的能量之和,即U =∑εi ;后者或称为相依粒子体系,其粒子
i
之间其的相互作用不容忽略,如高圧下的实际气体等,这种体系的总能量除了各个粒子
∑ 的能量之和外,还存在粒子之间相互作用的位能,即U = εi + UI (x1, y1, z1,......xN , yN , zN ) 。

统计热力学课件

统计热力学课件

统计热力学课件1. 引言统计热力学是热力学的一个分支领域,它通过统计方法来研究物质的宏观性质。

统计热力学在物理学、化学等领域都有着广泛的应用。

本课件将介绍统计热力学的基本概念和主要内容。

2. 统计热力学基本概念2.1 系综统计热力学的基本概念之一是系综(Ensemble)。

系综是指一个包含一组相同物理性质的系统的集合。

常见的系综有微正则系综、正则系综、巨正则系综等。

2.2 平衡态在统计热力学中,平衡态是指系统的宏观性质不随时间改变或在长时间内保持不变的状态。

平衡态的性质可以通过统计平均值来描述。

2.3 统计力学统计力学是统计热力学的基本方法,它通过建立系统与外界的相互作用关系,研究宏观性质与微观粒子运动规律之间的关系。

统计力学的核心是概率论和统计学的应用。

3. 统计热力学的主要内容3.1 玻尔兹曼分布玻尔兹曼分布是统计热力学中最基本的分布函数之一,它描述了自由粒子在一定温度下的分布状态。

3.2 能量与熵能量和熵是统计热力学中两个重要的物理量。

能量是系统状态的核心属性,熵则是系统的无序程度。

统计热力学通过研究能量和熵的关系来揭示物质的宏观行为。

3.3 统计平均值统计平均值是描述系统平衡态性质的基本指标,例如内能、熵等。

通过对系统微观状态进行统计,可以得到系统宏观性质的平均值,从而揭示系统的宏观行为。

3.4 相变与临界现象相变和临界现象是统计热力学的一个重要研究内容。

相变是指物质在一定条件下从一个相向另一个相的转变。

临界现象则是相变过程中出现的特殊现象,例如临界点和临界指数等。

4. 应用领域4.1 物理学在物理学领域,统计热力学被广泛应用于凝聚态物理、磁学、高能物理等研究中。

例如,统计热力学可以用来解释物质的相变行为、电磁波的统计行为等。

4.2 化学在化学领域,统计热力学可以用来研究化学平衡、化学反应速率等问题。

例如,通过统计方法可以计算出化学反应的平衡常数和反应速率常数。

4.3 生物学统计热力学在生物学领域的应用越来越广泛。

统计热力学基础3

统计热力学基础3
转动配分函数
单原子分子的转动配分函数等于零,异核双原子 分子、同核双原子分子和线性多原子分子的q r 有类似 的形式,而非线性多原子分子的 q r 表示式较为复杂。
(1) 异核双原子分子的 q r ,设其为刚性转子绕质心 转动,能级公式为:
r J(J1)8 h2 2I
J0, 1 , 2,



exp

1 2
h
kT

1
exp

h
kT




§7.6 分子的全配分函数
对于线型多原子分子
q 总 g n ,0e x p k n T ,0 g e ,0e x p k e T ,0 2m h k 3 T 3 /2 V
对于双原子分子
q 总 g n ,0e x p k n T ,0 g e ,0e x p k e T ,0 2m h k 3 T 3 /2V

8 2IkT

h2
式中V为振动量子数,当V=0时, v , 0 称为零点振动能
v,0

1 2
h
振动配分函数
qv
i
gi,v
exp(i,v)
kT

v0
exp[
(v
1)h
2 kT
]



v
h
k
称为振动特征温度,也具有温度量纲,则:
q v = e x p ( - 2 T v ) + e x p ( - 3 2 T v ) + e x p ( - 5 2 T v ) + . . .

热力学与统计物理答案第三章

热力学与统计物理答案第三章

热⼒学与统计物理答案第三章第三章单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最⼩. (b )在,S p 不变的情形下,稳定平衡态的H 最⼩. (c )在,H p 不变的情形下,稳定平衡态的S 最⼩. (d )在,F V 不变的情形下,稳定平衡态的T 最⼩. (e )在,G p 不变的情形下,稳定平衡态的T 最⼩. (f )在,U S 不变的情形下,稳定平衡态的V 最⼩. (g )在,F T 不变的情形下,稳定平衡态的V 最⼩.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发⽣各种可能的⾃发虚变动. 由于不存在⾃发的可逆变动,根据热⼒学第⼆定律的数学表述(式(1.16.4)),在虚变动中必有,U T S W δδ<+ (1)式中U δ和S δ是虚变动前后系统内能和熵的改变,?W 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度.由于虚变动只涉及⽆穷⼩的变化,T 也等于系统的温度. 下⾯根据式(1)就各种外加约束条件导出相应的平衡判据.(a )在,S V 不变的情形下,有0,0.S W δ==根据式(1),在虚变动中必有0.U δ< (2)如果系统达到了U 为极⼩的状态,它的内能不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最⼩.(b )在,S p 不变的情形下,有0,,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极⼩的状态,它的焓不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最⼩.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极⼤的状态,它的熵不可能再增加,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最⼤.(d )由⾃由能的定义F U TS =-和式(1)知在虚变动中必有.F S T W δδ<-+在F 和V 不变的情形下,有0,0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最⼩.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最⼩.(f )在,U S 不变的情形下,根据式(1)知在虚变动中⼼有0.W >上式表明,在,U S 不变的情形下系统发⽣任何的宏观变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最⼩.(g )根据⾃由能的定义F U TS =-和式(1)知在虚变动中必有δδ?.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有0W > (8)上式表明,在,F T 不变的情形下,系统发⽣任何宏观的变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最⼩.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为22δδ2δδδ0.S S S S U U V V U U V V ??=++(1)将2δS 改写为2δδδδδδδ.S S SS S U V U U V V UU V U U VV V=+++ ?(2)但由热⼒学基本⽅程TdS dU pdV =+可得1,,V U S S p U T V T== ? ?(3)代⼊式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T=+++ ? ? ? ????? 1δδδδ0.p U V T T ?? =+< ? ?(4)以,T V 为⾃变量,有δδδV TU U U T V T V=+ ? ???????δδ,V V p C T T p V T =+- ???(5)T V T T T V T=+ ? ? ?????????21δ,T T =-(6)δδδV Tp p p T V T T T V T =+ ? ? ?211δδ.V T p p T p T V T T T V =-+ ? ???????????(7)将式(5)—(7)代⼊式(4),即得()()22221δδδ0,V TC p S T V T T V =-+< (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V <证明0p C >及0.S p V< 解:式(2.2.12)给出2.p V TVT C C ακ-=(1)稳定性条件(3.1.14)给出0,0,V Tp C V>< (2)其中第⼆个不等式也可表为10,T TV V p κ=-> (3)故式(1)右⽅不可能取负值. 由此可知0,p V C C ≥> (4)第⼆步⽤了式(2)的第⼀式.根据式(2.2.14),有.S S VT p TV p C C Vp κκ??? ?==(5)因为V p C C 恒正,且1V pCC ≤,故0,S TV V p p≤< ? ? (6)第⼆步⽤了式(2)的第⼆式.3.4 求证:(a ),,;V n T V S T n µ=- ? ?(b ),,.T p t n V p n µ= ? ????解:(a )由⾃由能的全微分(式(3.2.9))dF SdT pdV dn µ=--+ (1)及偏导数求导次序的可交换性,易得,,.V n T VS T n µ=- ? ??????? (2)这是开系的⼀个麦⽒关系.(b )类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn µ=-++ (3)可得,,.T pT n V p n µ= ? ? (4)这也是开系的⼀个麦⽒关系.3.5 求证:,,.T V V nU T n T µµ-=- ? ???????解:⾃由能F U TS =-是以,,T V n 为⾃变量的特性函数,求F 对n 的偏导数(,T V 不变),有,,,.T V T V T VF U S T n n n=- ? ? ?????????? (1)但由⾃由能的全微分dF SdT pdV dn µ=--+可得,,,,,T VT V V nF n S n T µµ==- ? ??????? (2)代⼊式(1),即有,,.T V V nU T n T µµ-=- ? ? (3)3.6 两相共存时,两相系统的定压热容量p pSC T T= ,体胀系数1pV V T α= ?和等温压缩系数1T TV V p κ=- ?均趋于⽆穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从⽐熵较低的相准静态地转移到⽐熵较⾼的相,过程中温度保持为平衡温度不变. 两相系统吸取热量⽽温度不变表明它的(定压)热容量p C 趋于⽆穷. 在上述过程中两相系统的体积也将发⽣变化⽽温度保持不变,说明两相系统的体胀系数1pV V T α= 也趋于⽆穷. 如果在平衡温度下,以略⾼(相差⽆穷⼩)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从⽐容较⾼的相转移到⽐容较低的相,使两相系统的体积发⽣改变. ⽆穷⼩的压强导致有限的体积变化说明,两相系统的等温压缩系数1T T V V p κ??=- 也趋于⽆穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ??=-如果⼀相是⽓相,可看作理想⽓体,另⼀相是凝聚相,试将公式化简. 解:发⽣相变物质由⼀相转变到另⼀相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满⾜.m m m U H p V ?=?-? (1)平衡相变是在确定的温度和压强下发⽣的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ?=克拉珀龙⽅程(式(3.4.6))给出,mdp L dT T V =? (3)即.m L dTV T dp=(4)将式(2)和式(4)代⼊(1),即有1.m p dT U L T dp ??=-(5)如果⼀相是⽓体,可以看作理想⽓体,另⼀相是凝聚相,其摩尔体积远⼩于⽓相的摩尔体积,则克拉珀龙⽅程简化为2.dp LpdT RT= (6)式(5)简化为1.m RT U L L ??=-(7)3.8 在三相点附近,固态氨的蒸⽓压(单位为Pa )⽅程为3754ln 27.92.p T =-液态氨的蒸⽓压⼒⽅程为3063ln 24.38.p T=-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸⽓压⽅程是固相与⽓相的两相平衡曲线,液态氨的蒸⽓压⽅程是液相与⽓想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1)由此解出195.2.t T K =将t T 代⼊所给蒸⽓压⽅程,可得5934Pa.t p =将所给蒸⽓压⽅程与式(3.4.8)In Lp A RT=-+ (2)⽐较,可以求得443.12010J,2.54710J.L L =?=?升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=?溶升汽3.9 以C βα表⽰在维持β相与α相两相平衡的条件下1mol β相物质升⾼1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m pV LC C V V T βββαβα=- ?- 如果β相是蒸⽓,可看作理想⽓体,α相是凝聚相,上式可简化为,p LC C Tββα=-并说明为什么饱和蒸⽓的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升⾼1K 所吸收的热量C βα为.mm m p T dS S S dp C T T T dT T p dTββββα==+(1)式(2.2.8)和(2.2.4)给出,.m p pS T C T S V p T ββββ= ??=- ? ? (2)代⼊式(1)可得.m p pV dp C C T T dT βββα=- ?(3)将克拉珀龙⽅程代⼊,可将式(3)表为.m p m m pV LC C V V T βββαβα=- ?- (4)如果β相是⽓相,可看作理想⽓体,α相是凝聚相,mm V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为.p LC C Tββα=-(5) C βα是饱和蒸⽓的热容量. 由式(5)可知,当p L C Tβ<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- 如果β相是⽓相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα相变潜热随温度的变化率为.mm m m p T p T H H H H dL dp dp dT T p dT T p dTββαα=+-- ? ? ? ?(2)式(2.2.8)和(2.2.10)给出,,p pp TH C T H V V T p T = ?=- ? ? (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dT βαβαβα=-+---?? ? ???将式中的dpdT⽤克拉珀龙⽅程(3.4.6)代⼊,可得,m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- (4)这是相变潜热随温度变化的公式.如果β相是⽓相,α相是凝聚相,略去m V α和m pV T α,并利⽤m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利⽤上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不⼤,定压热容量可以看作常量,试证明蒸⽓压⽅程可以表为ln ln .Bp A C T T+ 解: 式(3.4.7)给出了蒸⽓与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1)⼀般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2)在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代⼊式(1),得021,p pC C L dL p dT RT RTβα-=+ (4)积分,即有ln ln ,Bp A C T T=-+ (5)其中0,,p pC LB C A R C βα==是积分常数.3.12 蒸⽓与液相达到平衡. 以mdV dT表⽰在维持两相平衡的条件下,蒸⽓体积随温度的变化率. 试证明蒸⽓的两相平衡膨胀系数为111.m m dV L V dT T RT ??=-解:蒸⽓的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ??=+??,11.m p m m m T V V T T V V p p= ?=- ?(2)在克拉珀龙⽅程中略去液相的摩尔体积,因⽽有2.m dp L LpdT TV RT== (3)将式(2)和式(3)代⼊式(1),即有111.m m dV L V dT T RT ??=-(4)3.13 将范⽒⽓体在不同温度下的等温线的极⼤点N 与极⼩点J 联起来,可以得到⼀条曲线NCJ ,如图所⽰. 试证明这条曲线的⽅程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范⽒⽅程为2.m mRT ap V b V =-- (1)求偏导数得()232.m m Tm p RT aV V V b =-+ ??-?? (3)等温线的极⼤点N 与极⼩点J 满⾜0,m Tp V = ? 即()232,mm RT()()32.m m mRT aV b V b V =-- (3)将式(3)与式(1)联⽴,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的⽅程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸⽓;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ??> ,不满⾜平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表⽰肥皂泡外⽓体的压强,p γ表⽰泡内⽓体的压强,p α表⽰肥皂液的压强,根据曲⾯分界的⼒学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表⾯张⼒系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表⾯的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲⾯分界⾯的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββµµ= (3)根据化学势的定义,m m m U TS pV µ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱⽒对相变的分类,⼆级相变在相变点的化学势和化学势的⼀级偏导数连续,但化学势的⼆级偏导数存在突变. 因此,⼆级相变没有相变潜热和体积突变,在相变点两相的⽐熵和⽐体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的⽐熵和⽐体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)v v v v .p Td υdT dp T p dT dp ακ=+ ? ?=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3)同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα=+ ? ?=- =- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出⼆级相变点压强随温度变化的斜率,称为爱伦费斯特⽅程.3.17 试根据朗道⾃由能式(3.9.1)导出单轴铁磁体的熵函数在⽆序相和有序相的表达式,并证明熵函数在临界点是连续的。

第三章 统计热力学

第三章 统计热力学

.
Cm n1
Cmn
Cmn 1.
15
5. 排列组合应用题
(1) 正确判断是排列问题,还是组合 问题,还是排列与组合的综合问题。 (2) 解决比较复杂的排列组合问题时, 往往需要既分类又分步。正确分类,不 重不漏;正确分步,连续完整。 (3) 掌握基本方法,并能灵活选择使 用。
16
例 4 学生要从六门课中选学两门: (1)有两门课时间冲突,不能
热力学研究方法: (唯象方法) 依据几个经验定律,通过逻辑推理的方法导出平
有 P55种不同的排法.
根据分步计数原理,可以组成的五位数的总个数为:
P C53C
2 4
5 5
22
例1:从1、3、5、7、9中任取三个数字,
从2、4、6、8中任取两个数字.
(1)一共可以组成多少个没有重复数字的五位数?
(2)一共可以组成多少个没有重复数字的五位奇数?
解:(2)组成没有重复数字的五位奇数,需要分二步完成:
物理化学 Physical Chemistry
化学化工系
1
第三章 统计热力学初步
2
主要内容
1 引言 2 Boltzmann分布定律 3 分子配分函数 4 配分函数的计算及应用 5 理想气体反应标准平衡常数*
3
排列组合复习
4
一、 知识结构 二、 重点难点 三、 综合练习 四、 复习建议
5
一、知识结构
A. C34 B. P34 C. 34 D. 43
( 选 C)
9
例2 有不同的数学书7本,语文书 5本,英语书4本,由其中取出不是 同一学科的书2本,共有多少种不 同的取法?
(7×5 + 7×4 + 5×4 = 83)

《热力学与统计物理》第三章 单元系的相变

《热力学与统计物理》第三章 单元系的相变

三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T

第三章 统计热力学基础

第三章 统计热力学基础
研究粒子所构成的体系的宏观行为,从粒子的微观性质来寻求体系的平均的宏观性 质,这就是统计热力学的任务和研究内容。由此可见,统计热力学是从微观到宏观过渡 的理论。它具有统计平均的性质,是联系物质的宏观性质与微观结构、沟通热力学与量 子力学的一座桥梁。 3. 方法
统计力学的研究方法是微观的方法,它根据统计单位的力学性质如速度、动量、位 置、振动、转动等,用统计的方法来推求体系的热力学性质,例如压力、热容、熵等热 力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统 计力学又可称为统计热力学。
陕西师范大学物理化学精品课程
Px = tx/Ω 式中tx是该分布所拥有的微观状态数。此式表明,虽然各微观状态出现的几率相同,但 各种分布出现的几率是不相同的。
为了说明统计热力学的基本假定,设某系统有 4 个可辨粒子 a、b、c、d,分配于两
个相连的、容积相等的空间Ⅰ和Ⅱ之中,所有可能的分配形式如表 3.1 所列。
i
显然,粒子之间绝对无相互作用的体系是不存在的,但可以把那些粒子之间的相互作用 非常微弱可以忽略不计的体系,如低圧气体,作为独立粒子体系进行处理。本章中仅限 于讨论独立粒子体系。
统计力学可分为两大阶段:经典统计力学和量子统计力学。前者是在 19 世纪末发展 并成熟起来。在许多场合能给出满意的结果,但某些情况下它无法解释一些实验结果。 后者在二十世纪二十年代(1926 年)量子力学建立后发展起来的。它比经典统计力学能解 释更广泛的宏观现象。本章着重讨论经典统计力学,只对量子统计力学稍加介绍。
系的总能量等于各个粒子的能量之和,即U =∑εi ;后者或称为相依粒子体系,其粒子
i
之间其的相互作用不容忽略,如高圧下的实际气体等,这种体系的总能量除了各个粒子

热力学与统计物理第三章

热力学与统计物理第三章

2020/4/4
17
由开系的基本热力学方程知: dU TdS pdV dn
S
U
p V
T
n
S
U
p V
T
n
由熵的广延性质: S S S
δS
1 T
1 T
δU
p T
p T
δV
T
T
δn
利用熵判据,平衡时总熵应有极大值,所以: δS 0
2020/4/4
18
T T 热平衡条件
独立变化。
• 相平衡曲线 在单元两相系中,由相平衡
条件所得到的T—p之间的关系p = p( T ),在T—p图上所描述的曲线
称为相平衡曲线。
AC—汽化线,分开气相区和液相区; AB—熔解线,分开液相区和固相区; 0A—升华线,分开气相区和固相区。
2020/4/4
24
单元两相平衡共存时,必须满足下面三个平衡条件:
第三章 单元系的相变
单元系:化学上纯的物质系统。 相:被一定边界包围,性质均匀的部分。
2020/4/4
1
§3.1 热动平衡判据
一、熵判据
• 虚变动
为了对系统的平衡态作出判断,必须考虑系统在平衡态 附近的一切可能的变动,这里面就有趋向平衡态的变动和 离开平衡态的变动。在热力学范围内,不考虑涨落现象, 系统一旦达到平衡态以后,其性质就不再发生变化了。因 此,在平衡态附近的一切可能的变动就是理论上虚拟的, 并不代表系统真实的物理过程,引进它的目的完全是为了 从数学上方便地导出系统的平衡条件。这类似于理论力学 中的“虚位移”概念。并以δ表示之。
它对各种平衡态系统包括化学平衡系统均成立。
2020/4/4
22

统计热力学基础

统计热力学基础
能量是量子化的,但每一个能级上可能有若 干个不同的量子状态存在,反映在光谱上就是代 表某一能级的谱线常常是由好几条非常接近的精 细谱线所构成。
量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
简并度(degeneration)
例如,气体分子平动能的公式为:
N!
Hale Waihona Puke g Ni iN! i
i Ni !
非定位体系的最概然分布
同样采用最概然分布的概念,用Stiring公式
和Lagrange乘因子法求条件极值,得到微态数为
极大值时的分布方式
N
*(非定位)为:
i
N(i* 非定位) N
g ei / kT i g ei / kT i
i
由此可见,定位体系与非定位体系,最概然
的分布公式是相同的。
Boltzmann公式的其它形式
(1)将i能级和j能级上粒子数进行比较,用最 概然分布公式相比,消去相同项,得:
Ni*
N
* j
g ei / kT i
g e j / kT j
Boltzmann公式的其它形式
(2)在经典力学中不考虑简并度,则上式成为
Ni*
N
* j
i / kT
ee j / kT
(U,V , N)
N!
g Ni i
i
i Ni !
求和的限制条件仍为:
Ni N
Nii U
i
i
有简并度时定位体系的微态数
再采用最概然分布概念, i max ,用
Stiring公式和Lagrange乘因子法求条件极值,得
到微态数为极大值时的分布方式 Ni* 为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章统计热力学一、选择题1. 下面有关统计热力学的描述,正确的是: ( )(A) 统计热力学研究的是大量分子的微观平衡体系;(B) 统计热力学研究的是大量分子的宏观平衡体系;(C) 统计热力学是热力学的理论基础;(D) 统计热力学和热力学是相互独立互不相关的两门学科。

2. 在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是: ( )(A) 晶体属离域物系而气体属定域物系; (B) 气体和晶体皆属离域物系;(C) 气体和晶体皆属定域物系; (D) 气体属离域物系而晶体属定域物系。

3. 在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为所研究的体系是: ( )(A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的;(C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。

4. 某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。

5个可别粒子,按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为:( )(A) 30 ; (B) 120 ;(C) 480 ;(D) 35. 假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。

四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为: ( )(A) 40 ; (B) 24 ;(C) 20 ;(D) 286. 对热力学性质(U、V、N)确定的体系,下面描述中不对的是: ( )(A) 体系中各能级的能量和简并度一定;(B) 体系的微观状态数一定;(C) 体系中粒子在各能级上的分布数一定;(D) 体系的吉布斯自由能一定。

7. 对于定位体系,N个粒子分布方式D所拥有微观状态数W D为: ( )(A) W D = N!πN i g i/N i!; (B) W D = N!πg i Ni/Ni!;(C) W D = N!πg i Ni/Ni;(D) W D = πg i Ni/Ni!。

8. 设一粒子体系由三个线性谐振子组成,体系的能量为 (11/2) hν,三个谐振子分别在三个固定点a、b、c上振动,体系总的微观状态数为: ( )(A) 12 ; (B) 15 ;(C) 9 ;(D) 69. 使用麦克斯韦 - 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时:( )(A) 假定粒子是可别的;(B) 应用了斯特令近似公式;(C) 忽略了粒子之间的相互作用;(D) 应用拉氏待定乘因子法。

10. 式子∑N i = N和∑N iεi = U的含义是: ( )(A) 表示在等概率假设条件下,密封的独立粒子平衡体系;(B) 表示在等概率假设条件下,密封的独立粒子非平衡体系;(C) 表示密闭的独立粒子平衡体系;(D) 表示密闭的非独立粒子平衡体系。

11. 下面关于排列组合和拉格朗日求极值问题的描述正确的是: ( )(A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序;(B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的;(C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题;(D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题。

12. 对于玻尔兹曼分布定律n i =(N/Q)·g n·exp(-εi/kT) 的说法:⑴ n i是第i能级上的粒子分布数;⑵ 随着能级升高,εi增大,n i总是减少的;⑶ 它只适用于可区分的独立粒子体系;⑷ 它适用于任何的大量粒子体系。

其中正确的是: ( )(A) ⑴ ⑶; (B) ⑶ ⑷;(C) ⑴ ⑵;(D) ⑵ ⑷13. 玻尔兹曼统计认为: ( )(A) 玻尔兹曼分布不是最可几分布但却代表平衡分布;(B) 玻尔兹曼分布只是最可几分布但不代表平衡分布;(C) 玻尔兹曼分布不是最可几分布也不代表平衡分布;(D) 玻尔兹曼分布就是最可几分布也代表平衡分布。

14. 对于分布在某一能级εi上的粒子数n i,下列说法中正确是: ( )(A) n i与能级的简并度无关;(B) εi值越小,n i值就越大;(C) n i称为一种分布;(D) 任何分布的n i都可以用波尔兹曼分布公式求出。

15. 在N个独立可别粒子组成体系中,最可几分布的微观状态数t m与配分函数Q之间的关系为: ( )(A) t m = 1/N! ·q N;(B) t m = 1/N! ·q N·e U/kT;(C) t m = q N·e U/kT ;(D) t m = N! q N·e U/kT 。

16. I2分子的振动能级间隔是× 10-20J,则在298K时某一振动能级和其较低能级上分子数之比为: ( )(A) 1 ; (B) × 10-20;(C) ;(D) 无法计算。

17. 在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为: ( )(A) ?exp(εj/2kT) ;(B) 2exp(-εj/2kT) ;(C) ?exp(-εj/2kT) ;(D) 2exp(-2εj/kT) 。

18. 如分子第一激发态的能量为400 kJ·mol-1,则体系中10%的分子被激发到第一激发态时,体系的温度(K)是: ( )(A) × 104; (B) × 104;(C) × 103 ;(D) × 10519. I2的振动特征温度ΘV = 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = ?的温度是:( )(A) 306K; (B) 443K;(C) 760K;(D) 556K20. 某一理想气体体系由含N A个A分子与N B个B分子的两个体系组成。

分子配分函数分别为q A、q B,若不考虑分子间相互作用,则体系配分函数表示为: ( )(A) q A N Aq B N B/(N A + N B)!;(B) q A N A·q B N B;(C) q A N A/N!·q B N B/N B!;(D) (q A·q B)N A + N B21. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关: ( )(A) S、G、F、C V;(B) U、H、P、C V;(C) G、F、H、U;(D) S、U、H、G22. 各种运动形式的配分函数中与压力有关的是: ( )(A) 电子配分函数;(B) 平动配分函数;(C) 转动配分函数;(D) 振动配分函数。

23. 分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是:( )(A) Θv越高,表示温度越高;(B) Θv越高,表示分子振动能越小;(C) Θv越高,表示分子处于激发态的百分数越小;(D) Θv越高,表示分子处于基态的百分数越小。

24. 下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点: ( )(A) 每一个可能的微观状态以相同的几率出现;(B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制;(C) 体系由独立可别的粒子组成,U= ∑n iεi;(D) 宏观状态参量N、U、V为定值的封闭体系。

25. 下列几种运动中哪些运动对热力学函数G与A贡献是不同的: ( )(A) 转动运动; (B) 电子运动;(C) 振动运动;(D) 平动运动。

26. 下面对转动配分函数计算式的对称数σ差别理解不对的是: ( )(A) 对配分函数的修正;(B) 对粒子等同性的修正;(C) 对量子态等同性的修正;(D) 对转动量子数的修正。

27. 对于下列各个亥姆兹自由能函数公式,哪一公式适用于晶体系统:( )(A) A = - kT ln(q N/N! ) ;(B) A = -NkT lnq ;(C) A = - NkT(lnq/N + 1) ; (D) A = -NkT lnq e/N。

28. 三维平动子的平动能为εt = 7h2/(4mv2/3),能级的简并度为: ( )(A) 1 ; B) 3 ;(C) 6 ;(D) 2 。

29. HI的转动特征温度Θr = K,300K时HI的摩尔转动熵为: ( )(A) J·K-l·mol-1;(B) J·K-l·mol-1;(C) J·K-l·mol-1;(D) J·K-l·mol-1。

30. O2的转动惯量J= × 10-47kg·m2,则O2的转动特征温度是: ( )(A) 10K ; (B) 5K ;(C) ;(D) 8K 。

31. 下面关于分子各种运动形式配分函数计算公式的能量标度零点选取的描述错误的是:( )(A) q t的计算公式是近似地以基态能级的能量为能量标度的零点;(B) q r的计算公式是以基态的能量为能量标度的零点;(C) q e和q n的计算公式是基态能级的能量标度的零点;(D) q v的计算公式是以基态能级的能量标度的零点。

32. 对于单原子理想气体在室温下的物理过程,若要通过配分函数来求过程中热力学函数的变化: ( )(A) 必须知道q t、q R、q v、q n各配分函数;(B) 只须知道q t一个配分函数;(C) 必须知道q t、q n配分函数;(D) 必须知道q t、q R、q v配分函数。

33. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数: ( )(A) 不变; (B) 增多;(C) 减少;(D) 不能确定。

34. 钠原子基态的光谱项符号是1S1/2 ,则钠原子电子基态能级的简并度g e0为:( )(A) 1 ; (B) 1/2 ;(C) 3 ;(D) 2 。

35. 体积为1cm3,质量为m克的单原子分子气体,在温度为T时,对一般的物理过程,分子的配分函数为: ( )(A) × 1055(mT)3/2 ;(B) × 1020(mT)3/2;(C) × 1026(mT)3/2 ;(D) × 1049(mT)3/2。

36. 在相同条件下,对于He与Ne单原子分子,近似认为它们的电子配分函数相同且等于1,则He与Ne单原子分子的摩尔熵是: ( )(A) S m(He) > S m(Ne);(B) S m(He) = S m(Ne);(C) S m(He) < S m(Ne);(D) 以上答案均不成立。

37. 巳知CO和N2分子的质量相同,转动特征温度基本相等,若电子均处于非简并的基态,且振动对熵的贡献可忽略,那么: ( )(A) S m(CO) < S m(N2) ;(B) S m(CO) 与S m(N2) 大小无法比较;(C) S m(CO) = S m(N2) ;(D) S m(CO) > S m(N2) 。

相关文档
最新文档