采用PLC控制的变频器一拖三恒压供水技术方案
用PLC与变频实现恒压供水
用PLC与变频实现恒压供水摘要:恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数。
在用水量发生变化时保持水压恒定以满足用水要求。
变频恒压供水技术变频恒压供水相关产品正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。
追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中成片开发智能楼宇、网络供水调度和整体规划要求的必然趋势。
在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。
单泵产品系统设计简易可靠,但单泵电动机深度调速造成水泵、电动机运行效率低,而多泵型产品的投资更为节省,运行效率高,已发展成为主导产品。
变频恒压供水控制方式根据水泵工作原理,水泵消耗功率与转速的三次方成正比,即N=Kn,(其中Ⅳ为水泵消耗功率,为水泵运行时的转速,为比例系数)。
而水泵是按工频运行时速设计的,但供水时除高峰外,大部分时间流量较小,由于采用了变频技术及微机控制技术,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。
实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能效率可达20%~40%。
带PID回路调节器和/或PkO的控制方式在该方式中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。
传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望{直|压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输送给变频器一个频率控制信号。
还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个频率控制信号。
[b][align=center]详细内容请点击:用PLC与变频实现恒压供水[/align][/b]。
PLC与变频器控制恒压供水系统设计方案
PLC与变频器控制恒压供水系统设计方案随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。
然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。
本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。
1、系统介绍变频恒压供水系统原理,它主要是由PLC、变频器、PID调节器、TC时间控制器、压力传感器、液位传感器、动力控制线路以及3台水泵等组成。
用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。
通过安装在出水管网上的压力传感器,把出口压力信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。
根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。
当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。
同时系统配备的时间控制器和PID控制器,使其具有定时换泵运行功能(即钟控功能,由时间控制器实现)和双工作压力设定功能(PID控制器和时间控制器实现)。
此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。
2 、工作原理2.1 运行方式该系统有手动和自动两种运行方式:⑴. 手动运行按下按钮启动或停止水泵,可根据需要分别控制1#-3#泵的启停。
该方式主要供检修及变频器故障时用。
⑵. 自动运行合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。
基于plc与变频器控制的恒压供水系统
摘要随着人们对生活水平要求的不断提高和经济社会发展的需求;再加上目前能源的紧缺,严重制约着经济社会的发展。
利用现有的成熟技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。
本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。
在经过PID运算,通过PLC控制变频与工频的切换,实现闭环自动调节恒压变量供水。
运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点。
而本设计是针对居民生活用水而设计的。
电动机泵组成由三台水泵组成,由变频器或工频电网供电,根据供水系统出水口的压力和流量来控制变频器电动机泵的速度和切换,使系统运行在最合理的状态,保证按需供水。
关键词:变频器,恒压供水,PLC目录第一章绪论 (4)1.1变频恒压供水系统的国内研究现状 (4)1.2恒压供水系统的基本构成 (5)1.3课题研究的目的和意义 (5)第二章PLC功能选择及应用 (5)2.1 模拟量输入模块的功能及与PLC系统的连接 (5)2.2 模拟量输入模块缓冲存储器(BFM)的分配 (6)2.3 模拟量输出模块的功能及PLC系统连接 (6)2.4变频器的功能选择及原理 (7)2.4.1 变频器的分类及工作原理 (8)2.4.2 变频器硬件选择 (8)2.5压力传感器的作用及使用方法 (9)第三章系统设计 (10)3.1系统要求....................................................................... (10)3.2控制系统的I/O及地址分配 (10)3.3 PLC系统选型 (11)3.4 电器控制系统原理图 (11)3.4.1 主电路图 (11)3.4.2 控制电路图 (12)第四章系统程序设计 (12)4.1系统要求的工作泵组数量管理 (12)4.2程序的结构及程序功能的实现 (13)4.3 系统的运行分析 (14)总结 (14)致谢 (15)参考文献 (15)第一章绪论随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。
采用plc控制的变频器一拖三恒压供水技术方案
采用plc控制的变频器一拖三恒压供水技术方案采用PLC控制的变频器一拖三恒压供水技术方案1. 系统控制要求;1.1 实现变频器一拖三控制并可手动/自动切换;1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台泵………或两台泵,直到满足设定压力为止。
1.3手动状态时,要求手动启/停每一台泵,用于检修及应急;1.4 低液位时,停所有泵并声音及指示灯报警;1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。
1.6 三台泵均具备软启动功能。
电气原理图:2. 设备选型:2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。
该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。
2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。
压力范围在10Kpa-60Mpa。
2.3 液位开关选用供液电极型液位开关。
2.4 变频器:风机水泵型变频器。
3.电气控制原理及PLC程序说明:3.1 电气控制原理图如图。
3台水泵电机为 M1,M2,M3。
KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。
电路设计为互锁功能。
每台泵均有热继电器作电机过载保护。
QF1-4分别为变频器、泵主回路隔离开关。
QF5为PLC及控制回路提供电源。
SA为手动/自动切换旋纽,打到1位置启动PLC 按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。
HL3-HL8为运行状态指示。
HL2为水箱位置报警指示。
3.2 PLC I/0地址及功能如图3.3 程序文字简介:SA旋钮置于自动位置,PLC运行准备。
基于PLC 和变频器控制的恒压供水系统
基于PLC 和变频器控制的恒压供水系统摘要本文设计介绍了一种基于PLC和变频器的变频恒压供水系统,由PLC 进行逻辑控制,由变频器进行压力调节。
PLC和变频器作为控制系统的核心部件,经过变频器内部的PID运算,通过PLC控制变频与工频的切换,通过传感器反馈压力信号,实现闭环自动调节恒压供水,基本实现了高质量恒压供水,降低电能损耗,延长了加压泵的使用寿命,通过故障处理基本实现了不间断供水。
关键词PLC;变频器;传感器0 引言在城乡供水系统中,随着高层建筑的广泛建设以及居民小区的规模化发展,原有的高位水塔供水系统已经不能满足恒压供水的要求,采用变频恒压控制是现代供水控制系统的新型方式,变频恒压供水系统可有效地降低“水锤”对泵体冲击、节约电能、维持管网水压恒定、实现无人值守等。
具有较大的经济和社会意义。
本文论述了一种基于PLC的变频恒压供水系统。
利用PLC加以不同功能的传感器、变频器,根据压力传感器测得管网压力的大小及变化来控制加压泵的转速及数量,使水管的压力始终保持在合适的范围内,从而达到恒压供水的目的。
1 恒压供水系统原理恒压供水的基本思路是:采用电机调速装置控制泵的转速,并自动调整泵的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节能的目的。
系统的控制目标是泵站总管的出水压力。
系统任意设定供水压力值,其与反馈总管的压力值通过PID调节后控制调速装置,以调节加压泵的运行速度,从而调节系统的供水压力。
与传统的恒速泵供水系统、水塔高位水箱供水系统和气压罐供水系统相比,调速恒压供水系统具有供水质量高、灵活性强、能耗少、电动机起制动平稳、无水锤效应等优点,从而获得了广泛应用。
2 系统总体设计2.1 系统概况本系统拟在控制2台55kW和3台30kW加压泵相互配合完成恒压供水。
本文将以“一拖三”(一台变频器拖动三台加压泵,加压泵功率为30kW),“一拖二”(一台变频器拖动两台加压泵,加压泵功率为55kW)的设备介绍PLC与变频器组成的恒压供水系统的工作原理。
基于PLC和变频器的恒压供水系统设计
本论文结合我国中小城市供水厂的现状,设计了一套基于PLC和变频器的恒压供水自动控制系统。
变频调速恒压供水自动控制系统由可编程控制器、变频器、水泵电机组、传感器、以及控制柜等构成。
在变频调速恒压供水系统中,三台水泵的调节是通过变频器来改变电源的频率f来改变电机的转速n,从而改变水泵性能曲线得以实现的。
变频调速恒压供水自动控制系统的控制器经历了从继电器—接触器,到单片机,再到PLC。
而变频器也从多端速度控制、模拟量输入控制,发展到专用变频器。
从而实现了城市供水系统简单、高效、低耗能的功能,而且还实现自动化的控制过程。
通过编程软件设计了一个用于供水系统压力控制的PID控制器,PID控制器内置在PLC中,该控制器对于压力给定值与测量值的偏差进行处理,实时控制变频器的输出电压和频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现整个供水的压力的自动调节,使压力稳定在设定值附近。
关键词:PLC 变频调速恒压供水节能运行摘要 (I)1 绪论 (1)1.1 恒压供水问题的提出 (1)1.2 恒压供水系统的国内外研究现状 (1)1.3 本课题的主要工作 (2)2 变频恒压供水的工作原理 (3)2.1 供水系统的基本特性 (3)2.2 变频与变压(VVVF)原理 (3)2.3 变频调速的原理 (4)2.4 水泵调速运行的节能原理 (5)2.5 变频恒压供水的特点 (7)3 变频恒压供水系统的硬件设计 (8)3.1 变频恒压供水系统方案设计 (8)3.2 变频恒压供水系统结构设计 (9)3.3 变频恒压供水系统的构成 (10)3.3.1 压力传感器选择 (10)3.3.2 系统主要配置的选型 (11)3.3.3 MM420变频器概述 (14)3.4 基于S7-200 PLC恒压供水系统设计 (17)3.4.1 S7-200 PLC概述 (17)3.4.2 系统主电路设计 (19)3.4.3 控制系统接线图 (20)3.4.4 PLC外围接线图 (21)4 变频恒压供水系统软件设计 (23)4.1 恒压供水系统的控制流程 (23)4.2 供水系统加减水泵分析 (24)4.3 恒压供水中PID控制设计 (24)4.4 控制系统程序设计 (27)4.4.1供水系统的I/O分配 (27)4.4.2 供水系统所用软元件配置 (28)4.4.3手动自动设计 (30)4.4.4 水泵变/工频程序设计 (32)4.4.5 PLC和变频器通讯 (37)4.5 控制系统的调试 (39)结论 (41)致谢 (42)参考文献 (43)1 绪论1.1 恒压供水问题的提出众所周知,水是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市建设发展十分迅速,同时也对城市的基础设施建设提出了更高的要求。
一拖三恒压供水方案
一拖三恒压供水方案1. 引言恒压供水系统是一种将水泵的工作状态自动调整以保持水压恒定的供水系统。
在一些特定的场景中,需要将恒压供水系统扩展为一拖三的方案,即一个水泵供水给三个不同的用水设备。
本文将介绍一种实现一拖三恒压供水的方案。
2. 方案设计2.1 硬件设备•恒压供水器:一台恒压供水器,用于控制水泵的工作状态并保持水压恒定。
•水泵:一台大功率水泵,用于将水送至三个供水设备。
•一拖三分水器:一台一拖三分水器,用于将水分流至三个供水设备。
2.2 方案流程以下是一拖三恒压供水方案的流程:1.水泵启动:当任意一个供水设备启动时,恒压供水器检测到供水压力下降,信号水泵启动。
2.恒压供水:水泵开始工作,将水送至一拖三分水器,并保持恒定的水压。
3.水分流:一拖三分水器将水分流至三个供水设备,每个设备都能得到稳定的水压供应。
4.停止供水:当所有供水设备停止工作时,恒压供水器检测到供水需求结束,信号水泵停止工作。
3. 方案优势一拖三恒压供水方案的优势如下:3.1 节约成本通过使用一台大功率水泵,可以同时供水三个设备,避免了每个设备都单独安装水泵的成本,从而节约了设备成本。
3.2 省空间一拖三恒压供水方案只需要安装一个水泵和一个分水器,相比于每个设备都安装一个水泵的方案,节省了很多空间。
3.3 操作简便只需通过恒压供水器来控制整个系统的启停,操作简单方便。
3.4 稳定压力恒压供水器能够根据供水设备的需求自动调整水泵的工作状态,保持恒定的水压,确保各个供水设备都能得到稳定的供水。
4. 方案实施4.1 安装水泵首先,按照安装要求安装一台大功率水泵,该水泵需要能够满足同时供水三个设备的需求。
4.2 安装一拖三分水器在水泵出口处安装一拖三分水器,确保分水器的设计能够保证三个供水设备同时得到稳定的供水。
4.3 安装恒压供水器安装恒压供水器,连接水泵和一拖三分水器,并根据具体型号的使用说明进行设置和调试。
4.4 调试系统在安装完毕后,进行系统的调试工作。
PLC控制变频器的恒压供水系统的设计
PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。
PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。
1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。
通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。
2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。
这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。
3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。
在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。
4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。
程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。
5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。
通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。
6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。
例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。
总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。
要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。
《PLC实现恒压变频供水系统的设计》范文
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。
恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。
本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。
二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。
其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。
三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。
当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。
此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。
四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。
2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。
3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。
4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。
5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。
五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。
2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。
3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。
一拖三恒压供水项目PLC[19.11.15]
C O M 2 (R S -4 8 5) 送 信 要 求
K 10
BM O V
D 1050
D 60
K 10
M o d b u s 通 讯2 # 变 频 接 收
指 令 数 据 处数 据 : 速 度
理 , P LC 系
统会自动将 R ST
M 1129
C O M 2 (R S -4 8 5 )接 受 完 成
M O D R D K1
SET H4
M 1122
C O M 2 (R S -4 8 5) 送 信 要 求
K 10
BM O V
D 1050
D 50
K 10
M o d b u s 通 讯1 # 变 频 接 收
指 令 数 据 处数 据 : 速 度
理 , P LC 系
统会自动将
R ST
M 1129
C O M 2 (R S -4 8 5 )接 受 完 成
C O M 2 (R S -4 8 5 )M O D R D / M O D W R /M O D R W 指令参数错 M 1142
V F D -A 便 利 指令数据接 收错误
M 1127
C O M 2 (R S -4 8 5) 通 讯 指 令数据传送 接收完毕, S 12
1# 变 频 发 送 写数据
计时
间
>=
D 90
K3
设置变频泵 编号
=
D 90
K0
设置变频泵 编号
=
D 90
K1
设置变频泵 编号
= M 107
D 90
K2
设置变频泵 编号
供水变频器 启动
T 10
变频器暂停
一拖三恒压供水方案
一拖三恒压供水方案一拖三恒压供水方案是一种高效、便捷、节能的供水系统解决方案。
它的设计理念是通过将一个水泵与三个恒压变频器相结合,实现对三个不同水压需求区域的供水控制,确保每个区域的供水需求得到满足。
本文将详细介绍一拖三恒压供水方案的原理、优势和适用场景。
一、方案原理一拖三恒压供水方案采用了恒压变频技术,通过调节水泵的转速来实现恒压供水。
具体而言,方案将一个主水泵与三个恒压变频器相连接,每个变频器控制一个区域的供水。
当某个区域的供水需求发生变化时,相应的变频器会自动调节水泵的转速,以保持该区域的水压恒定。
这种供水方案能够根据实际需求实时调整水泵的运行状态,提高供水系统的稳定性和效率。
二、方案优势1. 灵活性:一拖三恒压供水方案适用于各种不同水压需求的场景。
通过调整恒压变频器的参数,可以实现对不同区域的精准控制,保证每个区域的供水压力恒定。
2. 节能环保:方案采用变频调速技术,可以根据实际需求调整水泵的转速,避免了传统方法中常见的频繁启停现象,降低了能耗。
同时,恒压供水方案能够减少供水过程中的压力波动,降低了水泵的能耗,有利于保护环境。
3. 维护成本低:一拖三恒压供水方案的设备维护成本相对较低。
恒压变频器具有自动报警、故障诊断等功能,可以提前预警并自动记录故障信息,减少了维护人员的巡检和维护时间,降低了运维成本。
4. 稳定可靠:采用了一拖三的供水方案,即一台水泵供水给三个区域,并配备相应的恒压变频器,使得整个供水系统更加稳定可靠。
即使其中一个区域的水泵故障,其他区域的供水依然能够正常进行,大大提高了供水系统的可靠性。
三、适用场景一拖三恒压供水方案适用于各类供水系统,特别是在以下场景中有显著优势:1. 大型住宅小区:大型住宅小区通常包含多个楼栋和不同水压需求的住户。
通过采用一拖三恒压供水方案,可以根据不同楼栋、不同住户的供水需求,实现精确的水压控制,提高居民的供水质量和舒适度。
2. 商业综合体:商业综合体中常常包含商场、写字楼等多个区域,每个区域的供水需求不同。
《PLC实现恒压变频供水系统的设计》范文
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
运用PLC与变频器控制实现恒压自动供水
变频 器工作 在 5 H . 网压力 仍 然低 于系统 设定 的 0 Z管 下 限时 .软 起 动器便 自动起动 一 台电机 投人 到工频 运行 , 当压 力达 到高 限时 。 自动 停掉 工频 运行 电机 。 系统为 每 台电机 配备 电机保 护器 , 以便在过 载 、 欠压 、 压 、 流 、 过 过 相序 不 平衡 、 缺相 、 电机 空 转 等情 况 下确 保 电机稳定 运 行 .也能 达到延 长 电机使 用 寿
3 丁桓 如 :工 业 用水 处理 工 程 》 . 《 ,清华 大 学 出
版 社 .0 51 2 0 .2
—
51—
泵 控 制 系统 需 考 虑 以下条 件 : 1 若 高 位 水 池 水 ()
位 低 和 主 管有 水 .则 打 开进 水 电动 蝶 阀 和 起 动 加
状态 . 即一 台 泵具 有 变 频 自动 恒 压 控 制功 能 . 用 当 水 量不 够 时 .可手 动 投 入 另外 一 台或 几 台工 频 泵
量, 又能显 示 瞬时 流量 。 可进 行 出水 量 的统计 和 每台 泵 的出水 流量监 控
22 加 压 泵 系统 .
排 放 ” 节水 又节 电 。 , 环保 又卫 生 。 通过 近 几 年 来 的
管 网系统 不断 改造 , 活 区供 水质 量不 断 提高 , 源 生 源 不断 的清 水流进 了千家万 户 。 整 个供 水控 制 系统 .从技 术 可靠 和经 济实 用 的
较 远 距离 区域 的供 水 为 此配 备 了 多 台 5 W 水 5k
的节俭 还 有很 多方法 : 制 照明灯 具 的数量 : 制照 控 控
的节 俭就 是水 到渠 成 的事情 了。
参考 文献 :
明灯具 开启 的 时间 :改进 高耗 能设 备 等等 。只要 所 有 企业 都能 够积 极探 索 . 极 改善 . 积 一定 都会 取得 好
西门子S7-200PLC+变频一拖三恒压供水全套工艺图
西门子S7-200型PLC一拖三变频恒压供水电气图设计:彭作珩版权所有人:彭作珩系统控制工艺要求1.供水压力恒定,波动要小,尤其是在换泵时.2.三台泵根据压力的设定采用先开先停的原则.3.能实行自动按时轮换切换泵,防止某一台泵长时间运行而烧坏及防止某一台泵长时间不用而锈死.4.要保护和报警功能5..为了检修方便,设手动功能.6.要水池防抽空功能.7.为防止系统给变频器反送电,造成变频器烧毁,KM1与KM2,KM3与KM4,KM5与KM6必须进行机械互锁.选型1.PLC: 采用西门子S7-200型,CPU224,2.变频器:ABB/ACS400型7.5KW,3.PID:选具有压力显示的PID调节器.工作原理:1.利用变频器的两个可编程继电器输出端口,RO1和RO2进行功能设定,当变频器达到最高频率时,RO1的常开触点RO1B-RO1C闭合, 当变频器达到最低频率时,RO2的常开触点RO2B-RO2C闭合,可以作为CPU224的输入信号,判断是否进行加泵和切泵2.为了节省成本,不采用模拟模块EM235,而采用PID调节器,由于采用了PID调节器,而不用变频器内部的PID,设置变频器时将FACTORY设置成0就可以了3..变频器的运行要根据PLC输出Q1.0 (DCOMI-DI2) 是否闭合来确定,变频器的停止要根据PLC输出Q0.7 (DCOMI-DI1) 是否闭合来确定,设置变频器时将变频器的内部继电器RO1,RO2设置成频率到达就可以了PLC1.201接变频器的DCOM1.202,203接变频器的DI1,DI2.变频器的RO1的常开触点接到PLC的I0.0,RO2 变频器的RO2的常开触点接到PLC的I0.12.KA为自动/手动中间继电器, 中间继电器KA的常开触点接I0.3.3.主程序含调节程序和电机切换程序,加机程序及减机程序,4.子程序实际是清零程序,在PLC上电时,先将VD200,VD201,VD260赋值为零,作为中继的M复位.5.在主程序中T56,T57为变频器的频率上下限到达滤波时间继电器,用于稳定系统,VB200为变频泵的泵号,VB201为工频泵运行的总台数,VD260为倒泵时间存储器.版权所有人:彭作珩。
(完整word版)plc变频器控制恒压供水系统
城市恒压供水系统一、前言1、供水系统概述城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。
所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。
在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。
因此无法满足城市供水系统的要求。
采用变频调速的供水系统可以有效解决以上的问题。
根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。
当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。
2、供水系统功能城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。
变频供水的控制器经历了从继电器- 接触器,到单片机,再到PLC。
而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC作为核心控制器是个较好的方案。
(完整word版)plc变频器控制恒压供水系统PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求.除此以外,PLC作为城市供水控制系统使设计过程变得更加简单,可实现的功能变得更多。
由于PLC的CPU强大的网络通信能力,是城市供水系统的数据传输与通信变得可能,并且也可以实现其远程监控.利用「1。
《基于PLC恒压变频供水系统的设计与实现》范文
《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。
恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。
本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。
二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。
包括供水范围、水压要求、水泵数量及功率等。
同时,还需考虑系统的稳定性、可维护性及节能性等因素。
2. 硬件设计硬件设计是恒压变频供水系统的基础。
主要包括PLC控制器、变频器、水泵、压力传感器等设备。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。
3. 软件设计软件设计是实现恒压变频供水系统的关键。
通过PLC编程,实现对水泵的转速、输出及水压的精确控制。
同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。
三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。
通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。
在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。
2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。
确保各设备之间能够正常通信,并实现精确的控制与协调。
3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。
人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。
四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。
确保系统能够满足实际需求。
2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。
优化过程中,需充分考虑系统的实际运行情况及外界环境因素。
基于PLC的变频器综合控制1控3的恒压供水系统设计
目录第一部分设计任务与调研 (2)1.1 毕业设计的主要任务 (2)1.2 设计的思路、方法 (2)1.3 调研的目的和总结 (2)第二部分设计说明 (4)2.1恒压供水的理论分析 (4)2.2系统方案设计与论证 (5)2.3变频器的选择 (8)2.4 PLC 的选择 (10)2.5 恒压供水系统 (13)2.6作品的特点 (16)第三部分设计成果 (17)3.1 PLCI/O分配表 (17)3.2外部接线图 (17)3.3变频恒压供水系统主程序流程图: (18)3.4变频恒压供水系统主程序梯形图如图所示: (19)第四部分结束语 (29)第五部分致谢 (30)第六部分参考文献 (31)第一部分设计任务与调研1.1 毕业设计的主要任务设计一城市自来水管网的小区恒压供水系统,系统总共有3台水泵,采用西门子系列变频器,西门子S-200PLC进行控制。
利用PLC,配以不同功能的传感器,根据网管的压力,通过变频器控制水泵的转速,使水管中的压力始终保持在合适的范围。
这种变频恒压供水系统直接取代水塔、高位水箱及传统的气压罐供水装置,电路设计要注意整个系统的电路布局与布线。
安装和调试方法,绘制电气控制原理图,编写PLC控制程序。
撰写毕业设计说明书,列出系统的详细设备材料清单。
基本部分控制要求采用变频器与可编程控制器(PLC)构成控制系统,具体要体现恒压供水实质,就是利用变频器的PID或PI功能实现的工业过程的闭环控制。
发挥部分控制要求供水管网压力按时间自动变化。
1.2 设计的思路、方法本系统将PLC、变频器(含PID)、相应的传感器和执行机构有机地结合起来,并发挥各自优势,这个操作方便的自动控制系统,以变频调速为核心,以智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。
一拖三变频调速恒压供水控制系统的设计
( e at n f n omainE gn ei ga dAuo t ai ,He e I si t o c t n a d c n lg , hj z u n b i D pr me t f r t n ie r n t mai t n oI o n z o bin tue f t Vo ai n h o y S ia h a g He e o Te o i
文献 标志 码 : A
De i n o o s a tp e s r t r s p l y t m a e n o e sg fc n t n r s u e wa e — u p y s s e b s d o n fe u n y c n e t rd a g n h e u r q e c o v r e r g i g t r e p mp s
变 频器 切换 到 2号泵 上 , 2号泵进行 补 充供水 ; 由 反
责任编辑 ; 李
穆
基金项 目: 河北工业职业技术学院科研资助项 目( Z10 ) Q 一11
作者简介 : 张金 红(9 7)女 , 17 一 , 河北保定人 , 讲师 , 主要从 事工 业 自动控制 、 电子检测 及仪表方面的研究。
38 8
河
北
工
业
科
技
第2 8卷
之, 当用 水量 逐渐减 少 , 2 泵 的工作 频率 已降 为 且 号 下 限频率 并维 持一 段时 间后 , 水压 力仍偏 大 时 , 供 则
关掉 1号泵 , 时迅速 升 高 2号泵 的工 作 频 率进 行 同 恒压 控制 。工 作泵 数量 的增减 由 P C控 制 , L 变频 泵
变频器一拖三恒压供水
“一拖三”变频改造方案实现厂区恒压供水摘要针对原供水系统存在的问题,对生产区循环加压泵供水系统进行了变频技术改造,以降低成本,提高供水质量及工作效率。
关键字变频器;水泵;恒压供水;改造1 概述中铝青海分公司供水加压泵站由一、二期泵站构成,共计有加压泵10 台套,一、二期各5 台套,每年供水600多万t。
正常情况下,两个独立控制的泵站的水泵均为三用两备运行状态。
1.1 设备现状一期泵站1986年投产,已连续运行20年。
5台水泵型号为150S78A,流量为144 m3/h,扬程为62 m,配用电机型号为JO2-82-2,功率为40 kW;二期泵站1990年8 月投产,已连续运行16 年。
5 台水泵型号为6SH-6A,流为量180 m3/h,扬程为55 m,配用电机型号为JO2-82-2,功率为45 kW。
1.2 存在问题1)水泵运行年限较长,设备严重老化,故障率高。
由于没有相应的备品备件供应,所以维修困难。
已影响平稳供水,对分公司安全生产构成威胁。
2)JO2 系列电机是非节能产品,是属国家明令淘汰的电机产品。
3)由于用水量不稳定,水压忽高忽低,水压高时易使供水管网破裂,水压低时不能满足生产生活需要。
所以必须及时调整水泵水压,但由于水泵控制分散在两个控制室,造成水泵水压调整不便。
4)由于是两个泵站,所以必须有两组人员看守、操作泵站,存在人力浪费现象。
2 改造方案在基本保持原有加压泵站的功能和出力大小的情况下,将原有的10台套水泵对应更换为ISO系列,流量为150耀180 m3/h,扬程为62 m的新水泵,安装位置与旧水泵对应。
配用电机型号为Y系列2 极,功率为45 kW。
废弃原有水泵的控制系统,对10 台新水泵实施集中控制。
对其中7 台水泵实施工频控制;对剩余的3 台水泵实施“一拖三”的变频控制,实现水压的自动控制调节。
正常情况下,要求以工频控制的水泵运行4 台,备用3台;如果厂区用水量有大幅度的变化,可多开或少开工频控制的水泵,但不管那种情况,都同时投运已实施“一拖三”的变频控制水泵系统,并尽可能使3台变频控制的水泵保持在一工频运行、一变频运行、一备用的状态,以达到自动调节管网的水压,实现恒压供水的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用PLC控制的变频器一拖三恒压供水技术方案
1. 系统控制要求;
1.1 实现变频器一拖三控制并可手动/自动切换;
1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压
力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台
泵………或两台泵,直到满足设定压力为止。
1.3手动状态时,要求手动启/停每一台泵,用于检修及应急;
1.4 低液位时,停所有泵并声音及指示灯报警;
1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。
1.6 三台泵均具备软启动功能。
电气原理图:
2. 设备选型:
2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。
该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。
2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。
压力范围在
10Kpa-60Mpa。
2.3 液位开关选用供液电极型液位开关。
2.4 变频器:风机水泵型变频器。
3.电气控制原理及PLC程序说明:
3.1 电气控制原理图如图。
3台水泵电机为M1,M2,M3。
KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。
电路设计为互锁功能。
每台泵均有热继电器作电机过载保护。
QF1-4分别为变频器、泵主回路隔离开关。
QF5为PLC及控制回路提供电源。
SA为手动/自动切换旋纽,打到1位置启动PLC按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。
HL3-HL8为运行状态指示。
HL2为水箱位置报警指示。
3.2 PLC I/0地址及功能如图
3.3 程序文字简介:
SA旋钮置于自动位置,PLC运行准备。
当液位传感信号为1,如果压力信号<=2V,3号泵变频运行,1、2号泵工频运行补水;当压力信号<=2.5V, 1号泵工频、2号泵变频运行;压力信号〉=2.5V ,小于3V 时,1号泵变频运行。
如果信号大于3V,将所有泵置零,即停止三台泵所有方式的运行,待压力下降重新逐一起动水泵运行。
变频与工频切换时,考虑到电机中的残余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的残余电压下降到较小值,这个值保证电源电压与残余电压不同相时造成的切换电流冲击较小,故设置延时时间为700ms(可根据现场情况调节),之后接入工频。
变频器设置为自由停车。
本程序关键部位功能块解读:
1. 程序开始采用TBLS功能块作为程序的启动与停止(包括急停),启动按钮定义为S置位信号。
停止按钮定义R端复位;
2 .大量采用&逻辑功能块,各条件均满足经过判断后用于输出;
3. 灵活使用反向器,例如变频器的一拖三功能和变频与旁路的切换均为反向器实现。
压力传感器信号<2.5V且>2V,则由CMPR模块(模拟量比较器)引出一路至反向器1#,经过反向后控制1#变频输出为零,再经过一个反向器控制1#工频输出。
所以变频器一拖三功能,变频与旁路的切换换都是通过反向器及其后接延时接通TRG模块实现。
变频器的启/停控制也由三段压力信号约束(三段经比较后的压力信号接入或逻辑模块作为RS的置位信号,三路控制变频输出的反信号接入另一&逻辑模块作为RS复位端控制变频
器的启/停,由此实现变频输出的平滑切换。
)
假如液位传感器信号为0,即:水满,程序置零,工频变频运行停止,输出为零,直到信号为1开始
补水。
SA置于手动位置可通过外围控制电路启动各台泵单独工频运行,便于检修与应急。
以下为编辑完成的程序界面:
以下为I/O设备地址及功能:
以下为压力信号电压小于3V时的仿真运行画面:。