河北对口升学考试数学模拟试题

合集下载

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)一、选择题1、已知集合{1,3}A =,{0,1,2}B =,则A B 等于A 、{1}B 、{1,3}C 、{0,1,2}D 、{0,1,2,3}2、“1x > ”是“1x >”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分又不必要条件3、已知函数()f x 为偶函数,且(2)1f -=,则(2)f 的值为A 、-1B 、0C 、1D 、24、经过点P(0,1)且与直线2350x y -+=垂直的直线方程为A 、2330x y -+=B 、3220x y +-=C 、2320x y --=D 、3230x y +-=5、某7件产品中有2件次品,从中抽取3件进行检查,则抽到的产品中至少有1件次品的概率为A 、17B 、27C 、47D 、576、已知3sin()5πα+=,且3(,)2παπ∈,则tan α的值为 A 、34 B 、43 C 、34- D 、43- 7、不等式(2)(3)0x x -+<的解集为A 、(3,2)-B 、(2,3)-C 、(,2)(3,)-∞-+∞D 、(,3)(2,)-∞-+∞8、从班上5名同学中选取2人分别担任正、副班长,则不同的选法共有A 、40种B 、30种C 、20种D 、10种9、在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥平面ABCD ,且PA =,则PC 与平面ABCD 所成的角为A 、30︒B 、45︒C 、60︒D 、90︒10、已知椭圆22221(0)y x a b a b+=>>的长轴长是焦距的2倍,一个顶点为(3,0),则椭圆的方程为A 、221912y x +=B 、221129y x += C 、2212794y x += D 、221129y x +=或2212794y x += 二、填空题11、已知向量(1,2)a =-,(,3)b m =.若//a b ,则m =12、某单位有职工150人,其中女职工30人.若采用分层抽样的方法抽取一个样本,样本中女职工有5人,则样本容量为13、圆22(1)(2)1x y ++-=的圆心到直线3470x y +-=的距离为14、261()x x-的二项展开式中的常数项为 (用数字作答) 15、已知圆锥的底面半径为1,母线长为2,则它的体积为16、10转化为二进制数是 ;三、解答题17、已知函数()f x =(0,a >且1a ≠).(Ⅰ)求()f x 的定义域; (Ⅱ)若3()12f =-,求a 的值。

2023年对口升学考试模拟试题 数学(三

2023年对口升学考试模拟试题 数学(三

山西教育2023/1◇刘婧一、单项选择题(本大题共10小题,每小题3分,共计30分)1.若集合N =x x ≤2{},M =x x 2-3x =0{},则M ∪NA.0{}B.3{}C.0,2{}D.0,3{}2.已知x 3=-8,则x 2+x -2等于A.8B.4C.0D.63.下列函数为奇函数的是A.y =tan x B.y =2x 2C.y =e xD.y =x4.sin 214π等于A.12B.2√2C.-12D.-2√25.直线x +3√y +1=0的倾斜角为A.60° B.150°C.120°D.30°6.数列12,14,18,116…前8项的和是A.63128 B.127128C.255256D.2555127.在△A BC 中,∠A =30°,a =4,b =43√,则∠B 等于A.30°或120°B.60°C.120°D.60°或120°8.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左右焦点,若PF 1=3,则PF 2等于A.5 B.7C.6 D.1或59.5人排成一排照相,甲排在中间的概率为A.15 B.14C.120D.4510.在正方体ABCD -A 1B 1C 1D 1中,对角线BD 1与平面ABCD 所成角的正切值A.1B.3√3C.2√2D.2√二、填空题(本大题共8小题,每小题4分,共计32分)11.已知y=x √-5,x ≥0-3+x 2,x <0{,则f f (4)[].12.若等比数列的公比为-2,a 1+a 4+a 7=9,a 2+a 5+a 8=.13.已知两点A (1,3),B (-2,-1),则=.14.设a ⭢=(1,-2),b ⭢=(3,m ),若a ⭢·b ⭢,则m =.15.函数y =4sin12x +π3()的最小正周期为.2023年对口升学考试模拟试题33山西教育2023/116.(ax +1)5的展开式中x 的系数为10,则a =.17.若两个球的表面积之比为1∶4,则这两个球的体积之比为.18.(101.001)2=.三、解答题(本大题共6小题,共计38分)19.(6分)求函数y =-x 2-2x+15√lg (2-x )的定义域.20.(6分)已知等差数列a n {}的前n 项和为S n ,且a 1=1,a 3=5,(1)求数列a n {}的通项公式;(2)若S n =100,求n .21.(6分)求与直线x -6y -10=0相切于点P (4,-1),且圆心在直线5x -3y =0上圆的方程.22.(6分)若a ⭢,b ⭢满足(a ⭢-b ⭢)·(2a ⭢+b ⭢)=-4,且a ⭢=2,b ⭢=4,求a ⭢与b ⭢的夹角.23.(6分)在三角形A BC 中,已知c 2=2ab 袁则(1)若C =90毅,a =1,求S △ABC ;(2)若sin A =sin C ,求cos C .24.(8分)某射击运动员射击3次,每次射击击中目标的概率为23,求射击3次该运动员击中次数X的分布列.◇郭慧慧李腾飞2023年对口升学考试模拟试题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.已知集合A =x x <4{},集合B =x 2<x <8{},则A ∪B 等于A.(4,8)B.(2,8)C.(-4,8)D.(2,4)2.下列函数既是偶函数又在(0,+∞)是增函数的是A.y =1x B.y =cos x C.y =x +1D.y =lg x3.设函数f (x )是R 上的奇函数,当x ≥0时,f (x )=4x -1,则f (-2)等于A.15B.-15C.1516D.-15164.ln3+ln5等于A.ln5 B.ln8C.ln 35D.ln 535.已知cos α>0,tan α<0,则α在A.第一象限 B.第二象限C.第三象限D.第四象限扫描二维码观看本试题讲解34。

河北职高对口升学数学高考复习模拟试题一(含答案)01

河北职高对口升学数学高考复习模拟试题一(含答案)01

数学试题一、选择题:(共15题,每题4分,共60分)1、若34sin (cos )55z i θθ=-+-是纯虚数,则tan()4πθ-的值为( ) A .7- B .17-C .7D .-7或-17 2、命题“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则11x x ≥≤-,或B .若11x -<<,则21x <C .若11-<>x x ,或,则12>xD .若11x x ≥≤-,或,则21x ≥3、“12x -<成立”是“01x x <-成立”的( ). A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4、在△ABC 中,已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状为 ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5、直线1()y kx k R =+∈ 与椭圆2215x y m+=恒有公共点,则m 的取值范围是( )(A )[1,5)∪(5,+∞(B )(0,5) (C) [)+∞,1 (D) (1,5)6、执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]7、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a <b的概率为( )A.45 B.35C.25 D.158、函数()sin f x x x =+在区间[)0,+∞内( )A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点9、一个几何体的三视图如图,其侧视图是一个等边三角 形,则这个几何体的体积为( )A.()433π+ B.()836π+ C.()833π+ D.()43π+7 8 99 4 4 6 4 7 3 10、如图1是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( ) A . 85,84B . 84,85C . 86,84D . 84,86 11、函数)0)(sin()(>+=ωϕωx x f 的图象如图所示,为了得到函数)6cos(πω+=x y 的图象,只需将)(x f y =的图象( ) A .向右平移3π个单位B .向左平移3π个单位C .向右平移6π个单位D .向左平移6π个单位 12、已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12B .122±C .1102D .3222-± 13、函数()y f x =是定义在R 上的增函数,且函数满足)()(x f x f -=-,若任意的()()2,10x R f ax f ax ∈++>不等式恒成立,则a 的取值范围为( )A. ()0,4B. [)0,4C. ()4,0-D. (]4,0- 14、已知点P (x ,y )在直线x +2y =3上移动,当y x 42+取最小值时,过点P (x ,y )引圆C :⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +142=12的切线,则此切线长等于( )A. 12 B. 32 C. 62 D. 32 15、若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题:(共5题,每题4分,共20分)16、 设y x ,均为正实数,且33122x y+=++,则xy 的最小值为 . 17、若曲线2ln y kx x =+在点()1,k 处的切线与直线210x y +-=垂直,则k =____. 18、已知直线220x y -+=过椭圆22221(0,0,)x y a b a b a b+=>>>的左焦点1F 和一个顶点B.则该椭圆的离心率____.图119、写出函数()2sin(2)3f x x π=-的单调递减区间 .20、已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m ∥α,则m ⊥β;②若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β; ③若m ⊥β,m ∥α,则α⊥β;④若m ∥α,n ∥β,且m ∥n ,则α∥β. 其中真命题的序号是______.答案选择题:ADBDA ADBBA填空题:16.16 17. _12_18. 552。

年河北省普通高等学校对口招生考试数学模拟试题

年河北省普通高等学校对口招生考试数学模拟试题

数学全真模拟试题八一、选择题(每小题3分,共15题,45分)1、设集合M={2|≥x x },N={51|≤≤-x x },则M ∪N =( )A .{21|≤≤-x x }B .{52|≤≤x x }C .{1|-≥x x }D .{5|≤x x } 2、1+x >2是x >1的( )A .充分条件B .必要条件C .充要条件D .不充分不必要条件 3、下列四组函数中,有相同图像的一组是( ) A .x x f =)(,2)(x x g =B .x x f =)(,33)(x x g =C .x x f sin )(=,)sin()(x x g +=πD .x x f =)(,xe x g ln )(=4、若0)]lg[lg(lg =x ,则51-x=( )A .100B .C .D .10 5、观察正弦型函数)sin(2ϕ+=wx y (其中w >0,ϕ<2π)在一个周期内的图像,可知:w 、ϕ分别为( )3π-A .w =2,ϕ=3π B .w =2,ϕ=6πC .w =21,ϕ=3πD .w =21,ϕ=6π6、已知两点A (1,2),B ()2,5-,且3=,则C 点的坐标为( ) A .)35,32(-B .(—8,11) C .(0,3) D .(2,1) 7、若=(1,3),=(32,2),则与的夹角为( ) A .030 B .450 C .600 D .9008、设),2(ππα∈,已知直线1l :03sin 1cos =+-+ααy x ,直线2l :αsin 1++y x —3=0,则直线1l 与2l 的位置关系为( )xA .平行B .相交且垂直C .相交但不垂直D .与α的取值有关9、在等差数列{n a }中,公差d=1,且1a 、3a 、4a 成等比数列,则该数列中为0的项是第( )项A .4B .5C .6D .0不是该数列的项10、不等式12+-kx kx >0对任意的实数x 都成立,则k 的取值范围是( ) A .0<k <4 B .k <0或k >4 C .0≤k <4 D .k ≤0或k >4 11、函数23-=xy (x >0)的值域为( )A .),2(+∞-B .)2,(--∞C .),1(+∞-D .)1,(--∞ 12、若x x f 2cos )(cos =,则)30(sin 0f =( )A .23 B .21 C .—1 D .21- 13、在△ABC 中,若B A cos cos >B A sin sin ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形14、已知方程11222=-+-m y m x 所表示的曲线是双曲线,那么m 的取值范围是( ) A .1<m <2 B .m <1 C .m >2 D .m >2或m <115、双曲线4422=-ky kx 的一个焦点是(0,5),那么k 的值为( )A .1B .2C .—1D .—2 二、填空题(每空2分,共15空,30分)16、从甲、乙、丙三人中任选两人参加社会实践活动,甲被选中的概率为 ;17、在等比数列{n a }中,891=a ,n a =31,公比32=q ,则n = ; 18、设直线a 与b 是异面直线,直线c ∥a ,则直线b 与直线c 的关系是 ;19、抛物线y x 162=上一点P 到焦点F 的距离为6,则P 点坐标为 ;20、=+-015tan 115tan 1 ; 21、若直线043=+-m y x 与圆9)2(22=-+y x 相切,那么m 的值为 ; 22、设A={32|),(=-y x y x },B={12|),(=+y x y x },则A ∩B = ; 23、设α为第二象限角,点P (m ,3-)为α终边上的一点,且53cos -=α,则m = ; 24、过椭圆19422=+y x 的上焦点1F 的直线交椭圆于A 、B 两点,则△AB 2F 的周长为 ;25、已知2tan =α,3)tan(=-βα,则)2tan(βα-= ;26、在10张奖券中,有一等奖1张,二等奖2张,从中抽取1张,则中奖的概率为 ; 27、集合A={012|2=++x ax x }中只有一个元素,则a = ;28、002245sin 81)3()3(2+-+----e = ; 29、若=(3,4),=)cos ,(sin αα且⊥,则αtan = ;30、已知数列{n b }是等差数列,且n b =n a 2log ,若41=a ,3a =2,则数列{n b }的公差为 。

河北省普通高等学校对口招生考试数学模拟试题

河北省普通高等学校对口招生考试数学模拟试题

数学全真模拟试题八一、 选择题(每小题3分,共15题,45分)1、设集合M={2|≥x x },N={51|≤≤-x x },则M ∪N =( ) A .{21|≤≤-x x } B .{52|≤≤x x } C .{1|-≥x x } D .{5|≤x x } 2、1+x >2是x >1的( )A .充分条件B .必要条件C .充要条件D .不充分不必要条件3、下列四组函数中,有相同图像的一组是( )A .x x f =)(,2)(x x g =B .x x f =)(,33)(x x g =C .x x f sin )(=,)sin()(x x g +=πD .x x f =)(,x ex g ln )(= 4、若0)]lg[lg(lg =x ,则51-x =( )A .100B .0.1C .0.01D .105、观察正弦型函数)sin(2ϕ+=wx y (其中w >0,ϕ<2π)在一个周期内的图像,可知:w 、ϕ分别为( )A .w =2,ϕ=3π B .w =2,ϕ=6π C .w =21,ϕ=3π D .w =21,ϕ=6π 6、已知两点A (1,2),B()2,5-,且3=,则C 点的坐标为( ) A .)35,32(- B .(—8,11) C .(0,3) D .(2,1) 7、若=(1,3),=(32,2),则与的夹角为( )A .030B .450C .600D .9008、设),2(ππα∈,已知直线1l :03sin 1cos =+-+ααy x ,直线2l :αsin 1++y x —3=0,则直线1l 与2l 的位置关系为( )A .平行B .相交且垂直C .相交但不垂直D .与α的取值有关9、在等差数列{n a }中,公差d=1,且1a 、3a 、4a 成等比数列,则该数列中为0的项是第( )项A .4B .5C .6D .0不是该数列的项10、不等式12+-kx kx >0对任意的实数x 都成立,则k 的取值范围是( )A .0<k <4B .k <0或k >4C .0≤k <4D .k ≤0或k >411、函数23-=xy (x >0)的值域为( )A .),2(+∞-B .)2,(--∞C .),1(+∞-D .)1,(--∞12、若x x f 2cos )(cos =,则)30(sin 0f =( ) A .23 B .21 C .—1 D .21- 13、在△ABC 中,若B A cos cos >B A sin sin ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形14、已知方程11222=-+-m y m x 所表示的曲线是双曲线,那么m 的取值范围是( ) A .1<m <2 B .m <1 C .m >2 D .m >2或m <115、双曲线4422=-ky kx 的一个焦点是(0,5),那么k 的值为( )A .1B .2C .—1D .—2二、 填空题(每空2分,共15空,30分)16、从甲、乙、丙三人中任选两人参加社会实践活动,甲被选中的概率为 ; 17、在等比数列{n a }中,891=a ,n a =31,公比32=q ,则n = ; 18、设直线a 与b 是异面直线,直线c ∥a ,则直线b 与直线c 的关系是 ; 19、抛物线y x 162=上一点P 到焦点F 的距离为6,则P 点坐标为 ; 20、=+-0015tan 115tan 1 ; 21、若直线043=+-m y x 与圆9)2(22=-+y x 相切,那么m 的值为 ;22、设A={32|),(=-y x y x },B={12|),(=+y x y x },则A ∩B = ;23、设α为第二象限角,点P (m ,3-)为α终边上的一点,且53cos -=α,则m = ; 24、过椭圆19422=+y x 的上焦点1F 的直线交椭圆于A 、B 两点,则△AB 2F 的周长为 ; 25、已知2tan =α,3)tan(=-βα,则)2tan(βα-= ;26、在10张奖券中,有一等奖1张,二等奖2张,从中抽取1张,则中奖的概率为 ;27、集合A={012|2=++x ax x }中只有一个元素,则a = ; 28、002245sin 81)3()3(2+-+----e = ;29、若=(3,4),=)cos ,(sin αα且⊥,则αtan = ;30、已知数列{n b }是等差数列,且n b =n a 2log ,若41=a ,3a =2,则数列{n b }的公差为 。

2023年河北省普通高等学校对口招生文化考试 数学模拟试卷(三)(含详细答案)

2023年河北省普通高等学校对口招生文化考试 数学模拟试卷(三)(含详细答案)

2023年河北省普通高等学校对口招生文化考试数学试卷(三)一、选择题(本大题共15小题,每小题3分,共45分.每小题所给出的四个选项中,只有一个符合题目要求,多选、错选,均不得分)1.集合M ={4,1},N ={2x ,3},若M ∩N ={1},则x =( ).A .1B .2C .-1D .02.若0≤a <1.则下列不等式不成立的是( ).A .0<|a |<1B .0<1a<1 C .0≤a 2<1 D .0<1 3.下列函数与y =x 有相同图象的一个函数是( ).A .yB .y =32x x C .y =122()x D .y =|x |4.若偶函数f (x )在(―∞,-1]上是增函数,则下列关系中成立的是( ).A .f (32-)<f (-1)<f (2)B .f (-1)<f (32-)<f (2). C .f (2)<f (-1)<f (32-) D .f (2)<f (32-)<f (-1) 5.a ∈A ∪B 是a ∈A ∩B 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知a =(3,4),b =(2,-1),如果(a +x b )⊥b ,则x 的值为( ).A . 233B . 323C .2D .25- 7.下面函数是表示同一函数的是( ).A .y =sinx 与y =sin (π+x )B .y =sinx 与y =cos (2π-x ) C .y =cosx 与y =sin (32π+x ) D .y =cosx 与y =sin (32π-x )8.1-1两数的等比中项是( ).A . 23B .-1C .±1D . 129.直线y =3x +1与x 2+y 2-4x +6y +3=0的位置关系是( ).A .相交不过圆心B .相交且过圆心C .相切D .相离10.直线l 1:x +ay +6=0与l 2:(a -2)x +3y +a +3=0平行,则a 的值( ).A .-1或3B .1或3C .-3D .-111.已知双曲线216x -225y =1一点到一个焦点的距离为9,则其到另一焦点的距离为( ).A .17B .1C .17或1D .1012.2个数学教师,2个语文教师分别担任4个班的课,每人两个班,则不同的分配方案有( ).A .12种B .24种C .36种D .72种13.二项式(x -1)5的展开式中,第_____________项的系数最小.( ).A .9B .8或9C .8D .714.下面命题:①垂直于同一平面的两个平面平行;②与同一平面所成角相等的两条直线平行或相交;③若一个平面内不共线的三个点到另一平面的距离相等,那么这两个平面平行或相交;④若m ⊥α,m ∥n 则n ⊥a .其中正确的命题的个数有__个.( ).A .3B .2C .1D .0 15.某奖券的中奖率是0.1,现买3张,则至少有一张中奖的概率是( ).A .0.271B .0.2C .0.729D .0.3二,填空题(本大题共15小题,每小题2分,共30分)16.已知函数f (x )= 21,022,2x x x x ⎧+⎨>⎩,若f (a )=8,则a =_________. 17.函f (x )=ln(3)x +-定义域为________. (用区间表示)18.计算12043216()log cos30!25C π-+-+=________. 19.已知sin()2πα-=513,且o <α≤π,则tanα=________.20.tan 22°+tan 23∘+tan 23tan 22°=________.21.求过点(2,3)且与直线4x -3y +5=0垂直的直线方程为________.22.若a =(3,4),b 与a 方向相反,且|b |=10,则b 的坐标为________.23.三男两女五名同学排成一排照相,2女生之间有且仅有一个男生的不同的排法总数为________.24.已知数列112,314,518,7116……,则其前n 项和Sn 为________. 25.双曲线上一个顶点与虚轴的一个端点的连线及实轴所在直线所成的角为60°,则双曲线的离心率e=________.26.正方体ABCD -A 1B 1C 1D 1中,BC 1与截面AA 1C 1C 所成的角是________.27.过点(1,2)且与圆(x -2)2+y 2=5相切的切线方程是________.28.已知函数f (x )=3sinx ,g (x )=4sin()2x π-,直线x =m 与f (x ),g (x )的图象分别交于A 、B 两点,则|AB |的最大值是________.29.在等腰直角三角形ABC 中,∠A 为直角,AB =2,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C ,使得BC ,则该二面角的大小为________.30.10个人站成一排,其中甲、乙、丙三人彼此不相邻的概率是________.三,解答题(本大题共7小题,共45分要写出必要的文字说明、证明过程和演算步骤)31.(5分)已知集合A -{x |x +x -6>0),集合B ={x |x -3<a }若B ⊆A .求a 的取值范围.32.(1分)某种图书原定价为每本10元.预计售出总量为1万册经过市场分析,如果每本价格上涨x %、售出总量将减少0.5x %,间x 为何值时,这种书的销售额最大?此时每本书的售价是多少元?最大销售额为多少元?33.(7分)数列{a n }、{b n }中, {b n }为等比数列且公比为4.首项为2.bn =2.求:(1) {a n }的通项公式;(2) {a n }的前n 项和公式.34. (6分)若函数f (x )= 22cos sin 21x x x -+-求,(1)函数f (x )的最小正周期;(2)函数f (x )的值域.35.(6分)从5名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生人数,求ξ的概率分布.36.(7分)直线y =x +1与抛物线y 2=-2px (ρ>0)交于MN 两点且|MN |=8.求抛物线的方程.37.(7分)如图.△DBC是边长为2的等边三角形,且AD⊥平面BCD,E是BC的中点,(1)求证:BC⊥平面ADE;(2)若平面ABC与平面BDC所成的角为60°,求点D到平面ABC的距离2023年河北省普通高等学校对口招生文化考试数学试卷(三)答案一、选择题1.D2.B3.C4.D5.B6.D7.B8.C9.C 10.D 11.A 12.C 13.C14.B 15.A二、填空题16.4 17.(2,3) 18.23910 19.- 12520.1 21.3x +4y -18=0 22.(-6,-8) 23.36 24. 211()2n n +- 25.2 26.6π 27.x -2y +3=0 28.5 29. 3π 30. 715 三、解答题31.解:A ={x |x 2+x -6≥0}={x |x <-3或x >2}集合B ={x |x -3<a }={x |x <a +3},因为B ⊆A ,所以a +3≤-3,解得a ≤―6,所以a 取值范围为(―∞,-6].32.解:设销售额为y 元,依题意得y =10(1+x %)∙10000·(1-0.5x %)=-5x 2+500x +100000当x =-5002(5)⨯-=50,y 有最大值是112500. 此时,每本书得售价是10×(1+50%)=15元时,最大销售为112500元.33.解:(1)因为{bn }为等比数列,且公比是4,首项为2,所以bn =2×14n -=22-1=1, 又因为bn =2n a ,所以a n =2n -1.(2)由(1)知a n =2n -1,所以a n +1-a n =2(n +1)-1-2n +1=2,又a 1=2-1=1,所以{a n }是首项为1,公差为2的等差数列,所以数列{a n }的前n 项和为 S n =1()2n n a a +=(121)2n n +-=n34.解:(1)函f (x )=2cos x -2sin x 2x +1=cos 2x sin 2x +1=2sin (2x +6π)+1,周期T =22π=π. (2)函数的最大值为3,有最小值为-1,所以函数的值域为[―1,3].35.解:随机变量ξ的取值为0,1,2,P (ξ=0)=3537C C =27 P (ξ=1)= 215237C C C =47,P (ξ=2)= 125237C C C =17, 所以ξ的概率分布为:36.解:设M (x 1,y 1),N (x 2,y 2),联立212yx y px=+⎧⎨=-⎩,得x 2+(2p +2)x +1=0, 则x 1+x 1=-(2p +2),x 1x 2=1,由弦长公式|MN 8,解得p =2或p =-4(含).所以抛物线方程为y 2=-4x .37.解:(1)证明:因为△DBC 是等边三角形,E 是BC 中点,所以DE ⊥BC ,因为AD ⊥平面BCD ,所以AD ⊥BC ,又DE ∩AD =D ,所以BC ⊥平面ADE ;(2)因为BC ⊥平面ADE ,所以AE ⊥BC ,DE⊥BC ,从而∠AED 为平面ABC 与平面BDC所成角的平面角,即∠AED =60°,因为BC ⊥平面ADE ,所以平面ABC ⊥平面ADE ,过点D 作DF ⊥AE 于点F ,则DE ⊥平面ABC ,即DF 为点D 到平面ABC 的距离,在等边三角形DBC 中, DE =2DB . 在Rt △DEF 中,DF =DE sin 60︒=32.。

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省普通高等学校对口招生文化考试模拟试题数 学一、选择题(本大题共15小题,每小题3分,共45分,每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合2{|1}A x x =<,且a A ∈,则a 的值可能为( ). A .2-B .-3C .0D .22.下列命题中正确的是( ). A .若a b >,则ac bc > B .若,a b c d >>,则a c b d ->- C .若0,ab a b >>,则11ab<D .若,a b c d >>,则a b cd<3. “直线l 与平面α平行”是“直线l 与平面α内无数条直线平行”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是( ). A .3a -B .3a -C .5aD .3a5. 下列各组函数中,表示同一函数的是( ).A .3y =和y x =B .2y =和y x =C .y 2y =D .3y =和2x y x=6. 若三点A (-2,12),B (1,3),C (m ,-6)共线,则m 的值为( ). A .3 B .4 C .-3 D .-47. 两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ). A .213 B .113 C .126 D .5268. 函数f (x )=sin (2x -2π),x ∈R ,则f (x )是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数9. 已知等差数列{a n }的前n 项和为S n ,且a 5+a 9=50,a 4=13,则S 10=( ). A .170 B .180 C .189 D .190 10. 在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ). A . 锐角三角形 B .直角三角形 C . 钝角三角形 D .不能确定 11. 直线1y kx =+被圆222x y +=截得的弦长为2,则k 的值为( ). A .±1 B.2±C .12D .0 12. 有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1轨道上,则5列火车的停车方法共有( ).A .96种B .24种C .120种D .12种 13.在10(x -的展开式中,x 6的系数是( ).A .-27610CB .27410C C .-9610CD .9410C14. 已知点F (2 ,0)是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率为( ).A .12BC .2D .415. 已知椭圆C :22221x y a b += (a >b >0)的左、右焦点分别为F 1,F 2,离心率为3,过F 2的直线l 交C 于A ,B 两点.若△AF 1B的周长为C 的方程为( ).A . 221128x y +=B .221124x y += C . 2213x y += D . 22132x y += 二、填空题(本大题共15小题,每小题2分,共30分)16. 设函数1122,1()1log ,1x x f x x x -⎧⎪=⎨>⎪⎩,则((2))f f =________. 17. 设集合A ={1,2,4},{}2|40B x x x m =-+=.若A B = {1},则集合B 用列举法表示为________.18. 已知12315,log ,ln22a b c ===,则a ,b ,c 从大到小为________. 19. 32log 420223202213327lg 0.012sin()C 6π----+等于________. 20. 已知向量a =(1,3),a +b =(–2,6),向量a 与b 的夹角为θ,则cos θ=________. 21. 在长方体ABCD -A 1B 1C 1D 1中,若AB =AD =1,AA 1=2,则异面直线A 1C 1与B 1C 所成的角的余弦值为________.22. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向____平移_____个单位.23. 双曲线25x 2-16y 2=400的两条渐近线方程为______.(用斜截式表示) 24. 如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为________.24.线段AB 是平面α的斜线段,斜足为B ,点A 到平面α的距离是3AB 在α内的射影长为2,那么AB 与平面α所成的角为________.25. 一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有_______种不同的取法26. 已知7270127(12)x a a x a x a x -=++++,则127...a a a +++=________.27.函数12()log (2)f x x =-的单调递增区间是________. 28. 函数y =|sin x ·cos x |的最小正周期是________. 29.方程()222log 2log 80x x --=的解集为________.30. 箱子里放有编号分别为1,2,3,4,5的5个小球,5个小球除编号外其他均相同,从中随机摸出2个小球,则摸到1号球的概率为________. 三、解答题(本大题共7个小题,共45分.要写出必要的文字说明、证明过程和演算步骤)31.(5分)已知集合22{|340A x x ax a =-->,(0)}a >,{|2}B x x =>,若B A ⊆,求实数求的取值范围.32.(6分)某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量对应值如下表:(1)求每天销售量y (件)与售价x (元/件)的函数关系式?(2)设该商店销售商品每天获得的利润为W (元),求W 与x 之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?33.(7分)已知数列{a n }为等差数列,a 7-a 2=10,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式; (2)设11n n n b a a +=,求数列{b n }的前n 项和为S n . 34.(6分)已知函数f (x )=2a sin x cos x +2b cos 2x ,且f (0)=8,f (6π)=12. (1)求实数a ,b 的值;(2)求函数f (x )的最大值及取得最大值时x 的值.35.(7分)如图所示.已知线段PD 垂直于菱形ABCD 所在的平面,点D 为垂足.PD =2,菱形的边长为2,且ADC ∠=60O .(1)求证:平面P AC ⊥平面PBD ; (2)求二面角P -AC -D 的正切值.36.(7分)已知双曲线225x y m-=1与抛物线y 2=12x 有共同的焦点F 2,经过双曲线的左焦点F 1作倾斜角为π4的直线与双曲线相交于A ,B 两点.求: (1)直线AB 的方程和双曲线的标准方程; (2)△F 2AB 的面积. 37.(7分)一个袋中装有6个形状和大小都相同的小球,其中2个红球和4个白球.(1)若从中无放回地任取2球,求取到白球的概率;(2)若每次取1个球,有放回地取3次,求取到红球个数ξ的概率分布.2022年河北省普通高等学校对口招生文化考试模拟试题数学答案一、选择题1.C2.C3.A4.A5.A6.B7.C8.B9.D 10.C 11.D 12.A 13.D 14.C 15.D 二、填空题16.1 17. {}1,3 18. a c b >>19.-1 2021. 1010 22. 右6π 23. y =±54x 24. 3π25.56 26.-2 27. (,2)-∞28.2π 29. 1164x x ==或 30. 25 三、解答题 31.解:集合22{|340A x x ax a =-->,(0)}a >{|(4)()0x x a x a =-+>,(0)}a > {|x x a =<-或4x a >,(0)}a >,∵{|2}B x x =>,B A ⊆, ∴042a <,解得102a<. ∴实数a 的取值范围是10,2⎛⎤⎥⎝⎦.32. 解:(1)依题意设y kx b =+,则有55906570k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,所以2200y x =-+,y 与x 关系式为2200y x =-+,(2)由题意知:(50)(2200)w x x =--+,2230010000x x =-+-,22(75)1250x =--+,当销售单价定为75元时,该商店销售这种商品每天获得的利润最大,为1250元.1(23n +++b cos 2x +b 由f (0)=8,f (6)=12可得a =43,b =4; (2)f (x )=4sin2x +4cos2x +4=8sin (2x +6π)+4. 所以当2x +6π=2kπ+2π,即x =kπ+6π,k ∈Z 时,函数f (x )取最大值为12. 35. (1)证明:四边形ABCD 为菱形,AC ⊥BD PD ⊥平面ABCD ,AC ⊆平面ABCD ,PD ⊥AC BD ,PD ⊆平面PBD ,所以AC ⊥平面PBD . 因AC ⊆平面P AC ,所以平面P AC ⊥平面PBD (2)解:因AC ⊥平面PBD ,PO 、OD ⊆平面PBD 所以∠POD 为二面角P -AC -D 的平面角因PD ⊥平面ABCD ,BD ⊆平面ABCD ,所以,PD ⊥BD ﹐则△POD 为直角三角形 又四边形ABCD 是边长为2的菱形,∠ADC =60o所以,BD 为∠ADC 的平分线,且BD ⊥AC ,所以∠ODC =30°在Rt △CDO 中,OD =CD cos30︒=2在Rt △POD 中, D tan PO PD OD ∠=36. 解:(1)∵抛物线y 2=12x 的焦点(3,0)为双曲线225x y m-=1的右焦点F 2(3,0),∴m +5=9,解得m =4,∴双曲线的标准方程为2254x y -=1.∵双曲线的左焦点F 1(-3,0), 故,直线过点F 1(-3,0)且斜率k =tanπ4=1 ∴直线AB 的方程为y =x +3,即x -y +3=0.(2)由2230,1,54x y x y -+=⎧⎪⎨-=⎪⎩消去y 得x 2+30x +65=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-30, ∴|AB |=∵双曲线的左焦点F 1(3,0) ∵点F 1到直线AB 的距离d=∴S △OAB =12 |AB |·d=12⨯ 37. 解:(1)设A ={无放回地任取2个,取到白球},则P (A )= 11224426C C C C +=1415.(2)ξ的可能取值为0,1,2,3.033128(0)()()3327P C ξ==⨯⨯=; 1123124(1)()()339P C ξ==⨯⨯=2213122(2)()()339P C ξ==⨯⨯=330312(3)()()37123P C ξ===⨯⨯∴ξ的概率分布为。

2023年河北省对口招生数学真题(含答案)

2023年河北省对口招生数学真题(含答案)

2023年河北省普通高等学校对口招生文化考试数学一、选择题(本大题共15小题,每小题3分,共45分,在每小题所给出的四个选项中,只有一个符合题目要求)1.设集合M ={}|11x x -<<,N ={}2|10x x -=,则M N ⋃=( )A .{}|11x x -≤<B .{}|11x x -<<C .{}|11x x -≤≤D .{}|11x x -<≤2.已知a b 、为实数,且a b <,则下列各式正确的是( )A .22a b >B .ac bc >C .a b e e <D .()()22log 1log 1a b +<+3.下列函数在定义域内是偶函数的是( )A .3y x x =+B .2y x x =+C .cos y x x =⋅D .sin y x x =⋅4.“1cos 2α=”是“3πα=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知()21f x x +=,则()f x =( )A .()21x +B .()21x -C .21x +D .21x +6.已知点P ()sin ,cos αα在第三象限,则α终边在第( )象限. A .一B .二C .三D .四7.在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.a =2,c =∠C =45︒,则∠B =( )A .75°B .75°或15°C .60°D .60°或120°8.已知A 点坐标(-1,2),B 点坐标(2,-2),下列选项正确的是( ) A .()3,4AB =-B .25AB =C .AB 和向量3455⎛⎫- ⎪⎝⎭,都是单位向量 D .线段AB 中点坐标是102⎛⎫⎪⎝⎭, 9.已知f (x )=xa ,其中0<a <1,则f (-2)、f (1)、f (0)从小到大顺序为( )A .f (1)<f (0)<f (-2)B .f (-2)<f (0)<f (1)C .f (0)<f (1)<f (-2)D .f (-2)<f (1)<f (0)10.在等差数列{an }中,5a =2m +1,4a =m ,3a =m -2,则n a =( )A .2n -1B .2n -3C .2n -5D .2n -711.已知两直线2ax +y +10=0与直线4x -y +a +9=0平行,则两直线距离为( )ABCD12.已知双曲线一顶点为(-5,0),中心在原点,对称轴为坐标轴,渐近线过点P (1,2),则此双曲线方程为( )A .221510x y -= B .221510x y -=- C .22125100x y -=- D .22125100x y -= 13.在二项式10(1)x -的展开式中,第8项的系数是( )A .210CB .210C - C .310C D .310C -14.已知直线a ⊆.α,直线b ⊆β,且a ⊄β,以下说法正确的是( ) A .若a ∥b ,则α∥β B .若a ⊥b ,则α⊥βC .若α//β,则a ∥bD .若a //b ,则a //β15.现有语、数、外、历史四本书,分给甲、乙、丙三人,每人至少一本书,则甲分到数学书的方案有( )种.A .6B .9C .12D .24二、填空题(本大题有15个小空,每空2分,共30分.请将正确答案填在答题卡中对应题号后面的横线上,不填、填错不得分)16.已知函数()()(21,0,0),x x f x x ⎧-≤⎪=⎨>则f [f (-2)]=_______.17.若不等式²0x ax b ++<的解集为(-1,3),则22a b -=_______.18.已知120.2313,,log 23a b c -⎛⎫=== ⎪⎝⎭则a ,b ,c 按由小到大的顺序排列为_______.19.在△ABC 中,a 、b 、c 分别为∠A 、∠.B 、∠C 的对边,且满足²²²0,b c a bc +-+= 则∠A =_______..20.求值:122π25sin ()44-=_______.21.若),3(m a =,)12,1(+=m b ,且a ∥b ,则a b -=_______.22.已知1)32(-+=m x m y 是幂函数,则此函数的单调递增区间为_______.23.已知数列{}n a 是等比数列,22a =,165=a 则数列{}n a 前4项的和=4S _______. 24.函数)12(log )(2--=x x f 的定义域是_______.(用区间表示)25.函数sin sin 12y x x π⎛⎫=⋅++ ⎪⎝⎭的最大值是_______.26.已知圆²²20x y y +-=被直线20x y -+=所截,则所截得弦的弦长为_______. 27.已知直线2360x y -+=过椭圆的两个顶点,则该椭圆的离心率为_______.28.已知在三棱锥P -ABC 中P A 、AB 、AC 两两互相垂直,12,4,3,PA AB AC ===则二面角P -BC -A 的正切值为_______..29.已知矩形ABCD 与正方形CDEF 成直二面角,AB =2,AD =1,G 为DC 的中点,则CE 与AG 所成角为_______.30.已知211313m m C C +=,则2mP =_______.. 三、解答题(本大题共7小题,共45分。

河北省对口招生考试数学模拟试题

河北省对口招生考试数学模拟试题

河北省对口招生考试模拟试题数学试卷说明:一. 本试卷共三道大题36道小题,共120分。

二. 答题前请仔细阅读答题卡上的“注意事项”,按照要求的规定答题。

选择题用2B 铅笔填涂在机读卡上,第二卷用黑色签字笔写在答题卡规定地方,在试卷和草稿纸上答题无效。

三. 做选择题时,如需改动,请用橡皮将原答案擦干净,再选涂其它答案。

考试结束后,将机读卡和答案卡一并交回。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共120分 。

考试时间120分钟。

第Ⅰ卷(选择题 共45分)一、单项选择题(本大题有15个小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1、满足{a,b}⊆A ⊂{a,b,c,d,e}的集合的个数为( )A 、2个B 、4个C 、6个D 、7个 2、下列不等式恒成立的是( )A 、x 2+1>xB 、112+x <1 C 、 lg(x 2+1)>lg2x D 、x 2+4>4x3、在∆ABC 中,若sinA=sinB 是A=B 的( )A 、充分条件B 、必要条件C 、充要条件D 、既不充分也不必要条件 4、函数f(x)=522+-x x 的值域是( )A 、[0,+∞ )B 、[2,+∞ )C 、[4,+∞ )D 、R 5、已知偶函数y=f(x)在(-∞,0)上为减函数,则( ) A 、f(-21)>f(-31)>f(42) B 、f(-21)>f(42)>f(-31) C 、f(-31)>f(42)>f(-21) D 、 f(42)>f(-31)>f(-21)6、已知a (1,2),b (2,3),则3-为( )A 、(-1,0)B 、(1,0)C 、1D 、-17、把二次函数y=-x 2的图象沿x 轴向左平移3个单位后,再向上平移2个单位得到的图象解析式为( )A 、y= - x 2+6x-7B 、y= - x 2+6x-11C 、y= - x 2- 6x-7D 、y= - x 2- 6x-11 8、y=log 12-x 23-x 的定义域是( ) A 、 (32,1) (1,+ ∞) B 、(21,1) (1,+ ∞) C 、(32,+ ∞) D 、(21,+ ∞) 9、sin15︒sin30︒sin75︒的值等于( ) A 、43 B 、33 C 、41 D 、8110、方程k x -32+ky +22=1表示椭圆,则k 的取值范围是( )A 、k< -2或k>3B 、-2<k<3C 、k ≠21 D 、-2<k<21或 21<k<3 11、等比数列{a n }中,已知a 3,a 5为方程2x 2+11x+10=0的两根,那么a 21+a 27的值等于( )A 、5B 、-5C 、481 D 、-48112、下列命题中正确命题的个数是( )(1)若两个平面都垂直于同一个平面,则这两个平面平行。

2023年河北省保定市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省保定市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省保定市普通高校对口单招数学自考模拟考试(含答案)一、单选题(10题)1.三角函数y=sinx2的最小正周期是( )A.πB.0.5πC.2πD.4π2.A.6B.7C.8D.93.已知互为反函数,则k和b的值分别是()A.2,B.2,C.-2,D.-2,4.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}5.A.B.C.D.6.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=( )A.3B.1/3C.-1/3D.-37.A.B.C.8.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切9.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π10.己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对二、填空题(10题)11.设{a n}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q= 。

12.方程扩4x-3×2x-4=0的根为______.13.若x<2,则_____.14.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.15._____;_____.16.17.等比数列中,a2=3,a6=6,则a4=_____.18.设lgx=a,则lg(1000x)= 。

19.20.三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1) 3个人都是男生的概率;(2) 至少有两个男生的概率.22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2 .23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1) 求f(-1)的值;(2) 若f(t2-3t+1)>-2,求t的取值范围.24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1) 若两人各投球1次,求恰有1人命中的概率;(2) 若两人各投球2次,求这4次投球中至少有1次命中的概率.25.己知直线l与直线y=2x + 5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.四、简答题(10题)26.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值27.设等差数列的前n项数和为S n,已知的通项公式及它的前n项和T n.28.等比数列{a n}的前n项和S n,已知S1,S3,S2成等差数列(1)求数列{a n}的公比q(2)当a1-a3=3时,求S n29.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

河北省对口考试数学模拟题1

河北省对口考试数学模拟题1

河北省对口升学数学模拟习题一、选择题(本大题有15个小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1.集合A={x/0}3N x x ∈<≤且的真子集个数为( ).A.16B.8C.7D.4 2.设d c b a >>, ,则不等式中成立的是( ).A.d c b a -+>B. b d c a -+>C. d c b a +->D.d c a b +->3.若函数f(x)在(-∞,+∞)上是奇函数,且f(3)<f(1),则下列各式中一定成立的是( ). A.f(-1)<f(-3) B.f(0)<f(1) C.f(2)>f(-3) D.f(-3)<f(5)4.在四边形ABCD 中,“21=”是“四边形ABCD 是梯形”的( ). A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若a>1,则函数f(x)= x a log 和g(x)=xa)1(在同一坐标系的图象是( ).6.函数4cos 34cos 4sin2xx x y -=的最小值、最小正周期分别为( ). A .231--,4π B .231--,8π C .231-,4π D .231-,8π 7.在等比数列{}n a 中,前n 项和为n S ,91,762==S S ,则4S =( ). A. 18 B. 20 C.26 D.288.在∆ABC 中,53sin =A 错误!未找到引用源。

,135cos =B ,则sinC 的值为( ).A. 6563B.6563-C.6563±D.65339.设)21,21(),0,1(==b a ,则下列结论中正确的是( ).A.b a =B.22=∙b a C. b b a 与-垂直 D. b a // 10.直线(2m-1)x-(m-3)y +1=0与直线8x+y=0互相垂直,则m=( ).A.31B . 25 C.1711 D . 62311.若直线m y x =+与圆m y x =+22(0>m )相切,则m = ( ).A .21 B .2 C .2 D .2212.若抛物线x y 42=上一点P 到该抛物线焦点的距离为5,则经过点P 和原点的直线OP 的倾斜角等于( ).A. 45B. 60C. 13545或D. 12060或13.已知βα,是两个不同平面,n m ,是两条不同的直线,则下列命题不正确的是( ). A.βαβα⊥⊥m m 则,,// B.αα⊥⊥n m n m 则,,// C.βαβα⊥⊥则,,//n n D.ββ⊥⊥n n m m 则,,//14.现有5所高校供4名学生报考志愿,每人限报两所学校,则不同的报法有( ). A.45 B.410 C.25P D.42015.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ). A .299 B . 2910C .2919D .2920二、填空题(本大题有15个空,每空2分,共30分。

2023年河北省衡水市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省衡水市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省衡水市普通高校对口单招数学自考模拟考试(含答案)一、单选题(10题)1.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-32.A.B.C.D.3.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限4.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=05.设集合,则MS等于()A.{x|x>}B.{x|x≥}C.{x|x<}D.{x|x≤}6.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+B.(x-)2+C.(x+1)2+2D.(x+1)2+17.实数4与16的等比中项为A.-8B.C.88.若a<b<0,则下列结论正确的是( )A.a2<b2B.a3<b<b3</bC.|a|<|b|D.a/b<19.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±610.椭圆x2/2+y2=1的焦距为()A.1B.2C.3D.二、填空题(10题)11.已知点A(5,-3)B(1,5),则点P的坐标是_____.12.抛物线y2=2x的焦点坐标是。

13.等差数列{an }中,已知a4=-4,a8=4,则a12=______.14.在等比数列{an }中,a5=4,a7=6,则a9= 。

15.16.sin75°·sin375°=_____.17.若f(x)=2x3+1,则f(1)= 。

18.19.20.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.三、计算题(5题)21.己知直线l与直线y=2x + 5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.;(1)恰有2件次品的概率P1.(2)恰有1件次品的概率P223.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1) 求f(-1)的值;(2) 若f(t2-3t+1)>-2,求t的取值范围.24.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.25.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。

河北省对口升学数学模拟试题二(含答案)

河北省对口升学数学模拟试题二(含答案)

河北省对口升学数学模拟试题二(含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共120分 。

考试时间120分钟。

一.选择题:(本大题有15个小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一个符合题目要求,请把所选项前的字母填在该小题的括号内。

多选、错选、均不得分。

)1.已知集合{,}{,,}a b A a b c ⋃=,则符合条件的集合A 的个数为( )A .1个B .2个C .3个D .4个2.、23.0,3.02,3.0log 2这三个数的大小顺序是( )A. 23.0<3.02<3.0log 2 B. 23.0<3.0log 2<3.02C .3.0log 2<23.0<3.02D .3.0log 2<3.02<23.03.“ac b =2”是“a ,b ,c 成等比数列”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知函数1()31xf x m =++是奇函数,则(1)f -的值为( ) A .12- B. 14 C .14- D. 545.函数x 31log (x ∈R ,且x ≠0) ( )A .为奇函数,且在(一∞,0)上是减函数B .为奇函数,且在(一∞,0)上是增函数C .为偶函数,且在(0,+∞)上是减函数 D. 为偶函数,且在(0,+∞)上是增函数 6.a x y -=与x y a log在同一坐标系下的图象可能是( )7.一个集合有8个不同的元素组成,这个集合中包含三个元素的子集有()A. 56个B. 256 个C. 336个D. 512个 8.2sin ,3sin ,4sin 的大小关系是: ( )A .2sin >3sin >4sin B.2sin > 4sin >3sin C .3sin >2sin >4sin D. 4sin >3sin >2sin9.ABC ∆的三个内角A 、 B 、 C 的对边分别为a 、b 、c 则下列表述正确的是( ) A.若3:2:1::=C B A ,则3:2:1::=c b a B.若b a B A :cos :cos =, 则ABC ∆是等腰三角形C. 若A 、 B 、 C 成等差数列,则A 、 B 、 C 分别为 30、 60和90 D. B ac c a b cos 2222=--10.椭圆1422=+y x 的焦点坐标是 ( )A. )23,0(±B. )0,23(±C. )0,23(±D. )23,0(± 11.下列几个命题正确的个数为 ( ) (1)垂直于同一直线的两直线平行 (2)垂直于同一直线的两平面平行 (3)垂直于同一平面的两直线平行 (4)垂直于同一平面的两个平面平行 A .1个 B . 2个 C . 3个 D .4个12..函数)2sin(ϕ+=x y 的简图如图所示,则ϕ的值为(A.6π B.12π C. 12π- D. 6π-13.直线0643=+-y x ,与圆4)3()2(22=-+-y x 的位置关系是 ( ) A .相离 B.相切 C. 相交并过圆心 D .相交但不过圆心14.甲,乙两个人各进行一次射击,甲击中目标的概率伪0.7,乙击中目标的概率为0.2那么至少有一个人击中目标的概率为 ( )A. 0.24B. 0.56C. 0.06D. 0.76 15、等比数列前3则第四项是( )A 、-1B 、1 C第Ⅱ卷(非选择题 共75分)二、填空题:(本大题有15个空,每空2分,共30分。

2023年河北省石家庄市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省石家庄市普通高校对口单招数学自考模拟考试(含答案)

2023年河北省石家庄市普通高校对口单招数学自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(C U A)∩(C U B)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}2.如下图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时,指针落在阴影部分的概率为()A.1/8B.1/4C.3/8D.1/23.己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对4.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)5.下列函数中,在其定义域内既是偶函数,又在(-∞,0)上单调递增的函数是()A.f(x)=x2B.f(x)=2|x|C.f(x)=log21/|x|D.f(x)=sin2x6.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种7.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.88.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.149.A.B.C.D.10.设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i11.A.B.C.D.12.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-713.已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c14.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线B.若|a|=|b|,则a=bC.若a,b为两个单位向量,则a·a=b·bD.若a⊥b,则a·b=015.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为( )A.B.C.D.16.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限17.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/418.A.B.C.19.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限20.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2二、填空题(10题)21.若,则_____.22.以点(1,0)为圆心,4为半径的圆的方程为_____.23.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.24.25.26.甲,乙两人向一目标射击一次,若甲击中的概率是0.6,乙的概率是0.9,则两人都击中的概率是_____.27.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.28.函数f(x)=sin2x-cos2x的最小正周期是_____.29.从某校随机抽取100名男生,其身高的频率分布直方图如下,则身高在[166,182]内的人数为____.30.i为虚数单位,1/i+1/i3+1/i5+1/i7____.三、计算题(5题)31.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1) 求f(-1)的值;(2) 若f(t2-3t+1)>-2,求t的取值范围.32.已知函数f(x)的定义域为{x|x≠0 },且满足.(1) 求函数f(x)的解析式;(2) 判断函数f(x)的奇偶性,并简单说明理由.33.己知直线l与直线y=2x + 5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.34.已知函数y=cos2x + 3sin2x,x ∈R求:(1) 函数的值域;(2) 函数的最小正周期。

河北省石家庄市31中对口高考数学模拟试题1(无答案)

河北省石家庄市31中对口高考数学模拟试题1(无答案)
5.已知 ,则 的值为( )
A. B. C. D.
6.在等差数列 中, 那么 等于( )
A.12 B.24 C.36 D.48
7. 已知向量 与 反向,下列等式中成立的是( )
A. B.
C. D.
8.过点(1,2)且垂直于向量n=(-3,2)的直线方程为( )
A.3x-2y+1=0B.2x+3y+4=0
与每件产品的利润(x元)间满足如图函数关系。
(1)求出月销量与每件产品利润间的函数关系。
(2)求每件产品利润为多少元时,商品获利最大?
19. (本小题满分12分)
请给出函数 )的图象,并完成以下工作:
(1)写出此函数的最小正周期;
(2)写出此函数的单调增区间。
20. (本小题满分12分)
甲、乙两人下棋,已知每局甲、乙两人获得胜利的概率分别为0.6和0.4,现在他们两人对弈四局。求:
15.
16.圆锥底面半径为R,轴截面为直角三角形,则圆锥的体积是___________
三、解答题(共6小题,计74分,解答时应写出文字说明及演算步骤)
17.(本小题满分12分)已知全集U={2,3,a2+2a-3},A={2,│a│},A的补集CuA={0},求a的值.
18. (本小题满分12分)某商店统计发现,某新产品的月销量(y件)
河北省石家庄市31中对口高考数学模拟试题(1,无答案)
一、选择题(共12题,每小题5分,计60分)
1.已知集合 , , ,则 等于()
A. B. C. D.
2.若 ,则 的范围是( )
A. B.
C. D.
3.若 ,则 等于( )
A.3 B.4 C.5 D.6

河北职业高中对口升学模拟考试数学押题卷三(含答案)

河北职业高中对口升学模拟考试数学押题卷三(含答案)

数学试题第一卷(选择题共60分)一、选择题(每小题5分,共60分)1、在数列1,1,2,3,5,8,x ,21,34,55,…中,x 等于( ) A .11 B .12 C .13 D .142、中,则此三角形有( )A .一解B .两解C .无解D .不确定3、在等差数列}a {n 中,若450a a a a a 76543=++++,则82a a +=( )。

A .45 B .75 C .180 D .3204、在中,,则的值为( )A .B .C .D .5、已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( )A.21B. 22C. 2D.26、在 中,已知 则AD 长为( )A .B .C .D .7、等差数列}{n a 的公差,0<d 且21121a a =,则数列}{n a 的前n 项和n S 取得最大值时的项数n 是( )A .5B .6C .5或6D .6或78、在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( ). A.π6 B.π4 C.π3 D.56π9、若 是 (A .有一内角是30°的三角形 C .有一内角是30°的等腰三角形10、若数列⎩⎨⎧)32)(中的最大项是第k 项,则=k ( A.4 B.5 C.6 D.711、在与面积S 的关系式为( )A .30° D .90°12、的前n 项和分别为n n A B 和, ( A .1 C .第二卷(非选择题共9013、已知∆,tanC=3AC 等于14、等差数列且此数列中的奇数项之和为15、在ABC ∆所对的边分别为a ,b ,c ,若2a =则角A 160≠,且236,,a a a 17、(1011=a ,33-=a 。

(1)求数列2)若数列{}n a 的前k 项和18、(12分)在ABC ∆中,已知45B =,D 是BC 边上的一点,10AD =,14AC =,6DC =,(1)求ADC ∠的大小;(2)求AB 的长.19、(12分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且cos2cos 0B B +=. (Ⅰ)求角B 的值; (Ⅱ)若7b =5a c +=,求△ABC 的面积.20、(12分)已知n S 为等差数列{}n a 的前n 项和,212n n S n -=.⑴求321a a a ++;⑵求10321a a a a ++++ ; ⑶求n a a a a ++++ 321.21、(12分)已知甲船正在大海上航行。

河北职高对口升学数学高考适应性考试试题十五(含答案)

河北职高对口升学数学高考适应性考试试题十五(含答案)

数学试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题 10个小题,每小题5分,共50分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置。

1.直线10ax y +-=与直线2320x y +-=垂直,则实数a 的值为( ) A .23 B .1- C .2-D .32- 2.抛掷一枚均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A 为掷出向上为偶数点,事件B 为掷出向上为3点,则()P A B =( )A.13 B.23 C.12D.56 3.已知圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,则圆的方程是( )A .2240x y x +-= B .2240x y x ++= C .22230x y x +--= D .22230x y x ++-= 4.棱长为2的正方体1111ABCD A B C D -的内切球...的表面积为( ) A.43πB .16πC .4πD .323π5.已知函数()f x 的导函数为()f x ',且满足关系式()()2=32xf x x xf e '++,则()2f '的值等于( )A.2-B.222e - C.22e - D.222e --6.已知α、β是不重合的平面,a 、b 、c 是不重合的直线,给出下列命题:①a a ααββ⊥⎫⇒⊥⎬⊂⎭;②//ab ac c b ⊥⎫⇒⎬⊥⎭;③//a b b a αα⎫⇒⊥⎬⊥⎭。

其中正确命题的个数是( ) A .3 B .2 C .1D .07.一空间几何体的三视图如右图所示,则该几何体的体积为(A.π+B.2π+C.3π+D.23π+8.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为060的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2] B.(1,2) C.[2,)+∞ D.(2,)+∞ 9.若函数1111sin(2)([0,]),2y x x π=+∈函数223y x =+,则221212()()x x y y -+-的最小值为( )A.+ B. C. 210.若对定义在R 上的可导函数()f x ,恒有(4)(2)2(2)0x f x xf x '-+>,(其中(2)f x '表示函数()f x 的导函数()f x '在2x 的值),则()f x ( )A.恒大于等于0B.恒小于0C.恒大于0D.和0的大小关系不确定第Ⅱ卷(非选择题,共100分)二、填空题:(本大题5个小题,每小题5分,共25分)各题答案必须填写在答题卡相应位置上,只填结果,不要过程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年对口升学考试数学模拟试题
(试卷总分120分 考试时间120分钟)
一、选择题(本大题共15小题,每小题3分,共45分,在每小题所给出的四个选项中,只有一个符合题目要求)
1. 设集合{}{}{}d c b B c b a A e d c b a U ,,,,,,,,,,===,则=⋂)(B C A U ( )
A.{}d c b ,,
B.{}d c b a ,,,
C.{}a
D. {}e a ,
2.如果1>>b a ,那么下列不等式恒成立的是( )
A .44b a ≤
B .lg()0a b ->
C .22--<b a
D .b a )21
()21
(>
3.已知0>ab ,则“ab x =”是“b x a ,,成等比数列”的( )
A.充分但不必要条件
B.必要但不充分条件
C.充分且必要条件
D.既不充分也不必要条件
4.下列各函数中,与函数2y x =为同一个函数的是( )
A.y =
B.4y =
C.y x x =
D. 3
x y x =
5.若01a <<时,在同一坐标系中函数log x a y a y x -==与的图像大致是( )
A B C D
6.函数sin cos 44x
x
y ππ=+的值域为( )
A .)1,1(-
B .]1,1[-
C .]2,2[-
D .]2,2[-
7.函数()32x x
f x +=的图像关于( )对称.
A. x 轴
B.y 轴
C. 原点
D. 直线1y =
8.n S 为等差数列{}n a 的前n 项和, 若11=a ,公差2=d ,117k k S S +-=,则=k (

A.8
B.7
C. 6
D. 5
9.已知)2,(m ,)1,1(-+m , ⊥,则m 为( )
A.-2
B. 1
C.-2或1
D.2或-1
10.将函数x y 2sin =图像向x 轴负方向平移12
5π个单位得到)(x f y =的图像,则函数)(x f 的解析式为( ) A. )652sin(π+
=x y B. )12
52sin(π+=x y C. )652sin(π-=x y D. )1252sin(π-=x y 11. 若直线b x y +=3与圆102
2=+y x 相切,则=b ( ) A.10± B. 102± C.±10 D. 1010± 12. 设12,F F 为椭圆22
1259
x y +=的焦点,P 为椭圆上一点,若1||2PF =,则2||PF =( ) A.3 B.4 C.6 D.8
13.P 是三角形ABC 所在的平面外一点,已知P 到三角形三边的距离相等,则P 在平面ABC 内的射影O 是三角形的( )
A. 外心
B. 内心
C.重心
D.垂心
14. 9)1(x +的展开式中,二项式系数最大的项是( )
A. 4126x
B. 5
125x
C. 4126x 和5126x
D. 5126x 和6126x
15. 从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛,其中学生甲只参加数学竞赛,则不同的参赛方法共有( )
A .60 B.24 C.72 D.4
二、填空题(本大题共15小题,每小题2分,共30分) 16.若20(0)()(0)1(0)x f x e x x x ⎧>⎪=-=⎨⎪+<⎩
,则[]{()}f f f π= .
17.=+--+--325tan 3sin )32()1251(21lg 31
4
6ππC . 18. 已知a >2,则()22(340)a x x -+-<0的解集是 .
19. 函数()f x =
的定义域是 . 20. 已知等比数列{}n a 中,41a =-,718a =-,则38a a ⋅= . 21.函数||3x y =的单调递增区间为 .
22.已知54)2sin(
=-απ,则)cos(απ-的值是 . 23.0.3e ,0.3e ,ln 0.3按从小到大排列的顺序是 .
24.直线013=+-y x 与直线20x my +-=互相垂直时,则m = .
25.已知单位向量a r 与b r 的夹角为3
π,那么2a b +=r r . 26.正方体1111ABCD A B C D -中,1BD 与平面11A ADD 所成的角的正切值是 .
27.在(3n x
的展开式中第9项为常数项,则n 的值为 . 28.若平面βα⊥,直线β⊥l ,则直线l 与平面α的位置关系是 .
29.顶点为原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是 .
30.甲、乙两人随机入住两间空房,则甲、乙两人各住一间房的概率是 .
三、解答题(本大题共7小题,共45分)
31.(6分)已知集合}0103|{2≥+-=x x x A ,}0|{2
2<-=m x x B )0(>m ,若A B B ⋂=,求实数m 的取值范围.
32.(6分)已知数列{}n a 的前1(1)3
n n n S a =
-项和为,解答下列问题; (1)求1a 的值;
(2)试判断数列{}n a 是等比数列还是等差数列,并说明理由;
(3)设等差数列{}n b 中的12442,4b a b a ==-且,求数列{}n b 前6项的和6T .
33. (6分)已知向量),(b c a +=,(,)n a c a b =-+r ,且n m ⊥,其中A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是角A 、B 、C 的对边.
(1)求角C 的大小;
(2)若10,a
=c =ABC ∆的面积.
34.(6分)某广告公司设计一块周长为8米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.
(1)求S 与x 的函数关系式及x 的取值范围.
(2)为使广告牌费用最多;广告牌的长和宽分别为多少米?求此时的广告费.
35.(7分)从一批产品中抽取6件产品进行检查,其中有4件一等品,2件二等品,
(1)求从中任取一件为二等品的概率;
(2)每次取1件,有放回地取3次,求取到二等品数ξ的概率分布.
36.(7分)双曲线C 以过原点与圆22430x y y +-+=相切的两条直线为渐近线,且过椭圆2244x y +=的两个焦点,求双曲线C 的方程.
37.(7分)如图,四棱锥ABCD S -的底面是正方形,每条侧棱长都是底面边长的2倍,P 为侧棱SD 上的点.
(1)求证:SD AC ⊥;
(2)若⊥SD 平面PAC ,求二面角D AC P --的大小.
P D C A B S。

相关文档
最新文档