七年级数学上册34实际问题与一元一次方程-电话计费问题学案新版新人教版

合集下载

344实际问题与一元一次方程(四)电话计费问题(教学设计)七年级数学上册(人教版)

344实际问题与一元一次方程(四)电话计费问题(教学设计)七年级数学上册(人教版)

3.4.4 实际问题与一元一次方程(四) 计费问题教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.4.4 实际问题与一元一次方程(四) 计费问题,内容包括:列一元一次方程解决计费问题.2.内容解析《数学课程标准》对本章知识的要求是:“能够根据具体情况中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.”从本章知识的安排上来看,对实际问题的讨论是贯穿全章的一条主线,本章中对一元一次方程解法的讨论始终是围绕实际问题进行的,即先列方程,讨论如何解方程,这是本章教材编写的一个特点.而本节内容是在前面两节已经讨论过由实际问题建立一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.本节课是3.4节“实际问题与一元一次方程”的最后一课,选择计费这种生活中常见的问题作为探究点,不仅仅是为了探究如何解决这个具体问题,而是想让学生通过这个问题的解决,进一步体验“建模解题”的过程,渗透建模思想;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高.基于以上分析,确定本节课的教学重点为:掌握用一元一次方程解决实际问题的基本过程.二、目标和目标解析1.目标(1)体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择分类关键点对“ 计费问题”进行整体分析,从而得出整体选择方案.(2)进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和能力.2.目标解析掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力.通过探索计费问题中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.三、教学问题诊断分析学生通过之前的学习,比较熟悉在一些典型问题中应用方程模型,而对于“ 计费问题”这样的综合性问题,还缺乏解决问题的经验,容易无所适从或片面理解,学生一般可以发现“计费方式”的选择要依赖于“主叫时间”的变化,要根据时间分类讨论,但缺乏系统有效的分类方法,会出现分类不准确的问题﹔同时学生对于计费这种生活化的问题,更习惯于使用生活化的原理和语言去解释,如“计费的多少、增长的快慢”等,而缺乏将实际问题数学化,然后利用数学原理来解释问题的意识.基于以上学情分析,确定本节课的教学难点为:将实际问题抽象为方程的过程中,如何找等量关系.四、教学过程设计(一)合作探究问题1:你了解表格中这些数字的含义吗?月使用费固定收;主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.问题2:你认为选择哪种计费方式更省钱呢?“与主叫时间相关”问题3:设一个月内用移动主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.问题4:观察以上列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?列方程:58+0.25(t150)=88解得t=270因此,当t=270min时,按两种方式计费相等,都是88元.问题5:那么当t大于150且小于270和t大于270且小于350时,两种方式计费哪种更省钱呢?如果t大于150且小于270时,按方式一的计费少于按方式二的计费(88元);如果t大于270且小于350时,按方式一的计费多于按方式二的计费(88元).问题6:当t大于350时,两种方式计费哪种更省钱呢?当t大于350时,58+0.25(t150)可变形为108+0.25(t350)即按方式一的计费为108元加上超过350min部分的超时费0.25(t350),按方式二的计费为88元加上超过350min部分的超时费0.19(t350),显然按方式二的计费少.问题7:综合以上的分析,可以发现:时,选择方式一省钱;时,选择方式二省钱;时,方式一、方式二均可.选一些具体数字,通过计算验证你的发现是否正确.(二)总结提升解决“ 计费问题”的一般思路:(三)考点解析例 1.为了倡导和鼓励居民节约用水,某市水务部门对城市居民生活用水采取分段收费办法:规定每月每户居民生活用水标准量为22m3,在标准用水量范围里免收生活污水处理费;超出标准用水量的部分收取一定的生活污水处理费,每月生活用水的收费标准(单位:元/m3)及单价说明如下表所示:(1)某居民用户用水10m3,共缴纳水费23元,求a的值;(2)在(1)的前提下,该居民用户10月份缴纳水费71元,请问该用户10月份的用水量是多少?解:(1)由题意得10a=23,解得a=2.3.(2)因为2.3×22=50.6<71,所以该居民用户10月份的用水量超过22m3.设该居民用户10月份的用水量为xm3.由题意得50.6+(2.3+1.1)×(x22)=71.解得x=28.答:该用户10月份用水28m3.【迁移应用】1.某城市按以下规定收取每月煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户10月份的煤气费为66元,则该用户10月份使用煤气______m3.2.下表是行驶15km以内纯电动出租车的运营价格:(1)请计算路程是12km时乘坐纯电动出租车的费用;(2)老张从家去公司打纯电动出租车上班(路程在15 km以内),共支付车费22元.老张家到公司的路程是多少千米?解:(1)8+2×(123)=26(元)答:乘坐纯电动出租车的费用为26元.(2)设老张家到公司的路程是xkm.根据题意,得8+2(x3)=22.解得:x=10.答:老张家到公司的路程是10km.例2.【分类讨论思想】甲、乙两班学生到集市上购买苹果,苹果价格如下:甲班分两次共购买苹果70kg(第二次比第一次多),共付款189元,乙班一次性购买苹果70kg.(1)乙班比甲班少付款多少钱?(2)甲班第一次和第二次分别购买苹果多少千克?解:(1)乙班付款:70×2=140(元),189140=49(元).答:乙班比甲班少付款49元.(2)设甲班第一次购买苹果xkg,则第二次购买苹果(70x)kg.①当第一次购买苹果不超过30kg,第二次购买苹果在30kg到50kg之间时,3x+2.5(70x)=189.解得x=28.所以70x=42.①当第一次购买苹果不超过30kg,第二次购买苹果在50kg以上时,3x+2(70x)=189.解得x=49.49>30,不符合题意.①当两次都在30kg到50kg之间时,2.5.x+2.5(70x)=189,方程无解.综上所述,甲班第一次购买苹果28kg,第二次购买苹果42kg.【迁移应用】1.某超市为促销商品,推出如下优惠方案:一次性购物不超过100元不享受任何优惠;一次性购物超过100元,但不超过300元一律9折;一次性购物超过300元一律8折.李明两次购物,实际付款金额分别为80元、252元,如果李明一次性购买这些物品,那么应付款_____________元.2.某水果批发市场橙子的价格如表:(1)小凯分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出217元,求小凯第一次和第二次分别购买橙子的数量;(2)小坤分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买橙子的单价不相同,共付出436元,请问小坤第一次、第二次分别购买橙子多少千克?(列方程求解)解:(1)设小凯第一次购买xkg橙子,则第二次购买(40x)kg橙子.由第二次购买的数量多于第一次购买的数量可知,第一次购买橙子不超过20kg,第二次购买橙子在20kg 以上但不超过40kg.依题意得6x+5(40x)=217,解得x=17,所以40x=23.答:小凯第一次购买17kg橙子,第二次购买23kg橙子.(2)设小坤第一次购买ykg橙子,则第二次购买(100y)kg橙子.由第二次购买的数量多于第一次购买的数量可知,第一次购买橙子少于50 kg,第二次购买橙子多于50kg.因为两次购买橙子的单价不相同,所以第一次购买的情况有两种:不超过20kg或在20kg以上但不超过40kg.分两种情况讨论:①当第一次购买橙子不超过20kg时,根据题意得6y+4(100y)=436,解得y=18.所以100y=82;①当第一次购买橙子在20kg以上但不超过40kg时,根据题意得5y+4(100y)=436,解得y=36.所以100y=64.答:小坤第一次购买18kg橙子,第二次购买82kg橙子或第一次购买36kg橙子,第二次购买64kg橙子.例3.目前施行的个人所得税税率表(部分)如下:(1)赵华每月税前工资为13000元,则他每月应缴纳的个人所得税是多少元?(2)张扬每月缴纳的个人所得税为190元,则他每月税前工资是多少元?(3)李丽每月纳税后的工资为7955元,则李丽每月纳税前的工资为多少元?解:(1)因为8000<13000<17000,所以赵华每月应缴纳的个人所得税为(80005000)×3%+(130008000)×10%=590(元).(2)设张扬每月工资收入是x元.因为(80005000)×3%=90,(170008000)×10%+90=990,而90<190<990,所以8000<x<17000.根据题意,得(80005000)×3%+(x8000)×10%=190.解得x=9000.答:他每月工资收入是9000元.(3)设李丽每月纳税前的工资为y元.分两种情况讨论:①若5000<y≤8000,则(y5000)×3%+7955=y,解得y≈8046.不符合5000<y≤8000,故此种情况不存在.①若8000<y≤17000,则(80005000)×3%+(y8000)×10%+7955=y,解得y=8050.符合8000<y≤17000.答:李丽每月纳税前的工资为8050元.【迁移应用】参加保险公司的医疗保险,住院治疗的病人可享受分段累加报销,保险公司制定的报销细则如下表:某人住院治疗后得到保险公司报销的金额是1000元,那么此人住院的医疗费用是多少?解:因为(1000500)×60%=300<1000,(1000500)×60%+(30001000)×80%=1900>1000,由此可以推断,此人住院的医疗费用在1000~3 000元之间.设此人住院的医疗费用为x元.根据题意,得(1000500)×60%+(x1000)×80%=1000,解得x=1875.答:此人住院的医疗费用是1875元.(四)小结梳理解决“ 计费问题”的一般思路:五、教学反思。

人教版七年级数学上册3.4实际问题与一元一次方程电话计费问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程电话计费问题优秀教学案例
二、教学目标
(一)知识与技能
在本节课中,学生需要掌握一元一次方程的基本概念和解法。通过电话计费问题的实际情境,让学生能够理解一元一次方程在实际问题中的应用。能够根据实际问题建立一元一次方程,并求解方程得到问题的解答。
为了达到这一目标,我会在课堂上通过例题和练习题的形式,让学生不断巩固和加深对一元一次方程的理解。例题会选择与电话计费相关的问题,让学生在解决问题的过程中,自然而然地理解和掌握一元一次方程的解法。练习题则会设计不同难度的题目,让学生在练习中不断提高自己的解题能力。
3.问题导向:本节课采用问题导向的教学策略,引导学生通过问题发现和提出假设,建立一元一次方程,并运用解法求解方程。这样的教学策略能够让学生充分参与课堂,提高学生的思维能力和解决问题的能力。
4.小组合作:在教学过程中,我运用小组合作的学习方式,让学生在小组内共同讨论和解决问题。通过小组合作,学生能够相互学习,取长补短,提高自己的数学素养,培养了学生的合作意识和团队精神。
我会强调一元一次方程在实际问题中的应用价值,并鼓励学生在日常生活中多观察、多思考,发现更多的数学问题。通过总结归纳,学生能够更好地理解和掌握一元一次方程的知识。
(五)作业小结
在作业小结环节,我会布置一些与本节课内容相关的作业,让学生在课后进行巩固和提高。作业会包括一些实际的电话计费问题,需要学生独立解决。
(二)过程与方法
在教学过程中,我会采用问题驱动的教学方法,引导学生通过问题发现和提出假设,建立一元一次方程,并运用解法求解方程。这样的教学方法能够让学生充分参与课堂,提高学生的思维能力和解决问题的能力。
同时,我还会运用合作学习的方法,让学生在小组内共同讨论和解决问题。通过小组合作,学生能够相互学习,取长补短,提高自己的数学素养。

七年级数学上册(人教版)3.4.4实际问题与一元一次方程(四)电话计费问题优秀教学案例

七年级数学上册(人教版)3.4.4实际问题与一元一次方程(四)电话计费问题优秀教学案例
4.多元化的评价方式:本节课采用了自我反思、同伴评价和教师评价等多种评价方式,对学生的学习过程和成果进行评价。这种评价方式有助于激发学生的学习动力,培养他们的自我认知能力。
5.总结归纳的教学环节:本节课在课堂结束时,教师引导学生对所学知识进行总结归纳,使学生能够系统地掌握一元一次方程在电话计费问题中的应用。这种教学环节有助于巩固学生所学知识,提高他们的认知水平。
2.问题导向的教学策略:本节课以问题为导向,教师精心设计了一系列具有挑战性的问题,引导学生独立思考、探究解决问题。这种教学策略有利于培养学生的思维能力,提高他们的问题解决能力。
3.小组合作的教学组织形式:本节课采用了小组合作的学习方式,学生分组讨论、合作探究电话计费问题。这种教学组织形式不仅培养了学生的团队合作精神,还提高了他们的交流沟通能力。
3.作业讲评:在课堂上对学生的作业进行讲评,分析其中的优点和不足,提高他们的学习效果。
五、案例亮点
1.生活情境的创设:本节课以家庭电话计费为背景,紧密结合学生的生活实际,使学生能够深刻理解电话计费规则,并从中发现数学信息。这种生活情境的创设,不仅激发了学生的学习兴趣,还提高了他们运用数学知识解决生活问题的能力。
(四)总结归纳
1.教师引导:总结本节课所学内容,强调一元一次方程在电话计费问题中的应用。
2.学生归纳:让学生回顾自己的学习过程,总结解题方法和解题技巧。
3.课堂小结:教师对整个课堂进行总结,强调重点知识点和技能。
(五)作业小结
1.布置作业:设计具有针对性的练习题,让学生巩固所学知识,提高应用能力。
2.作业反馈:教师及时批改作业,给予学生反馈,帮助他们纠正错误。
3.鼓励学生提出问题,培养他们主动学习的意识,提高他们的自主学习能力。

人教版七年级数学上册3.4《实际问题与一元一次方程(4)——电话计费问题》教案

人教版七年级数学上册3.4《实际问题与一元一次方程(4)——电话计费问题》教案

第三章一元一次方程实际问题与一元一次方程3.4第课时4一、教学目标1.通过解决电话计费问题,体验建立方程模型解决问题的一般过程.2.体会分类思想和方程思想,增强应用意识和应用能力.二、教学重点和难点重点:建立电话计费问题的方程模型.难点:把生活中的实际问题抽象成数学问题.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)初步探究问题1下面表格给出的是两种移动电话的计费方式:月使用费/元主叫限定时间/min 主叫超时费/(元/min)被叫方式一方式二58881503500.250.19免费免费你了解表格中这些数的含义吗?师生活动:教师提问,学生思考、回答.教师对回答的方向适当给予提示,如“月使用费的比较”、“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过简单计算回答相应的费用.小结:计费方式一:月使用费固定收58元,主叫不超150 min内不再收费,主叫超时部分加收0.25元/ min超时费,被叫免费.计费方式二:月使用费固定收88元,主叫不超350 min内不再收费,主叫超时部分加收0.19元/ min超时费,被叫免费.1设计意图:通过提问和学生的回答,了解学生对表格信息的理解能力,引导学生对表格信息做初步梳理和简单加工;通过对几个容易计算的主叫时间的话费计算,检验学生是否理解表格信息的含义,并渗透“话费多少与主叫时间相关”.问题2你觉得选择哪种计费方式更省钱呢?师生活动:教师提出问题,学生思考回答.根据学生的回答情况,教师适当加以引导:若学生回答计费方式一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间中的变化趋势作进一步的探究.讨论后安排学生再次思考,可适当讨论.设计意图:学生对电话计费问题是有审核基础的,也具备一定的认识基础,在给出探究问题之后让学生充分的发言,表达自己对问题的直观认识,这也是学生对问题的第一次认识.在此基础上学生之间通过发表意见,互相借鉴,为对问题的进一步探究进行准备.(二)深入探究问题3通过大家的讨论,你对电话计费问题有什么新的认识?师生活动:教师提出问题,学生思考回答.根据学生的回答,教师适当加以归纳引导:若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“你为什么这样分类”以及“在每一个时间区间内你是怎么分析的”,从而引导学生更合理地解决问题.设计意图:学生在参考了其他同学的观点之后再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确定分类讨论的研究方式,并在总结学生发言的基础上归纳出“分类的关键点”,使学生的学习由“感性认识”逐步过渡到“理性分析”.问题4设一个月内用移动电话主叫为t min(t是正整数).当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费.师生活动:教师提出问题,学生思考并制作表格,教师巡视.教师请学生填写下面的表格,其他同学适当补充.主叫时间t/ min t小于150 方式一计费/元方式二计费/元58 88288888858+0.25×(350-150)=10858+0.25(t-150)t大于350 88+0.19(t-350)设计意图:引导学生列表,让学生体验使用表格整理信息的益处,并通过列表使学生进一步明确两种计费方式的变化规律,同时考察学生列代数式表示未知量的能力.问题5观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果.一般学生能够对“t小于 150”、“t=150”、“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析.教师追问:(1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?(2)利用方程求出使两种方式的计费相等的主叫时间,得出270 min这个时间点.(3)当主叫时间“t大于150且小于270”或“t大于270且小于350”时,分别选择哪种计费方式比较省钱?对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当的总结.设计意图:这一问题是本节课的关键,学生通过分类讨论得到“方程模型”,并利用方程求出关键数据,这可以使学生认识到方程的重要性和应用价值,增强学生对模型的应用意识和应用能力.问题6综合以上的分析,可以发现:________时,选择方式一省钱;________时,选择方式二省钱.师生活动:教师提出问题,学生思考并回答.设计意图:在得出方程模型的结论之后,引导学生利用结论解释实际问题,从而完成建模解题的完整过程.(三)练习巩固31.利用我们在“电话计费问题”中学会的方法,探究下面的问题.用 A4 纸在某誊印社复印文件,复印页数不超过 20 时每页收费 0.12 元;复印页数超过 20 页时,超过部分每页收费 0.09 元.在某图书馆复印同样的文件,不论复印多少页,每页收费 0.1 元.如何根据复印的页数选择复印的地点使总价格比较便宜?师生活动:教师提出问题,学生思考、解答,小组讨论,选学生回答,教师点评. 解:依题意列表得:复印页数 x 誊印社复印费用/元 图书馆复印费用/元0.1x0.1×20=2 0.1x0.12×20=2.4x 大于 20 2.4+0.09(x -20) (1)当 x 小于 20 时,0.12x 大于 0.1x 恒成立,图书馆价格便宜;(2)当 x 等于 20 时,2.4 大于 2,图书馆价格便宜;(3)当 x 大于 20 时,令 2.4+0.09(x -20)=0.1x ,解得:x =60.∴ 当 x 大于 20 且小于 60 时,图书馆价格便宜;当 x 等于 60 时,两个地点的价格一样;当 x 大于 60 时,誊印社价格便宜.综上所述:当 x 小于 60 时,图书馆价格便宜;当 x 等于 60 时,两个地点的价格一样;当 x 大于 60 时,誊印社价格便宜.设计意图:在完成了“电话计费问题”的探究之后,通过类似问题使学生刚刚获取的经 验得到巩固和深化,进一步熟悉解决问题的方法与过程,从而提高分析和解决问题的能力.2.某市出租车的起步价是 7 元(起步价是指不超过 3 km 行程的出租车价格),超过 3 km 行程后,其中除 3 km 的行程按起步价计费外,超过部分按每千米1.6 元计费(不足 1 km 按 1 k m 计算).如果仅去程乘出租车而回程不乘坐此车,并且去程超过3 km ,那么顾客还需付回 程的空驶费,超过 3 km 部分按每千米 0.8 元计算空驶费(即超过部分实际按每千米 2.4 元计 费).如果往返都乘坐同一出租车并且中间等候时间不超过3 min ,则不收空驶费而加收 1.6 元4等候费.现设小文等4人从市中心A处到相距x km(x小于12)的B处办事,在B处停留时间在3 min内,然后返回A处.现有两种往返方案:方案一:去时4 人乘同一辆出租车,返回都乘公交车(公交车车票为每人2 元);方案二:4 人乘同一辆出租车往返.请问选择哪种方案更省钱?解:对于方案一,路程的关键点是3 km,对于方案二,路程的关键点是1.5 km,故当A 处与B处的距离x在不同范围内取值时,对应费用如下表:方案一计费/元7+2×4=15 7+2×4=15方案二计费/元7+1.6=8.67+1.6(2x-3)+1.6x大于3且小于等于127+2.4(x-3)+2×47+1.6(2x-3)+1.6 (1)当x小于等于1.5时,因为15>8.6,所以选择方案二省钱.(2)当x大于1.5 且小于等于3时,7+1.6(2x-3)+1.6≤7+1.6×(2×3-3)+1.6 =13.4<15,所以方案二省钱.(3)由(2)可知,当x=3时,方案二省钱.当x=12时,方案一的费用是7+2.4×(12 -3)+2×4=36.6(元),方案二的费用是7+1.6×(2×12-3)+1.6=42.2(元),所以方案一省钱.所以在x大于3且小于等于12这一范围内,可能存在使两种方案费用相等的x值.令7+2.4(x-3)+2×4=7+1.6(2x-3)+1.6,解得x=4.所以,当x大于3 且小于4时,方案二省钱;当x=4 时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.综上分析,当x小于4 时,方案二省钱;当x=4时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.设计意图:检测学生对信息的阅读理解能力以及利用模型和分类思想解决综合性问题的能力.六、课堂小结请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法,你有什么收获?5设计意图:在总结了本节课的知识性问题之后,继续引导学生总结本节课的过程与方法,使学生原来模糊的意识、零散的经验得以梳理,从而初步掌握探究同类问题的一般思路.七、板书设计实际问题与一元一次方程(4)分类讨论得到“方程模型”,并利用方程求出关键数据,6等候费.现设小文等4人从市中心A处到相距x km(x小于12)的B处办事,在B处停留时间在3 min内,然后返回A处.现有两种往返方案:方案一:去时4 人乘同一辆出租车,返回都乘公交车(公交车车票为每人2 元);方案二:4 人乘同一辆出租车往返.请问选择哪种方案更省钱?解:对于方案一,路程的关键点是3 km,对于方案二,路程的关键点是1.5 km,故当A 处与B处的距离x在不同范围内取值时,对应费用如下表:方案一计费/元7+2×4=15 7+2×4=15方案二计费/元7+1.6=8.67+1.6(2x-3)+1.6x大于3且小于等于127+2.4(x-3)+2×47+1.6(2x-3)+1.6 (1)当x小于等于1.5时,因为15>8.6,所以选择方案二省钱.(2)当x大于1.5 且小于等于3时,7+1.6(2x-3)+1.6≤7+1.6×(2×3-3)+1.6 =13.4<15,所以方案二省钱.(3)由(2)可知,当x=3时,方案二省钱.当x=12时,方案一的费用是7+2.4×(12 -3)+2×4=36.6(元),方案二的费用是7+1.6×(2×12-3)+1.6=42.2(元),所以方案一省钱.所以在x大于3且小于等于12这一范围内,可能存在使两种方案费用相等的x值.令7+2.4(x-3)+2×4=7+1.6(2x-3)+1.6,解得x=4.所以,当x大于3 且小于4时,方案二省钱;当x=4 时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.综上分析,当x小于4 时,方案二省钱;当x=4时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.设计意图:检测学生对信息的阅读理解能力以及利用模型和分类思想解决综合性问题的能力.六、课堂小结请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法,你有什么收获?5设计意图:在总结了本节课的知识性问题之后,继续引导学生总结本节课的过程与方法,使学生原来模糊的意识、零散的经验得以梳理,从而初步掌握探究同类问题的一般思路.七、板书设计实际问题与一元一次方程(4)分类讨论得到“方程模型”,并利用方程求出关键数据,6等候费.现设小文等4人从市中心A处到相距x km(x小于12)的B处办事,在B处停留时间在3 min内,然后返回A处.现有两种往返方案:方案一:去时4 人乘同一辆出租车,返回都乘公交车(公交车车票为每人2 元);方案二:4 人乘同一辆出租车往返.请问选择哪种方案更省钱?解:对于方案一,路程的关键点是3 km,对于方案二,路程的关键点是1.5 km,故当A 处与B处的距离x在不同范围内取值时,对应费用如下表:方案一计费/元7+2×4=15 7+2×4=15方案二计费/元7+1.6=8.67+1.6(2x-3)+1.6x大于3且小于等于127+2.4(x-3)+2×47+1.6(2x-3)+1.6 (1)当x小于等于1.5时,因为15>8.6,所以选择方案二省钱.(2)当x大于1.5 且小于等于3时,7+1.6(2x-3)+1.6≤7+1.6×(2×3-3)+1.6 =13.4<15,所以方案二省钱.(3)由(2)可知,当x=3时,方案二省钱.当x=12时,方案一的费用是7+2.4×(12 -3)+2×4=36.6(元),方案二的费用是7+1.6×(2×12-3)+1.6=42.2(元),所以方案一省钱.所以在x大于3且小于等于12这一范围内,可能存在使两种方案费用相等的x值.令7+2.4(x-3)+2×4=7+1.6(2x-3)+1.6,解得x=4.所以,当x大于3 且小于4时,方案二省钱;当x=4 时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.综上分析,当x小于4 时,方案二省钱;当x=4时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.设计意图:检测学生对信息的阅读理解能力以及利用模型和分类思想解决综合性问题的能力.六、课堂小结请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法,你有什么收获?5设计意图:在总结了本节课的知识性问题之后,继续引导学生总结本节课的过程与方法,使学生原来模糊的意识、零散的经验得以梳理,从而初步掌握探究同类问题的一般思路.七、板书设计实际问题与一元一次方程(4)分类讨论得到“方程模型”,并利用方程求出关键数据,6等候费.现设小文等4人从市中心A处到相距x km(x小于12)的B处办事,在B处停留时间在3 min内,然后返回A处.现有两种往返方案:方案一:去时4 人乘同一辆出租车,返回都乘公交车(公交车车票为每人2 元);方案二:4 人乘同一辆出租车往返.请问选择哪种方案更省钱?解:对于方案一,路程的关键点是3 km,对于方案二,路程的关键点是1.5 km,故当A 处与B处的距离x在不同范围内取值时,对应费用如下表:方案一计费/元7+2×4=15 7+2×4=15方案二计费/元7+1.6=8.67+1.6(2x-3)+1.6x大于3且小于等于127+2.4(x-3)+2×47+1.6(2x-3)+1.6 (1)当x小于等于1.5时,因为15>8.6,所以选择方案二省钱.(2)当x大于1.5 且小于等于3时,7+1.6(2x-3)+1.6≤7+1.6×(2×3-3)+1.6 =13.4<15,所以方案二省钱.(3)由(2)可知,当x=3时,方案二省钱.当x=12时,方案一的费用是7+2.4×(12 -3)+2×4=36.6(元),方案二的费用是7+1.6×(2×12-3)+1.6=42.2(元),所以方案一省钱.所以在x大于3且小于等于12这一范围内,可能存在使两种方案费用相等的x值.令7+2.4(x-3)+2×4=7+1.6(2x-3)+1.6,解得x=4.所以,当x大于3 且小于4时,方案二省钱;当x=4 时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.综上分析,当x小于4 时,方案二省钱;当x=4时,两种方案费用相同;当x大于4 且小于12时,方案一省钱.设计意图:检测学生对信息的阅读理解能力以及利用模型和分类思想解决综合性问题的能力.六、课堂小结请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法,你有什么收获?5设计意图:在总结了本节课的知识性问题之后,继续引导学生总结本节课的过程与方法,使学生原来模糊的意识、零散的经验得以梳理,从而初步掌握探究同类问题的一般思路.七、板书设计实际问题与一元一次方程(4)分类讨论得到“方程模型”,并利用方程求出关键数据,6。

七年级数学第三章一元一次方程3.4实际问题与一元一次方程__电话计费问题导学案

七年级数学第三章一元一次方程3.4实际问题与一元一次方程__电话计费问题导学案

3.4 实际问题与一元一次方程——电话计费问题1.会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题;2.体验建立方程模型来解决问题的一般过程;3.体会模型转化和方程思想,增强应用意识和应用能力.重点:由实际问题抽象出数学模型;难点:建立方程模型来解决电话计费问题.一、情境导入1.现在电话和手机基本普及到家,你家里有几部手机?你知道手机的收费标准吗?手机(移动、联通、电信)的各种收费方式吗?2.两种移动电话计费方式(课本P104,展示探究3)月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一581500。

25免费方式二883500。

19免费二、自主学习老师提出下列问题:(1)你能从表中获得哪些信息,试用自己的话说说.(2)猜一猜,使用哪一种计费方式合算?跟什么有关?(3)从表格数据中,你能把主叫时间分为几部分?(4)你能分别把主叫时间不同时的话费情况用含t的代数式表示出来吗?(5)一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?小组探讨:1.对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗?如果有这一时间,那么如何分别表示收费表达式呢?(等量关系“收费相等")2.你能根据表格判断两种收费方式哪种更合算吗?3.你的父母各有一部手机,父亲业务繁忙,通话时间比较长,母亲家庭主妇,通话时间短,你能帮助你的父母设计一个省钱的方案吗?三、解决问题1.学生充分讨论后完成表格.t=35058+0.25(350-150)=10888t〉35058+0。

25(t-150)88+0。

19 (t-350)观察完成后的表格,可以看出,主叫时间超出限定时间越长,计费越多,并且随着主叫时间的变化,按哪种方式的计费少也会变化.①当t≤150,按方式一的计费少.②当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能在某一主叫时间,两种方式的计费相等.列方程58+0。

人教版七年级上册数学学案:3.4 实际问题与一元一次方程(4)---电话计费问题

人教版七年级上册数学学案:3.4 实际问题与一元一次方程(4)---电话计费问题

课题 3.4 3.4 实际问题与一元一次方程(4)---电话计费问题【学习目标】:1.经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。

2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。

【重点难点】:建立一元一次方程解决实际问题。

【学习过程】 一、温故知新 解下列方程: (1)x x -=-324; (2) 4)20(34-=--x x ; (3)47815=-x ;二、自主探究:下表中有两种移动电话计费方式。

2、 猜一猜,使用哪一种计费方式合算? 分析:时,选择方案一省钱; 时,选择方案一省钱 4、 一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?5、 对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?时,选择方案一或方案二一样省2、小平的爸爸新买了一部手机,他从移动公司了解到现在有两种移动电话计费方式:他正在为选哪种方式犹豫呢?你能帮助他作个选择吗(1)一个月内通话200分和300分钟,按两种计费方式各需缴费多少元?(2)对于某个通话时间,两种计费方式的收费会一样吗?(列式计算)解:设累计通话t分,则用方式一要收费元,用方式二要收费元,如果两种计费方式的收费一样,则列方程:由此可知,如果一个月内通话_____分钟,那么两种计费方式的收费相同.(3)怎样选择计费方式更省钱呢?如果一个月内累计通话时间不足_____分,那么选择“方式二”收费少;如果一个月内累计通话时间超过_____分,那么选择________收费少.(4)根据以上解题过程,你能为小平的爸爸作选择了吗?时,选择方案一省钱;时,选择方案一省钱时,选择方案一或方案二一样省钱三、课堂小结:由实际问题抽象为方程模型的过程,进一步体会模型化的思想四、课堂检测1.一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?。

人教版数学七年级上册3.4《实际问题与一元一次方程》(电话计费问题)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(电话计费问题)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(电话计费问题)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(电话计费问题)这部分内容,是在学生学习了方程的解法和一元一次方程的基础上进行学习的。

通过本节课的学习,让学生能够运用一元一次方程解决实际生活中的问题,从而培养学生的数学应用能力。

教材通过电话计费这个实际问题,引导学生运用一元一次方程进行解答,既贴近生活,又富有挑战性,能够激发学生的学习兴趣。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于方程的解法和一元一次方程的概念已经有了初步的了解。

但是,学生对于如何将实际问题转化为数学问题,并运用一元一次方程进行解答,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,帮助学生建立数学模型,提高学生的解决问题的能力。

三. 教学目标1.理解电话计费问题的实际背景,能够将实际问题转化为数学问题。

2.掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。

3.培养学生的数学应用能力,提高学生解决实际问题的能力。

四. 教学重难点1.电话计费问题的实际背景的理解。

2.如何将实际问题转化为数学问题,并运用一元一次方程进行解答。

五. 教学方法采用问题驱动的教学方法,通过设置电话计费问题,引导学生运用一元一次方程进行解答。

同时,运用小组合作学习的方式,让学生在探讨解决问题的过程中,加深对知识的理解和运用。

六. 教学准备1.准备相关的电话计费问题的案例,用于引导学生进行解答。

2.准备多媒体教学设备,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过设置一个电话计费的问题,引导学生思考如何计算电话费用。

例如:小王打了一段时间的电话,通话时间分别为5分钟、10分钟和15分钟,通话费用分别为0.2元、0.4元和0.6元。

请问小王打电话的平均费用是多少?2.呈现(10分钟)呈现上述的电话计费问题,让学生独立思考如何计算小王的平均费用。

中学七年级数学上册 3.4 实际问题与一元一次方程——电话计费问题教案 新人教版 教案

中学七年级数学上册 3.4 实际问题与一元一次方程——电话计费问题教案 新人教版 教案
归纳小结:
请回顾电话计费问题的探究过程,并回答
以下问题:
(1)电话计费问题的核心问题是什么?
(2)探究解题的过程大致包含哪几个步骤?
(3)我们在探究过程中用到了哪些方法,你有哪些收获?
三当堂检测
利用我们在“电话计费问题”中学会的方法,探究下面的问题:
用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复
实际问题与一元一次方程




1.体验建立方程模型解决问题的一般过程;
2.体会分类思想和方程思想,增强应用意识和应用能力
重点


重点:建立方程模型解决电话计费问题.
难点:从图表中获取有关信息,寻找数量之间的隐蔽关系,正确建立方程。
课前准备






一、导入新课
认真阅读P104探究3.
问题1:表中给出的是两种移动电话的计费方式,你了解表格中这些数字的含义吗? 你认为选择哪种计费方式更省钱呢?
二、合作交流
问题3:设一个月内用移动电话主叫为t分(t是正整数).根据表1,当t在不同时间范围内取值,
列表说明按方式一和方式二如何计费.
主叫时间t/分
方式一计费/元
方式二计费/元
t小于150
t等于150
t大于150且小于350
t等于350
t大于350
问题4:观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?
印页数超过20页时,超过部分每页收费0.09元.在某图书馆复印同样的文件
,不论复印多少页,每页收费0.1元.如何根据复印的页数选择复印的地点使总
价格比较便宜?(复印的页数不为零)

七年级数学上册3.4《实际问题与一元一次方程》电话计费问题教案+新人教版

七年级数学上册3.4《实际问题与一元一次方程》电话计费问题教案+新人教版

实际问题与一元一次方程-话计费问题[教学目标]1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

[重点难点]运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

教学方法〕指导探究,合作交流〔教学方法〕指导探究,合作交流〔教学资源〕小黑板[教学过程]一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?(分析:从符号与绝对值两方面观察,这列数有什么规律?符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗?后面两数分别是-3x,9x。

)问题中的相等关系是什么?三个相邻数的和=-1701。

由此可得方程 x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243,729,-218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2 根据下面的两种移动电话计费方式表,考虑下列问题。

(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:30+200×0.3=90元;通话350分钟需要交费:30+350×0.3=135元.按方式二在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:200×0.4=80元;通话350分钟需要交费:350×0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程 30+0.3t=0.4t解之,得 t =300所以,当一个月内通话300分钟时,两种计费方式的收费一样多.引申:你知道怎样选择计费方式更省钱吗?当t=400时, 30+0.3t=30+0.3×400=150元;0.4t=0.4×400=160元.当时间大于300分钟时,方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

人教版七年级上册数学教案 第三章3.4实际问题与一元一次方程——电话计费问题 教案

人教版七年级上册数学教案 第三章3.4实际问题与一元一次方程——电话计费问题 教案

3.4实际问题与一元一次方程——电话计费问题教学目标:知识与技能用方程的思想方法解决电话计费问题。

过程与方法经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,进一步体会模型化的思想情感、态度与价值观:通过学生间的相互交流、沟通、培养他们的协作意识。

教学重点:建立列方程解决实际问题的思想方法教学难点:探索并发现实际问题中的等量关系,列出方程。

教学过程:一、情景导入(2分钟)信息社会,人们沟通交流方式多样化,移动电话已经很普及,选择经济实惠的收费方式很有现实意义,这节课我们一起来探讨此类问题。

二、自学指导(15分钟)自学课本104页、105页的分析。

(1)理解这种分段取值的方法,考虑t的取值时两个主叫限定时间150min和350min是不同时间范围的划分点。

(2)当t小于或等于150分钟时,哪种计费方式省钱?当t大于或等于350分钟时,哪种计费方式省钱?为什么?(3)两种计费方式的费用可能相等吗?此时t在哪个范围?(4)你能求出t为何值时,两种计费方式的费用相等吗?(这一环节是本题的关键)(5)所以我们发现:时,两种方案收费相同;时,选择方案一省钱;时,选择方案二省钱;(6)你还有什么疑惑?设计意图:通过设置富有阶梯形的自学指导,引导学生自主学习,发现问题,解决问题。

三、自学检测(10分钟)观察下列两种移动电话计费方式表,考虑下列问题:你能从中表中获得哪些信息,试用自己的话说说。

1、猜一猜,使用哪一种计费方式合算?2、一个月内在本地通话200分和350分,按两种计费方式各需交费多少元?3、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?4、你知道怎样选择计费方式更省钱吗?设计意图:考查学生自学效果,提高学生自学效率四、合作探究(5分钟)解决前两个环节中,学生存在的问题。

设计意图:使学生充分体会列方程解决实际问题的的优越。

注意事项:1.通过找相等关系,列出方程是解决问题的有效途径。

七年级数学上册(人教版)3.4.4实际问题与一元一次方程(四)电话计费问题教学设计

七年级数学上册(人教版)3.4.4实际问题与一元一次方程(四)电话计费问题教学设计
(1)布置以下课堂练习题:
a.根据给定的通话时长和单价,计算电话费用。
b.比较两种不同的话费计费方案,选择合适的方案。
c.结合实际,设计一个电话计费问题,并运用一元一次方程求解。
(2)学生独立完成练习题,教师进行个别辅导。
2.教学目的:
巩固所学知识,提高学生运用一元一次方程解决电话计费问题的能力。
(五)总结归纳
(一)教学重难点
1.重点:
(1)理解电话计费的基本概念,掌握不同计费方式下的费用计算方法。
(2)运用一元一次方程解决电话计费问题,提高实际问题的解决能力。
(3)培养学生根据实际情况选择合适电话计费方案的能力。
2.难点:
(1)如何引导学生从实际问题中提炼出数学模型,即一元一次方程。
(2)如何让学生理解并熟练运用一元一次方程解决电话计费问题。
七年级数学上册(人教版)3.4.4实际问题与一元一次方程(四)电话计费问题教学设计
教学设计:
一、教学目标
(一)知识与技能
1.理解电话计费的基本概念掌握不同计费方式下的费用计算方法。
2.学会运用一元一次方程解决电话计费问题,提高实际问题的解决能力。
3.能够根据实际情况选择合适的电话计费方案,培养良好的消费观念。
2.课后作业:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。
3.小组讨论:评价学生在团队合作中的表现,包括沟通能力、分析解决问题的能力等。
二、学情分析
七年级学生在前期的数学学习中,已经掌握了基本的算术运算、一元一次方程的解法等知识,具备了一定的数学基础。然而,在解决实际问题,特别是与生活密切相关的问题时,学生可能会感到困惑,不知道如何运用所学知识进行分析和解答。针对本章节的电话计费问题,学生可能存在以下学情:

人教版数学七年级上册-3.4实际问题与一元一次方程-电话计费问题(教案)

人教版数学七年级上册-3.4实际问题与一元一次方程-电话计费问题(教案)
此外,学生在小组讨论环节表现出了较强的思考能力,能够从不同角度分析问题,并提出自己的观点。但在引导与启发过程中,我发现有些学生对于开放性问题的回答还不够深入,可能是因为他们对问题的理解不够透彻。为此,我计划在接下来的教学中,加强对学生问题分析能力的培养,帮助他们更好地理解和掌握一元一次方程。
在总结回顾环节,学生们能够较好地概括今天所学内容,说明他们对一元一次方程在电话计费问题中的应用有了较为清晰的认识。然而,我也意识到,要让学生真正将所学知识内化为自己的能力,还需要在课后进行适当的巩固练习。因此,我会布置一些与电话计费问题相关的作业,让学生在课后继续练习,以提高他们的实际应用能力。
五、教学反思
在今天这节课中,我们探讨了人教版数学七年级上册的“实际问题与一元一次方程——电话计费问题”。通过这节课的教学,我发现学生们对一元一次方程解决实际问题的兴趣还是比较高的。他们在课堂上积极参与,对于电话计费规则的理解和运用方程解决问题的能力也有了明显提高。
令我印象深刻的是,在实践活动环节,学生们分组讨论并展示了如何运用一元一次方程解决电话计费问题。这个过程不仅锻炼了他们的团队合作能力,还让他们在实践中掌握了方程的应用。不过,我也注意到,部分学生在建立方程时还显得有些吃力,对等量关系的把握不够准确。在今后的教学中,我需要更加关注这部分学生,多给予他们指导和鼓励。
3.重点难点解析:在讲授过程中,我会特别强调如何建立一元一次方程以及如何求解这两个重点。对于难点部分,如理解电话计费规则、找出等量关系等,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与电话计费相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,让学生们模拟计算不同通话时间下的电话费用,从而演示一元一次方程的基本原理。

七年级数学上册3-4实际问题与一元一次方程电话计费问题学案新人教版【2019-2020学年度】

七年级数学上册3-4实际问题与一元一次方程电话计费问题学案新人教版【2019-2020学年度】
2.通过独立思考 ,合作探究,学会分类讨论的数学方法。
【自主预习】一家电信公司给顾客提供两种上网收费方式:方式A以每分钟
0.1元的
价格按上网所用时间计费;方式B除收月租 费20元外,再以每
分钟0.05
元的价格按上网时间计费.
(1)当每月上网时间为200分钟时,选择方式_____省钱;
( 2)当每月上网时间为500分钟时,选择方式_____省钱;
◆综合以上的分析,可以发现:
当______________时,选择方式一省钱;
当______________时,选择两种方式一样省钱;
当__ቤተ መጻሕፍቲ ባይዱ____时,选择方式二省钱.
【拓展延伸】用A4纸在某复印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页降为0.09元.在某图书馆复印同样的文件,不论复 印多少页,每页收费0.1元。问:复印社和图书馆那家更便宜?
【达标测试】
1.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭此卡购书可享受8折优惠.
(1)请问在这次买书过程中, 在什么情况下,办卡 与不办卡一样?
(2)当买总标价为200元的书时,怎么做合算,能省多少钱?
(3)若凭卡付款感到合算.则此次购书的总价值至少有多少元?
2.某市为鼓励市民节约用水,作出如下规定:
七年级数学上册3-4实际问题与一元一次方程电话计费问题学案新人教版【2019-2020学年度】
编 辑:__________________
时 间:__________________
电话计费问题
教师寄语
做自己的决定,然后准备好承担后果。
学习目标
1.掌握用分类讨论法解决电话计费问题,提高独立解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

** 实
际问
题与
一元
一次
方程-
电话
计费
问题
学习
目标
1.知识目标.
体验建立方程模型解决问题的一般过程;引导学生弄清题意,设计出各类问题
的答案。

2.能力目标.
体会模型转化和方程思想,增强应用意识和应用能力。

3.情感、态度与价值观目标.
经历探索过程,把生活中的实际问题抽象成数学问题。

培养学生的思维能力.
教学过程
【导入新课】
下表中有两种移动电话计费方式
月使用费/元主叫限定时间/分主叫超时费(元/分)被叫
方式一58 150
**
免费
方式二88 350
**
免费(一)考虑下列问题:
(1)设一个月内移动电话主叫为t min(t是正整数)。

根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费。

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法
(二)、解决问题:
(1)、学生充分讨论后完成表格。

(见书)
(2).观察(1)中的表格,可以发现,主叫时间超出限定时间越长,计费,并且随着主叫时间的变化,按哪种方式的收费少也会。

①当t<150,按的计费少;
②当t从150增加到350时,按方式一的计费由元增加到元;而方式二
一直元,所以当150<t<350时,可能在某主叫时间按两种方式的计费相等。

列方程, 解得t= 故当t=270时,两种计费方式,都是元,当150<t<270时,按方式一计费按方式二计费,当270<t<350时,
按计费多于按计费;
③当t=350时,按的计费;
④当t>350时,可以看出按方式一的计费为元加上超出350分钟的部分的超时费
;按方式二的计元,加上超时费,故按的计费少。

综合以上的分析,可以发现:
当时,选择方式一省钱;
当时,选择方式二省钱。

【课堂练习】:
1、大明估计自己每月通话大约300分钟,小李每月通话大约200分钟,那么针对上两种计费方式他们选择哪一种移动通信通话费才最省呢?你能帮助他们出个主意吗?
2、P106练习2
【课堂小结】:
电话计费问题的核心问题是什么?你有哪些收获?
【作业布置】:某工厂餐厅计划购买12张餐桌和一批餐椅,现在从甲乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元,甲商场称,每购买一把餐桌赠送一把餐椅,乙商场规定:所有桌椅均按报价的八五折销售,若该工厂计划购买餐椅x把,则:
1.用含x的代数式表示到甲乙两商场购买所需要的费用;
2.当购买多少把餐椅时,到甲乙两商场购买所需的费用相同?
【板书设计】:实际问题与一元一次方程---电话计费问题
当t<150,
当150<t<350时
③当t=350时,
④当t>350时,
【板书设计】:。

相关文档
最新文档