自动控制基本知识-线性系统的根轨迹实验报告
自动控制根轨迹实验报告
实验三 根轨迹分析一、实验目的:1.熟悉零、极点对根轨迹的影响2.组合典型环节按照题目完成相应曲线二、实验内容鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。
当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。
在直升机模式下,飞机的高度控制系统如图所示。
要求:(1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的超调量和调节时间(Δ=2%);(3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)=5.05.15.02++s sMatlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0];G1=tf(fenzi,fenmu) fenzi=[1];fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1)sys2=feedback(280*sys1,1) step(sys2)sys3=feedback(G2,280*G1) step(sys3)G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)(1)(3)(2)(4)三、结果分析1.根在左半平面,系统稳定;根在虚轴上临界稳定;根在右半平面系统不稳定。
2.当k>1时,特征方程为一对共轭复根,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,振荡幅度或超调量随k值的增加而增大,但调整时间不会有显著变化。
线性系统的根轨迹分析 自控实验报告
装订线信息科学与工程学院本科生实验报告线性系统的根轨迹分实验名称析预定时间实验时间姓名学号授课教师实验台号19专业班级装一、目的要求订线1.根据对象的开环传函,做出根轨迹图。
2.掌握用根轨迹法分析系统的稳定性。
3.通过实际实验,来验证根轨迹方法。
二、原理简述绘制根轨迹(1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。
开环有三个极点:p1=0,p2=-1,p3=-2。
实轴上的根轨迹:(2)①起始于0、-1、-2,其中- 2 终止于无穷远处。
②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193(3)根轨迹与虚轴的交点:代入特征方程可得将S = j W1装订线根据以上计算,将这些数值标注S平面上,并连成光滑的粗实线,如下图所示图上的粗实线就称为该系统的根轨迹。
其箭头表示随K值的增加,根轨迹的变化趋势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。
根据根轨迹图分析系统的稳定性根据图2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K(1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡,临界稳定。
(2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。
(3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。
三、仪器设备PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。
2装订线四、线路示图实验对象的结构框图:模拟电路构成:五、内容步骤1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。
并确定各种状态下系统开环增益K 的取值及相应的电阻值R。
根轨迹实验报告
根轨迹实验报告根轨迹实验报告引言:根轨迹是控制系统理论中的一个重要概念,它描述了系统在参数变化下的稳定性和响应特性。
本实验旨在通过实际操作和数据分析,深入理解根轨迹的原理和应用。
通过对比不同系统的根轨迹,可以更好地理解系统的稳定性和控制性能。
一、实验目的本实验的目的是通过实际操作和数据分析,加深对根轨迹的理解,掌握根轨迹的绘制方法和分析技巧。
同时,通过对比不同系统的根轨迹,分析系统参数对根轨迹的影响,进一步认识系统的稳定性和控制性能。
二、实验装置与方法实验所需的装置包括控制系统实验台、计算机和相应的控制软件。
实验过程中,首先将系统接入实验台,通过控制软件设置系统参数,然后进行数据采集和分析。
根据实验要求,可以改变系统参数、增加干扰等,观察根轨迹的变化。
三、实验结果与分析在实验过程中,我们分别绘制了不同系统的根轨迹,并进行了数据分析。
通过观察根轨迹的形状和位置,我们可以判断系统的稳定性和响应特性。
以一个简单的一阶系统为例,我们改变了系统的比例增益和时间常数,绘制了对应的根轨迹。
通过观察根轨迹的位置和形状,我们可以发现以下规律:当比例增益增大时,根轨迹向左移动,系统的稳定性增强;当时间常数增大时,根轨迹变得更加平缓,系统的响应速度变慢。
在另一个二阶系统的实验中,我们改变了系统的阻尼比和自然频率,绘制了对应的根轨迹。
通过观察根轨迹的形状和分布,我们可以得出以下结论:当阻尼比增大时,根轨迹变得更加收敛,系统的稳定性提高;当自然频率增大时,根轨迹变得更加散布,系统的响应速度增加。
通过对比不同系统的根轨迹,我们可以进一步分析系统的稳定性和控制性能。
例如,当两个系统的根轨迹重合或者相似,可以认为它们具有相似的稳定性和响应特性;而当根轨迹相交或者离散较大时,可能存在系统不稳定或者不良的控制性能。
四、实验总结通过本次实验,我们深入了解了根轨迹的原理和应用。
通过实际操作和数据分析,我们掌握了根轨迹的绘制方法和分析技巧。
自动控制原理实验报告根轨迹分析法
相关根轨迹知识
根轨迹的概念 根轨迹是开环系统某一参数从零变化到无穷大时, 闭环系 统特征根在 s 平面上变化的轨迹。 增设零、极点对根轨迹的影响 (1)增加开环零点对根轨迹的影响 第一,加入开环零点,改变渐近线的条数和渐近线的倾角; 第二,增加开环零点,相当于增加微分作用,使根轨迹向左 移动或弯曲,从而提高了系统的相对稳定性。系统阻尼增加,过 渡过程时间缩短; 第三,增加的开环零点越接近坐标原点,微分作用越强,系 统的相对稳定性越好。 (2)增加开环极点对根轨迹的影响 第一,加入开环极点,改变渐近线的条数和渐近线的倾角; 第二,增加开环极点,相当于增加积分作用,使根轨迹向右 移动或弯曲,从而降低了系统的相对稳定性。系统阻 尼减小,过渡过程时间加长;
-4-
五、实验过程
第一题 Gc=1:
Gc=s+5:
Gc=(s+2)(s+3):
-5-
Gc=1/(s+5):
第二题 第 一 步 : 在 MATLAB 的 命 令 窗 口 中 键 入 “ num=[1 3];den=[1 2 0];rlocus(num,den)” ,得图如下:
第二步: 第三步:
第三题 第一步:由已知条件 ts(△=2%)≤4s,超调量≤40%得
s ( s 2)
1 。作 s5
确定系统具有最大的超调量时的根轨迹增益,并作时域 仿真验证;(2)确定系统阶跃响应无超调时的根轨迹取值 范围,并作时域仿真验证 3、已知一单位反馈系统的开环传递函数为 ss 0.8试加入一 个串联超前校正控制(其中,|z|<|p|) ,使得闭环系统 的 ts(△=2%)≤4s,超调量≤40%。
-7-
本为图标的切线与 K 的横坐标的交点所得的纵坐标再减去延迟时间。 随后按图慢慢调整数值,一定要有耐心。 第二题中,Step 的属性不能忘改,否则横轴(0,1)处恒为 1。 分母出 S 前的系数必须小于 1(阻尼比小于 1) ,之后改改分子,调整 调整 S 前的系数并保持 S^2 前的系数不变 (因为分子分母都可约分) , 曲线即可得出。
自动控制原理(系统根轨迹分析)
⾃动控制原理(系统根轨迹分析)武汉⼯程⼤学⾃动控制原理实验报告专业班级:指导⽼师:姓名:学号:实验名称:系统根轨迹分析实验⽇期:2011-12-01第三次试验⼀、实验⽬的1、掌握利⽤MATLAB精确绘制闭环系统根轨迹的⽅法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;⼆、实验设备1、硬件:个⼈计算机2、软件:MATLAB仿真软件(版本6.5或以上)实验内容1.根轨迹的绘制1)将系统特征⽅程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0,其中,K 为我们所关⼼的参数。
2)调⽤函数 r locus ⽣成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使⽤左边的选项也能画出根轨迹,使⽤左边的选项时,能返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调⽤例如,图 3.2 所⽰系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统⼀图3.3 闭环系统⼀的根轨迹及其绘制程序注意:在这⾥,构成系统s ys 时,K 不包括在其中,且要使分⼦和分母中s最⾼次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调⽤函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数⽆零点时,[zero]写成空集[]。
对于图 3.2 所⽰系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调⽤函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,⼀种⽅法是在调⽤了函数 rlocus 并得到了根轨迹后调⽤函数 r locfind 。
然后,将⿏标移⾄根轨迹图上会出现⼀个可移动的⼤⼗字。
将该⼗字的中⼼移⾄根轨迹上某点,再点击⿏标左键,就可在命令窗⼝看到该点对应的根值和 K 值了。
线性系统的根轨迹法实验报告
线性系统的根轨迹法实验报告实验二线性系统的根轨迹法一,实验目的1,掌握matlab绘制根轨迹的方法。
2,观察k值变化对系统稳定性的影响。
3,掌握系统临界稳定情况下k值得求取。
4,了解增设零点对系统稳定的影响以及改善系统稳定性的方法。
二,实验原理根轨迹的概念:所谓根轨迹就是当开环系统某一参数从零变到无穷大时,闭环系统特征方程式的根在s平面上变化的轨迹。
根轨迹与系统性能:有了根轨迹就可以分析系统的各种性能了,稳定性的判定,当开环增益从零变到无穷大时,根轨迹不会越过虚轴进入s平面的右半平面,此时K的范围为系统稳定的范围,根轨迹与虚轴的交点处的K值,为系统的临界开环增益,开根轨迹进入s平面的右半平面时所对应的K值为系统不稳定的情况。
三,实验内容A、设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)(s+5)) (1) 绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较; (2) 从实验结果上观察系统稳定的K 值范围;(3) 用simulink 环境观察系统临界稳定时的单位阶跃响应分析:绘制根轨迹的matlab文本为clfnum=1;den=conv([1 1 0],[1 5]); rlocus(num,den) %绘制系统根轨迹1,得到如图的根轨迹图:2,用鼠标点击根轨迹与虚轴处的交点可得到临界稳定的开环增益K=30,所以系统稳定的K值范围为0―30。
3,在simulink环境下按下图连接电路:取增益为30的时候在示波器下观察单位节约响应,输出波形为:由图可以看出单位阶跃响应的输出为等幅的震荡输出,所以此时系统为临界稳定状态。
当改变开环增益为50和20时观察示波器,得到输出波形分别为:由图可知当增益K为50时输出为不稳定的震荡输出,此时系统不稳定,当增益K为20时输出的波形震荡越来越缓慢,最后趋于稳定,所以此时的系统是稳定的。
B,设单位反馈控制系统的开环传递函数为G(S)=K(s+3)/s(s+1)(s+2)(1) 仿照上题绘制系统的根轨迹,并判断系统的稳定性; 参照第一题得到matlab命令文本为:clfnum=1;den=conv([1 1 0],[1 2]); rlocus(num,den) %绘制系统根轨迹得到如图的根轨迹图:1,由图可知根轨迹没有进入s平面右半平面,所以系统在K=0到K=?都是稳定的。
自动控制原理-线性系统的根轨迹实验报告
线性系统的根轨迹一、 实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、 实验容1. 请绘制下面系统的根轨迹曲线。
)136)(22()(22++++=s s s s s K s G )10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++=s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。
2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。
三、 实验结果及分析1.(1) )136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:num=[1];den=[1 8 27 38 26 0];rlocus(num,den)[r,k]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus')运行结果:选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =0.0021 + 0.9627ik =28.7425r =-2.8199 + 2.1667i-2.8199 - 2.1667i-2.3313-0.0145 + 0.9873i结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。
由根轨迹图和运行结果知,当0<K<28.7425时,系统总是稳定的。
(2) )10)(10012)(1()12()(2+++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:num=[1 12];den=[1 23 242 1220 1000];rlocus(num,den)[k,r]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')运行结果:选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =k =1.0652e+003r=-11.4165 + 2.9641i-11.4165 - 2.9641i-0.0835 + 9.9528i-0.0835 - 9.9528i结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。
自动控制系统的根轨迹作图实验报告
实验3 控制系统的根轨迹作图一、实验目的1.利用计算机完成控制系统的根轨迹作图;2.了解控制系统根轨迹图的一般规律3.利用根轨迹进行系统分析及校正。
二、实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。
2.练习相关M 函数根轨迹作图函数:rlocus(sys)rlocus(sys,k)r=rlocus(sys)[r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。
格式1:控制系统的结构图如图所示。
输入变量sys 为LTI 模型对象,k 为机器自适应产生的从0→∞的增益向量, 绘制闭环系统的根轨迹图。
格式2:k 为人工给定的增益向量。
格式3:返回变量格式,不作图。
R 为返回的闭环根向量。
格式4:返回变量r 为根向量,k 为增益向量,不作图。
更详细的命令说明,可键入“help rlocus”在线帮助查阅。
例如:系统开环传递函数为)3)(1()(++=s s s k s G g方法一:根轨迹作图程序为k=1; %零极点模型的增益值z=[]; %零点p=[0,-1,-3]; %极点sys=zpk(z,p,k); %零点/极点/增益模型rlocus(sys) %作出的根轨迹图如图所示。
方法二:s=tf('s'); G1=1/(s*(s+1)*(s+3));rlocus(G1);gridK1=12;figure;step(feedback(G1*K1,1)) % 绘制K1=12的闭环单位反馈阶跃响应曲线闭合时域仿真simulink 模型:三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。
1. )2)(1()(01++=s s s k s G g要求: (1)准确记录根轨迹的起点.终点与根轨迹的条数(2)确定根轨迹的分离点与相应的根轨迹增益(3)确定临界稳定时的根轨迹增益k gL 。
2. )164)(1()1()(202++-+=s s s s s k s G g要求: 确定根轨迹与虚轴交点并确定系统稳定的根轨迹k g 增益范围。
控制系统的根轨迹分析实验报告
一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。
2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。
3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。
4. 培养实验操作能力和数据处理能力。
二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。
通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。
三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
自动控制原理实验报告--控制系统的根轨迹和频域特性分析
本科实验报告课程名称:自动控制原理实验项目:控制系统的根轨迹和频域特性分析实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 绘制系统的根轨迹,并对系统进行分析; 2.学会利用MATLAB 对系统进行频域特性分析。
二、实验内容和原理:1.基于MATLAB 的控制系统根轨迹分析 1)利用MATLAB 绘制系统的根轨迹利用rlocus( )函数可绘制出当根轨迹增益k 由0至+∝变化时,闭环系统的特征根在s 平面变化的轨迹,该函数的调用格式为[r,k]=rlocus(num,den) 或 [r,k]=rlocus(num,den,k)其中,返回值r 为系统的闭环极点,k 为相应的增益。
rlocus( )函数既适用于连续系统,也适用于离散系统。
rlocus(num,den)绘制系统根轨迹时,增益k 是自动选取的,rlocus(num,den, k)可利用指定的增益k 来绘制系统的根轨迹。
在不带输出变量引用函数时,rolcus( )可在当前图形窗口中绘制出系统的根轨迹图。
当带有输出变量引用函数时,可得到根轨迹的位置列向量r 及相应的增益k 列向量,再利用plot(r,‘x’)可绘制出根轨迹。
2)利用MATLAB 获得系统的根轨迹增益 在系统分析中,常常希望确定根轨迹上某一点处的增益值k ,这时可利用MATLAB 中的rlocfind( )函数,在使用此函数前要首先得到系统的根轨迹,然后再执行如下命令[k,poles]=rlocfind(num,den) 或 [k,poles]=rlocfind(num,den,p)其中,num 和den 分别为系统开环传递函数的分子和分母多项式的系数按降幂排列构成的系数向量;poles 为所求系统的闭环极点;k 为相应的根轨迹增益;p 为系统给定的闭环极点。
例3-1 已知某反馈系统的开环传递函数为)2)(1()()(++=s s s ks H s G试绘制该系统根轨迹,并利用根轨迹分析系统稳定的k 值范围。
根轨迹校正实验报告
根轨迹校正实验报告一、实验目的本实验旨在通过观察系统的根轨迹,对系统进行校正,以达到控制系统的稳定性、快速性和精确性要求。
二、实验原理1. 根轨迹根轨迹是指在极坐标系下,由系统特征方程的根在复平面内的运动轨迹。
2. 根轨迹的性质- 当系统的开环传递函数中,理论上根轨迹的起点是传递函数零点的位置。
- 根轨迹对称于实轴。
- 根轨迹总是从系统的零点出发,逐渐趋向于系统的极点。
3. 根轨迹设计的基本要求- 所有根轨迹应该位于左半平面。
- 根轨迹的密度越大,系统的稳定性越好。
- 根轨迹与虚轴的交点个数为系统开环传递函数的极点数与零点数之差。
- 根轨迹经过的区域越小,系统的快速性越好。
三、实验步骤本次实验使用了MATLAB软件进行根轨迹校正实验,具体步骤如下:1. 给定开环控制系统的传递函数,并画出其对应的零极点分布图。
通过观察零极点的位置,确定系统的初始根轨迹起点。
2. 使用MATLAB的rlocus函数,绘制出开环根轨迹。
通过该函数,我们可以根据系统传递函数的特点,得到根轨迹的形状。
3. 根据根轨迹的形状和性质,校正系统。
可以通过调整控制器的参数或改变系统的结构等方式,来使根轨迹满足系统的要求。
4. 经过多次调整和校正,得到符合要求的根轨迹。
通过观察根轨迹的形状和分布,判断系统是否稳定、快速和准确。
四、实验结果与分析经过根轨迹校正,我们得到了一条符合要求的根轨迹。
通过分析根轨迹的形状和性质,我们可以得出以下结论:1. 系统的稳定性由于根轨迹位于左半平面,且大部分根轨迹较为密集,因此系统的稳定性较好。
没有根轨迹位于右半平面,避免了系统的不稳定性。
2. 系统的快速性根轨迹的起点与旁边的极点较近,根轨迹与虚轴的交点附近也没有极点,因此根轨迹经过的区域较小。
这意味着系统的快速性较好,能够快速响应输入变化。
3. 系统的准确性根轨迹与实轴的交点个数与系统的极点数与零点数之差相符,说明系统的准确性较好。
这样的根轨迹设计使得系统能够准确响应输入信号,实现精确控制。
实验2 线性系统的根轨迹分析
自动控制理论实验报告
实验二 线性系统的根轨迹分析
哈尔滨工业大学
实验二 线性系统的根轨迹分析
一、实验目的
1、掌握使用MATLAB绘制控制系统根轨迹图的方法;
2、掌握根据根轨迹法对控制系统进行性能分析方法。
二、 实验设备
Pc机一台,MATLAB软件。
三、实验内容
A、已知一负反馈系统的开环传递函数为
(1)绘制根迹。
(2)选取根轨迹与虚轴的交点,并确定系统稳定的根轨迹增益K的范围 。
(3)确定分离点的超调量 及开环增益K。
(4)用时域相应曲线验证系统稳定的根轨迹增益K的范围
(5)分析根轨迹的一般规律。
B、. 已知系统的开环传递函数为:
求:1)绘制根轨迹。
2)选择系统当阻尼比 =0.7时系统闭环极点的坐标值及增益K值。
分析系统性能。
四、实验结果与分析
A:1、根轨迹
2、由根轨迹图知,与虚轴交点i=4.46,增益K=12,故K<12时系统稳定
3、由根轨迹图知,分离点超调量Mp=0%,增益K=0.458
4、将不同的K带入时域响应,如下图
由图可知当K=11.9时系统依旧稳定,但当K=12时系统已经开始震荡,进入临界稳定。故与根轨迹结论一致。
超调量越靠近虚轴越大,系统处于欠阻尼状态,其动态响应将出现衰减振荡,而且越靠近虚轴,增益K越大,阻尼越小,振荡频率 越高,振幅衰减越大。
5)当根轨迹与虚轴相交时,闭环根位于虚轴上,闭环极点是一对纯虚根,阻尼 ,超调量最大,系统处于无阻尼状态,其动态响应将出现等幅振荡。此时对应的增益 ,称为临界稳定增益。
5、根轨迹的一般规律
1)根轨迹,随着k值从 变化,趋向无穷远处或者零点。
《模块化自控原理》线性系统的根轨迹分析实验
《模块化自控原理》线性系统的根轨迹分析实验模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。
下面是对该实验的详细说明和分析。
1.实验目的1.1理解线性系统的根轨迹概念及其重要性;1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;1.3掌握根轨迹分析实验的具体步骤;1.4提高实验操作和数据处理的能力。
2.实验原理2.1根轨迹的概念根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。
2.2根轨迹的画法根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。
根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。
2.3根轨迹分析的应用根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;-根轨迹与虚轴交点奇数个则系统不稳定;-根轨迹的分布越往左上角或右上角,系统的动态特性越好。
3.实验装置和器材3.1实验装置数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。
3.2实验器材电脑、电源线、连接线、示波器探头等。
4.实验步骤4.1连接实验装置将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器等设备进行连接。
4.2系统参数调整设置合适的实验参数,包括采样频率、控制周期、信号幅值等。
4.3系统根轨迹绘制在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函数和稳定域范围,绘制系统的根轨迹。
4.4根轨迹分析根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。
4.5记录实验数据记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。
(仅供参考)自动控制理论实验报告-根轨迹仿真分析
编号:根轨迹仿真分析实验报告学生姓名专业班级学号日期自动控制理论根轨迹仿真分析实验报告一、实验目的1.学习和掌握根轨迹的原理及绘制方法;2.掌握开环零、极点在不同配置时,闭环根轨迹的变化特点及对系统动态性能的影响;3.掌握当增加开环零、极点时,闭环根轨迹的变化特点及对系统动态性能的影响;4.知道产生零度根轨迹的原因,了解参数根轨迹的绘制方法;5.了解运用计算机仿真绘制根轨迹的方法。
二、实验内容1.观察二极点一零点系统的根轨迹。
(1)指出该根轨迹的起始点与终止点,并说明它们与开环传函零、极点的关系;(2)指出根轨迹的分支数,在图上读出分离点坐标;(3)指出该类型根轨迹图形的特点,并在进一步实验中验证。
2.改变开环零极点位置对根轨迹的影响。
(1)给定一组Z ,p 1,p 2的值,绘出它的根轨迹;(2)取1'1p p =,2'2p p =,分别使Z Z >',Z Z <',绘出根轨迹,观察改变开环零点位置对系统性能的影响; (3)取Z Z =',改变'1p 、'2p 与p 1、p 2的大小关系,绘出根轨迹,观察改变开环极点位置对系统性能的影响。
3.改变零极点个数对根轨迹的影响。
(1)输入参数Z ,观察当增加一个开环零点时根轨迹的变化,零点位置变化对根轨迹的影响,对闭环系统的响应的影响;图2.1图2.2图2.3(2)输入参数P ,观察当增加一个开环极点时根轨迹的变化,极点位置变化对根轨迹的影响,对闭环系统的响应的影响;(3)观察同时引入开环极点和零点时,闭环根轨迹的变化和闭环系统的响应的变化;(4)观察引入重极点或者重零点时系统的根轨迹;(5)观察增加一对开环偶极子时系统根轨迹的变化,以及系统动态响应和稳态特性的变化;(6)观察当引入的开环零极点与原系统零极点对消时根轨迹的变化。
4.互逆系统的根轨迹。
()()()()()()()()()()()()32132323212211+++++=+++++=s s s s s s s H s G s s s s s s s H s G 观察如式(2-1)描述的互逆系统根轨迹的异同。
【免费下载】 线性系统的根轨迹-自动控制原理实验报告
%绘制系统的根轨迹
G_c=feedback(G,1); %形成单位负反馈闭环系统
step(G_c)
60 0.7
40 0.82
0.91 20
0.975
0
0.975 -20
0.91
-40 0.82
0.7 -60
-60 -50
0.56
0.56 -40
Imaginary Axis
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
控制系统的根轨迹分析实验报告
控制系统的根轨迹分析实验报告控制系统的根轨迹分析实验报告引言:控制系统是现代工程中非常重要的一部分,它可以帮助我们实现对各种物理过程的自动控制。
而根轨迹分析作为一种重要的分析方法,可以帮助我们了解系统的稳定性和动态响应特性。
本实验旨在通过根轨迹分析方法,对一个控制系统进行分析,并得出相应的结论。
实验目的:1. 学习根轨迹分析方法的基本原理和步骤;2. 通过实验分析,了解控制系统的稳定性和动态响应特性;3. 掌握如何根据根轨迹分析结果进行控制系统设计和优化。
实验步骤:1. 实验准备:a. 搭建好控制系统实验平台,包括传感器、执行器和控制器等;b. 确定实验所需的输入信号和采样频率。
2. 数据采集:a. 将输入信号输入到系统中,并采集输出信号;b. 通过数据采集设备将输出信号转换为数字信号。
3. 数据处理和分析:a. 使用MATLAB等软件,将采集到的数据导入,并进行根轨迹分析;b. 根据根轨迹图,分析系统的稳定性和动态响应特性。
实验结果与讨论:通过根轨迹分析,我们得到了系统的根轨迹图。
根轨迹图是描述系统极点随控制参数变化而轨迹的图形,可以直观地反映系统的稳定性和动态特性。
根据根轨迹图,我们可以得出以下结论:1. 系统的稳定性:根轨迹图上的点都位于左半平面,则系统是稳定的;若存在点位于右半平面,则系统是不稳定的。
2. 系统的阻尼比:根轨迹图上的曲线越靠近实轴,则系统的阻尼比越小;曲线越远离实轴,则系统的阻尼比越大。
3. 系统的自然频率:根轨迹图上的曲线越接近原点,则系统的自然频率越小;曲线越远离原点,则系统的自然频率越大。
根据以上分析,我们可以得出对控制系统的一些优化建议:1. 若系统不稳定,在根轨迹图上找到导致不稳定的点,并调整控制参数,使其移动到左半平面,从而提高系统的稳定性。
2. 若系统的阻尼比过小,可能导致系统的动态响应过度振荡,可以通过调整控制参数来增加阻尼比,从而减小振荡幅度。
3. 若系统的自然频率过大,可能导致系统响应过快,可能引起过冲或不稳定,可以通过调整控制参数来减小自然频率,从而改善系统的响应特性。
自动控制原理实验-系统的根轨迹分析
2013 年 11 月 18 日
姓名 学号 成绩 指导 教师
实验课程名称 实验项目名称
一、实验目的 二、实验内容
三、使用仪器、材料
四、实验过程原始记录(程序、数据、图表、计算等) 五、实验结果及分析
一、实验目的
1.掌握使用MATLAB 系统绘制根轨迹的方法; 2.掌握由根轨迹分析系统性能的方法; 3. 通过仿真结果和理论计算的对照,加深对相应知识点的理解。
b=6; Gs2=tf([1,b],[1,a,0,b]); figure(3) pzmap(Gs2); figure(4) rlocus(Gs2);
实验 2.
代码:Gs=tf([1,1],[1,4,15,-4,-16]); figure(1) pzmap(Gs); figure(2) rlocus(Gs); rlocfind(Gs) 实验结果截图:
试绘制该系统的根轨迹,并确定使闭环系统稳定的参数k 的范围。
三、实验原理
1. pzmap 绘制系统的零极点图
格式1:pzmap(A,B,C,D) [p,z]=pzmap(A,B,C,D) 格式2:pzmap(num,den) [p,z]=pzmap(num,den) 格式3:pzmap(p,z) 说明:极点用“×”表示,零点用“o”表示。对于不带返回参数的将绘制零极点图。 对于带有返回参数的将不作图,其中返回参数P 为极点的列向量, z 为零点的列 向量。格式3 是将已知的零点z 极点p 绘制在复平面上。
五、实验结果及分析 实验 1 (1)由图可知,当 k>0 时,总有闭环特征根在 s 右半平面,故系统不稳定。 (2)在该系统增加一个开环零点(s+2)后,系统稳定;
在该系统增加一个开环零点(s+6)后,系统不稳定由以上对比可以看出,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性系统的根轨迹
一、 实验目的
1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、 实验内容
1. 请绘制下面系统的根轨迹曲线。
)
136)(22()(22++++=s s s s s K s G )
10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++=
s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观
察增加极、零点对系统的影响。
三、 实验结果及分析
1.(1) )
136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:
num=[1];
den=[1 8 27 38 26 0];
rlocus(num,den)
[r,k]=rlocfind(num,den)
grid
xlabel('Real Axis'),ylabel('Imaginary Axis')
title('Root Locus')
运行结果:
选定图中根轨迹与虚轴的交点,单击鼠标左键得:
selected_point =
0.0021 + 0.9627i
k =
28.7425
r =
-2.8199 + 2.1667i
-2.8199 - 2.1667i
-2.3313
-0.0145 + 0.9873i
-0.0145 - 0.9873i
结论:
根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。
由根轨迹图和运行结果知,当0<K<28.7425时,系统总是稳定的。
(2) )
10)(10012)(1()12()(2+++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:
num=[1 12];
den=[1 23 242 1220 1000];
rlocus(num,den)
[k,r]=rlocfind(num,den)
grid
xlabel('Real Axis'),ylabel('Imaginary Axis')
title('Root Locus')
运行结果:
选定图中根轨迹与虚轴的交点,单击鼠标左键得:
selected_point =
0.0059 + 9.8758i
k =
1.0652e+003
r=
-11.4165 + 2.9641i
-11.4165 - 2.9641i
-0.0835 + 9.9528i
-0.0835 - 9.9528i
结论:
根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。
由根轨迹图和运行结果知,当0<K<1065.2时,系统总是稳定的。
(3))11.0012.0)(10714.0()105.0()(2++++=s s s s K s G 的根轨迹的绘制: MATLAB 语言程序:
num=[0.05 1];
den=[0.0008568 0.01914 0.1714 1 0];
rlocus(num,den)
[k,r]=rlocfind(num,den)
grid
xlabel('Real Axis'),ylabel('Imaginary Axis')
title('Root Locus')
运行结果:
选定图中根轨迹与虚轴的交点,单击鼠标左键得:
selected_point =
0.0237 + 8.3230i
k =
7.6385
r =
-0.0916 + 8.4713i
-0.0916 - 8.4713i
-11.0779 + 1.2238i
-11.0779 - 1.2238i
结论:
根轨迹与虚轴有交点,所以在K从零到无穷变化时,系统的稳定性会发生变化。
由根轨迹图和运行结果知,当0<K<7.6385时,系统总是稳定的。
(4)根轨迹绘制规则分析:
由以上根轨迹图知,根轨迹起于开环极点,终于开环零点。
在复平面上标出系统的开环零极点后,可以根据其零极点数之和是否为奇数确定其在实轴上的分布。
根轨迹的分
支数等于开环传递函数分子分母中的最高阶次,根轨迹在复平面上是连续且关于实轴对称的。
当开环传递函数的分子阶次高于分母阶次时,,根轨迹有n-m 条沿着其渐近线趋于无穷远处。
根轨迹位于实轴上两个相邻的开环极点或者相邻零点之间存在分离点,两条根轨迹分支在复平面上相遇在分离点以某一分离角分开;不在实轴上的部分,根轨迹以起始角离开开环复极点,以终止角进入开环复零点。
有的根轨迹随着K 的变化会与虚轴有交点。
在画图时,确定了以上的各个参数或者特殊点后,就可得系统的根轨迹概略图。
2. 观察增加极、零点对系统的影响:
(1)通过添加零、极点凑系统)136)(22()(22++++=s s s s s K s G : 先令G(s)=1/s,则可得其单位阶跃响应波形图为
然后逐步添加如下:
第一步、添加共轭极点-1+j1和-1-j1得到G(s)=1/[s(s2+2s+2)],运行可得其单位阶跃响应波形为
第二步、添加共轭极点-3+j2和-3-j2得到G(s)=1/[s(s2+2s+2)( s2+6s+13)],运行后可得其单位阶跃响应波形为
(2)通过添加零、极点凑系统)10)(10012)(1()12()(2+++++=s s s s s K s G : 先令G(s)=1/(s+1),则可得其单位阶跃响应波形为
然后逐步添加如下:
第一步、添加共轭极点-6+j8和-6-j8得到G(s)=1/[(s+1)(s 2+12s+100)],运行后可得其 单位阶跃响应波形为
第二步、添加极点-10得到G(s)=1/[(s+1)(s2+12s+100)(s+10)],运行后可得其单位阶跃响应波形为
第三步、添加零点-12得到G(s)=(s+12)/[(s+1)(s2+12s+100)(s+10)], 运行后可得其单位阶跃响应波形为
(3)通过添加零、极点凑系统)11.0012.0)(10714.0()105.0()(2++++=s s s s K s G : 先令G(s)=1/s,则可得其单位阶跃响应波形图为
然后逐步添加如下:
第一步、添加极点-1/0.0714得到G(s)=1/[s(0.0714s+1)], 运行后可得其单位阶跃响应波形为
第二步、添加一对共轭极点,即分子添加项(0.012s2+0.1s+1)后可得到
G(s)=1/[s(0.0714s+1)( 0.012s2+0.1s+1)]
运行后可得其单位阶跃响应波形为
第三步、添加极点-20得到G(s)=1/[s(0.0714s+1)(0.012s2+0.1s+1)(0.05s+1)],运行后可得
其单位阶跃响应波形为
(4)结论:
由图知,给系统添加开环极点会使系统的阶次升高,若添加的合理,会使系统的稳态误差减小,同时若添加的不合理,反倒会使系统不稳定;给系统添加开环零点,可使原来不稳定的系统变成稳定的系统。
四、实验心得与体会
本次实验我们首先熟悉了MATLAB用于控制系统中的一些基本编程语句和格式,随后又利用MATLAB语句绘制系统的根轨迹。
课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图,而用MATLAB可以方便地绘制精确的根轨迹图,并可通过自己添加零极点或者改变根轨迹增益的范围来观测参数变化对特征根位置的影响。
在绘制系统根轨迹的过程中,我们逐渐掌握了用根轨迹分析系统性能的图解方法。
根轨迹分析法较时域分析法更加方便和直观,它让我们看到了参数变化对系统性能的影响具体方面,让我们理解得更加透彻。
要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。