光纤通信使用波长(波段)历史简述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信商用化以来,由于市场需求和技术进步的推动,光纤品种和特性及应用经历了下述三个重要发展阶段。
1、多模光纤(第一窗口、第二窗口)
1972-1981年间是多模光纤研发和应用期。前期第一个使用的波长是850nm,称为第一窗口。先开发使用阶跃型多模光纤。接着开发了A1a类梯度多模光纤(50/125),其衰减-km,带宽200-800MHz •km,数值孔径±或±;以后又开发使用A1b类梯度多模光纤(125),其衰减-km,带宽100-800MHz •km,数值孔径±。这两种光纤与850nm附近波长LED(发光二极管)相配合,形成光通信系统。LED 光谱宽度40nm,注入光功率5或20μW,最大比特速度5或60Mb/s。
70年代末到80年代初,又开发了第二窗口(1300nm)。A1a类光纤衰减-km,带宽200-1200MHz •km;A1b类光纤衰减-km,带宽200-1000MHz•km。与它们相配合使用的是高辐射LED,其光谱宽度120nm,注入光功率20μW,最大比特率100Mb/s。
2、及、单模光纤(第二、三窗口)
1982-1992年是及、单模光纤开始大规模应用期,打开了光纤的第二窗口(1310nm)和第三窗口(1550nm)。1973-1977年世界各大光纤制造商开发了各种先进的预制棒生产工艺。康宁开发出OVD技术;日本的NTT、住友、古河、藤仓等联合开发出VAD技术;朗讯改善了MCVD技术;荷兰菲力浦开发了PCVD技术。1982年由美国开始,日、德等国家紧跟,世界上开始大量建设单模光纤长途工程。单模光纤市场需求大增刺激了其大规模生产。这时康宁的OVD进一步提高了沉积速率,VAD、MCVD、PCVD都外加套管来作为增大预制棒的措施。以后各家都照着两步法的混合工艺来加大预制棒。90年代法国阿尔卡特开发了APVD技术(MCVD+等离子喷涂工艺)。各大光纤制造商制造技术的重大进步,为常规单模光纤的广泛应用创造了更好的条件。1984年开始用第三窗口(1550nm)。1984年CCITT发布和标准。到1985年,光纤1310nm损耗已达km,1550nm损耗已达km。
1985年日本、美国研发的色散位移光纤商用化,其特点是把零色散点从第二窗口移到第三窗口,1550nm波长不仅损耗最低,而且色散也最小,1988年CCITT发布标准。此光纤大量用于日本的通信干线。90年代初,掺铒光纤放大器(EDFA)开始商用化促使密集波分复用(DWDM)提上议事日程。但光纤在1550nm波长处的零色散造成DWDM系统波道间的非线性干扰十分严重,因而没在世界上推广开来。1995年我国建设京九光缆工程,24芯纤中用了六根光纤,一直没开通,以后我国也没用光纤。
这一时期还产生了一种截止波长移位的光纤,它在1550nm处不但损耗低,而且微弯损耗小,适合使用光放大器的长途干线系统和海底光缆系统,CCITT1988年发布标准。
3、光纤通信窗口全打开,光纤特性大进展
1993-2006期间光纤通信窗口扩展到4、5窗口及S波段,光纤通信窗口全打开,新开发四种新品种光纤,光纤特性更趋完善。
非零色散位移单模光纤光纤(第三、第四窗口)
为抑制密集波分复用(DWDM)系统中的四波混频(FWM)和交叉相位调制(XPM),减小光通道间的非线性干扰,非零色散位移光纤(WZDSF)在1993年问世了。先是朗讯推出真波光纤,接着康宁推出了大有效面积LEAF光纤。这些光纤一开始工作在第三窗口,即C波段(1530-1565nm),1995年后扩展到第四窗口,即L波段(1565-1625nm)。1996年ITU-T制定了标准。1998后在全世界得到广泛应用。以后光纤特性逐渐提高,标准也在不断趋向完善。
低水峰单模光纤(第五窗口)
朗讯1998年推出了全波光纤即低水峰光纤,使1383nm的水峰几乎不存在(衰减〈km〉,打开了光纤的第五窗口,即E波段(1360-1460nm)。中国1999年开始用全波光纤做光缆,用于九江电信。2000年ITU-T制定了标准。2001年康宁做出了低水峰光纤。2002年光纤在全世界推广开来。从此单模光纤从1260nm至1625nm波长范围内,具有优异的衰减性能。2002年5月ITU-T对于单模光纤通信系统光波段划分为O、E、S、C、L、U。多模光纤850nm称为第一窗口,单模光纤O带为第2窗口,C 带称第3窗口,L带为第4窗口,E带为第5窗口。把多模光纤和单模光纤的通信波段汇总起来可列出下表。