C常用经典算法及其实现修订稿

合集下载

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全以下是一个非常简单的C语言代码示例,实现了冒泡排序算法。

冒泡排序是一种简单的排序算法,也是最经典和常用的排序算法之一```c#include <stdio.h>//冒泡排序函数void bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)//如果前一个元素大于后一个元素,交换它们if (arr[j] > arr[j+1])int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}int maiint n, i;printf("请输入数组中元素的个数:");scanf("%d", &n);int arr[n];printf("请输入数组元素:");for (i = 0; i < n; i++)scanf("%d", &arr[i]);}bubbleSort(arr, n);printf("排序后的数组为:");for (i = 0; i < n; i++)printf("%d ", arr[i]);}return 0;```这段代码实现了一个简单的冒泡排序算法。

用户可以输入一个整数数组,然后使用冒泡排序对数组进行排序,并打印出结果。

注意事项:1.该代码需要在支持C语言的编译器或集成开发环境中运行。

2. 在代码中使用了`scanf`函数来从用户输入获取数组元素,请确保输入的格式匹配。

3.该代码中的冒泡排序算法是一种基本的算法,适用于小规模数据,对于大规模数据可能效率较低,不适用于高性能要求的场景。

c语言循环结构经典算法

c语言循环结构经典算法

c语言循环结构经典算法C语言循环结构是程序设计中常用的一种结构,通过循环可以重复执行一段代码,实现重复性的任务。

下面列举了10个经典的算法案例,每个算法都有其特定的应用场景和解决问题的方法。

1. 阶乘计算:计算一个数的阶乘,即该数与小于它的所有正整数的乘积。

通过循环结构可以逐步累乘,最终得到阶乘结果。

2. 素数判断:判断一个数是否为素数,即只能被1和自身整除的数。

通过循环结构可以逐一判断该数是否能被小于它的每个数整除,若能则不是素数。

3. 斐波那契数列:斐波那契数列是指从第3项开始,每一项都等于前两项之和。

通过循环结构可以逐一计算每一项的值,从而得到完整的斐波那契数列。

4. 最大公约数:求两个数的最大公约数,即能同时整除两个数的最大正整数。

通过循环结构可以从较小的数开始逐一判断能否同时整除两个数,找到最大的能整除的数即为最大公约数。

5. 最小公倍数:求两个数的最小公倍数,即能同时被两个数整除的最小正整数。

通过循环结构可以从较大的数开始逐一判断能否被两个数同时整除,找到最小的能被整除的数即为最小公倍数。

6. 简单排序:对一组数进行排序,使其按照从小到大或从大到小的顺序排列。

通过循环结构可以比较相邻的两个数的大小,若顺序不对则交换位置,直到整个序列有序。

7. 数字翻转:将一个正整数从高位到低位逆序排列。

通过循环结构可以依次取出每一位的数字,然后将其乘以相应的权重得到逆序后的结果。

8. 队列模拟:模拟队列的入队和出队操作,实现数据的先进先出。

通过循环结构可以不断接收用户的输入,并根据不同的指令执行相应的操作。

9. 栈模拟:模拟栈的入栈和出栈操作,实现数据的后进先出。

通过循环结构可以不断接收用户的输入,并根据不同的指令执行相应的操作。

10. 二分查找:在一个有序数列中查找指定的元素,通过循环结构可以不断缩小查找范围,直到找到目标元素或确定不存在。

以上是10个经典的C语言循环结构算法,每个算法都有其独特的解决问题的方法。

C语言七大算法

C语言七大算法

C语言七大算法一、概述算法是计算机程序设计中解决问题的方法和步骤的描述,是计算机科学的重要基础。

在计算机科学中,有许多经典的算法被广泛应用,并成为不可或缺的工具。

本文将介绍C语言中的七大经典算法,包括排序算法、查找算法、图算法、字符串算法、动态规划算法、贪心算法和分治算法。

二、排序算法排序是将一组元素按照特定规则进行重新排列的过程。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些排序算法在C语言中都有相应的实现,并且各有特点和适用场景。

三、查找算法查找算法用于在一组数据中查找特定值的位置或判断是否存在。

常见的查找算法有线性查找、二分查找、哈希查找等。

这些算法在C语言中的实现可以帮助我们快速地定位目标值。

四、图算法图算法用于解决与图相关的问题,包括最短路径问题、最小生成树问题、拓扑排序等。

在C语言中,我们可以利用图的邻接矩阵或邻接表来实现相关的图算法。

五、字符串算法字符串算法主要用于解决字符串匹配、替换、拼接等问题。

在C语言中,我们可以使用字符串库函数来完成一些基本的字符串操作,例如字符串比较、复制、连接等。

六、动态规划算法动态规划算法是解决一类最优化问题的常用方法,它将问题分解为多个子问题,并通过保存已解决子问题的结果来避免重复计算。

在C语言中,我们可以使用动态规划算法来解决背包问题、最长公共子序列问题等。

七、贪心算法贪心算法是一种通过每一步的局部最优选择来达到全局最优的方法。

贪心算法通常在解决最优化问题时使用,它快速、简单,并且可以给出近似最优解。

C语言中可以使用贪心算法来解决霍夫曼编码、最小生成树等问题。

八、分治算法分治算法是一种将问题分解为多个相同或类似的子问题然后递归解决的方法。

常见的分治算法有快速排序、归并排序等。

在C语言中,我们可以使用分治算法来提高程序的效率和性能。

总结:本文介绍了C语言中的七大经典算法,包括排序算法、查找算法、图算法、字符串算法、动态规划算法、贪心算法和分治算法。

非常全C语言常用算法

非常全C语言常用算法

一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。

main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。

假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。

其中t为中间变量,起到“空杯子”的作用。

注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。

main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/*以下两个if语句使得a中存放的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/*以下if语句使得b中存放的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。

“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。

例1、求1+2+3+……+100的和。

main(){int i,s;s=0; i=1;while(i<=100){s=s+i; /*累加式*/i=i+1; /*特殊的累加式*/}printf("1+2+3+...+100=%d\n",s);}【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。

10个经典的C语言基础算法及代码

10个经典的C语言基础算法及代码

10个经典的C语言基础算法及代码1.冒泡排序算法冒泡排序是一种简单但效率较低的排序算法,在每一轮遍历中比较相邻的两个元素,如果顺序不正确则交换它们,直到整个数组有序为止。

```cvoid bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-1-i; j++)if (arr[j] > arr[j+1])int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单直观的排序算法,它每次从待排序的数组中选择最小(或最大)的元素,并放到已排序的数组末尾。

```cvoid selectionSort(int arr[], int n)for (int i = 0; i < n-1; i++)int min_index = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[min_index])min_index = j;}}int temp = arr[i];arr[i] = arr[min_index];arr[min_index] = temp;}```3.插入排序算法插入排序的基本思想是将数组分为已排序和未排序两部分,每次将未排序的元素插入到已排序的合适位置。

```cvoid insertionSort(int arr[], int n)for (int i = 1; i < n; i++)int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key)arr[j+1] = arr[j];j--;}arr[j+1] = key;}```4.快速排序算法快速排序使用分治法的思想,每次选择一个基准元素,将小于基准的元素放到左边,大于基准的元素放到右边,然后递归地对左右两个子数组进行排序。

常用数学算法C语言实现

常用数学算法C语言实现

`一、基本算法1.交(两量交借助第三者)例 1、随意入两个整数,将两者的交后出。

main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b;b=t;printf("%d,%d\n",a,b);}【分析】程序中加粗部分算法的中心,好像交两个杯子里的料,必借助第三个空杯子。

假入的分3、 7,第一行出3,7;第二行出7,3。

此中 t 中量,起到“空杯子”的作用。

注意:三句句号左右的各量之的关系!【用】例 2、随意入三个整数,而后按从小到大的序出。

main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/* 以下两个if 句使得 a 中寄存的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/* 以下 if 句使得 b 中寄存的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要是形如“ s=s+A”的累加式,此式必出在循中才能被频频行,进而累加功能。

“ A”往常是有律化的表达式,s 在入循前必得适合的初,往常0。

例 1、求 1+2+3+⋯⋯ +100 的和。

main(){int i,s;s=0;i=1;while(i<=100){s=s+i;/* 累加式 */i=i+1;/* 特别的累加式*/}printf("1+2+3+...+100=%d\n",s);}【分析】程序中加粗部分累加式的典型形式,号左右都出的量称累加器,此中“i = i + 1” 特别的累加式,每次累加的1,的累加器又称数器。

C语言入门必学—10个经典C语言算法

C语言入门必学—10个经典C语言算法

C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。

它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。

在学习C语言的过程中,掌握一些经典的算法是非常重要的。

本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。

一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。

它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。

二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。

它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。

三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。

它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。

四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。

它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。

五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。

它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。

六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。

它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。

七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。

在C语言中,递归算法常用于解决树的遍历、问题分解等情况。

八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。

PID控制算法的C语言实现精修订

PID控制算法的C语言实现精修订

PID控制算法的C语言实现完整版集团标准化工作小组#Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#PID控制算法的C语言实现一 PID算法原理最近两天在考虑一般控制算法的C语言实现问题,发现网络上尚没有一套完整的比较体系的讲解。

于是总结了几天,整理一套思路分享给大家。

在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在我所接触的控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。

经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的,想想牛顿的力学三大定律吧,想想爱因斯坦的质能方程吧,何等的简单!简单的不是原始的,简单的也不是落后的,简单到了美的程度。

先看看PID算法的一般形式:PID的流程简单到了不能再简单的程度,通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。

这里我们规定(在t时刻):1.输入量为rin(t);2.输出量为rout(t);3.偏差量为 err(t)=rin(t)-rout(t);pid的控制规律为理解一下这个公式,主要从下面几个问题着手,为了便于理解,把控制环境具体一下:1.规定这个流程是用来为直流电机调速的;2.输入量rin(t)为电机转速预定值;3.输出量rout(t)为电机转速实际值;4.执行器为直流电机;5.传感器为光电码盘,假设码盘为10线;6.直流电机采用PWM调速转速用单位转/min表示;不难看出以下结论:1.输入量右口(t)为电机转速预定值(转/min);2.输出量rout(t)为电机转速实际值(转/min);3.偏差量为预定值和实际值之差(转/min);那么以下几个问题需要弄清楚:1.通过PID环节之后的U(t)是什么值呢2.控制执行器(直流电机)转动转速应该为电压值(也就是PWM占空比)。

C语言常用算法大全

C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。

C语言程序设计的常用算法

C语言程序设计的常用算法
printf("%4d",a[i]); printf("\n"); }
3、合并法排序(将两个有序数组 A、B 合并成另一个有序的数组 C,升序) 基本思想: 1)先在 A、B 数组中各取第一个元素进行比较,将小的元素放入 C 数组;
2)取小的元素所在数组的下一个元素与另一数组中上次比较后较大的元素比较,重复上述 比较过程,直到某个数组被先排完; 3)将另一个数组剩余元素抄入 C 数组,合并排序完成。 程序代码如下: #include<stdio.h>
/////////////////////////////////////////////////////////////////////////////// void main() {
int x,i; int prime(int m); printf("please input a even number(>=6):"); scanf("%d",&x); if (x<6||x%2!=0)
int a[10],p,x,i; printf("please input the array:"); for(i=0;i<10;i++)
scanf("%d",&a[i]); printf("please input the number you want find:"); scanf("%d",&x); p=0; while(x!=a[p]&&p<10)
printf("%2d",c[i]); printf("\n"); }

C语言常用简单算法

C语言常用简单算法

C语言常用简单算法C语言是一种广泛应用的编程语言,支持各种算法的实现。

以下是一些常用的简单算法,涵盖了排序、查找、递归等方面。

1. 冒泡排序(Bubble Sort):通过不断比较相邻元素的大小,将较大的元素逐步“冒泡”到数组的末尾。

2. 选择排序(Selection Sort):每次从未排序的数组中选择最小(或最大)的元素,放到已排序数组的末尾。

3. 插入排序(Insertion Sort):将数组分为已排序和未排序两个部分,每次将未排序部分中的元素插入到已排序部分的正确位置。

4. 快速排序(Quick Sort):选择一个基准元素,将数组分成两部分,将小于基准的元素放在左边,大于基准的元素放在右边,然后递归地对两部分进行排序。

5. 归并排序(Merge Sort):将待排序数组递归地分成两部分,分别进行排序,然后再将两个有序的数组合并成一个有序的数组。

6. 二分查找(Binary Search):对于有序数组,通过比较中间元素和目标值的大小,缩小查找范围,直到找到目标值或查找范围为空。

7. 线性查找(Linear Search):对于无序数组,逐个比较数组中的元素和目标值,直到找到目标值或遍历完整个数组。

8. 求阶乘(Factorial):使用递归方式或循环方式计算给定数字的阶乘。

9. 斐波那契数列(Fibonacci Sequence):使用递归方式或循环方式生成斐波那契数列。

10. 汉诺塔(Tower of Hanoi):使用递归方式实现汉诺塔问题的解决,将一组盘子从一个柱子移动到另一个柱子。

11. 判断回文数(Palindrome):判断给定数字是否为回文数,即正序和倒序相同。

12.求最大公约数(GCD):使用辗转相除法或欧几里德算法求两个数的最大公约数。

13.求最小公倍数(LCM):通过最大公约数求得最小公倍数。

14. 求质数(Prime Number):判断给定数是否为质数,即只能被1和自身整除。

c语言经典算法解析

c语言经典算法解析

c语言经典算法解析C语言作为一种广泛使用的编程语言,拥有许多经典算法,这些算法不仅在解决实际问题上非常高效,而且对于理解计算机科学的基本原理也至关重要。

本文将介绍一些C语言中常见的经典算法,并解析其实现原理。

1. 排序算法:排序是计算机科学中最基本的问题之一,C语言提供了多种排序算法的实现,例如冒泡排序、选择排序、插入排序、快速排序等。

这些算法以不同的方式对元素进行比较和交换,最终将数据按照一定的顺序排列。

2. 查找算法:查找算法用于在给定数据集中寻找特定的值。

C语言中常见的查找算法包括线性查找、二分查找、哈希查找等。

这些算法的实现原理各不相同,但都能在不同的数据规模下高效地找到目标值。

3. 图算法:图是由节点和边组成的一种数据结构,图算法用于解决与图相关的问题,例如最短路径查找、拓扑排序、最小生成树等。

C语言中可以使用邻接矩阵或邻接表等数据结构来表示图,并通过深度优先搜索或广度优先搜索等算法来进行相应的操作。

4. 字符串匹配算法:字符串匹配算法用于在一个长字符串中查找某个子串出现的位置。

常见的算法包括朴素字符串匹配算法、KMP算法、Boyer-Moore算法等。

这些算法通过不同的方式在给定的字符串中寻找匹配,从而提高查找的效率。

5. 动态规划算法:动态规划算法用于解决有重叠子问题和最优子结构特征的问题。

C语言中常用的动态规划算法有背包问题、最长公共子序列问题、最短路径问题等。

这些算法通过将大问题分解为小问题,并使用查表或记忆化搜索等技术来避免重复计算,从而提高算法的效率。

以上仅是C语言中一些经典算法的简要介绍和解析。

随着计算机科学的不断发展,还有许多其他算法可以探索和应用。

掌握这些经典算法的原理和实现有助于提高编程技能,同时也能够帮助理解计算机科学的核心概念。

通过不断学习和实践,我们可以在编程中灵活运用这些算法,解决实际问题。

C语言经典算法大全精选

C语言经典算法大全精选

C语言经典算法大全精选1.排序算法1.1冒泡排序:通过不断交换相邻元素的位置,将最大(最小)值“冒泡”到序列的末尾(开头)。

1.2插入排序:将未排序的元素逐个插入已排序的序列中,保持序列始终有序。

1.3选择排序:每次从未排序的元素中选择最小(最大)的元素,放到已排序序列的末尾(开头)。

1.4快速排序:通过递归地将序列分割为较小和较大的两部分,然后分别对两部分进行排序。

1.5归并排序:将序列递归地分割为两个子序列,分别排序后再将结果合并。

1.6堆排序:构建最大(最小)堆,然后逐步将堆顶元素与最后一个元素交换,并调整堆结构。

2.查找算法2.1顺序查找:逐个比较元素,直到找到目标元素或遍历完整个序列。

2.2二分查找:在有序序列中,通过不断缩小查找范围,找到目标元素。

2.3插值查找:根据目标元素与序列中最大、最小元素的关系,按比例选择查找范围。

2.4哈希查找:利用哈希函数将目标元素映射到一个唯一的位置,从而快速定位目标元素。

3.字符串算法3.1字符串匹配算法:在文本串中查找给定的模式串,并返回匹配位置。

3.2字符串翻转:将一个字符串逆序输出。

3.3字符串压缩:将连续出现多次的字符压缩为一个字符,并输出压缩后的字符串。

3.4字符串拆分:按照指定的分隔符将字符串拆分为多个子串,并返回子串列表。

3.5字符串反转单词:将一个句子中的单词顺序逆序输出。

4.图算法4.1深度优先:从起始顶点出发,递归地访问所有能到达的未访问顶点。

4.2广度优先:从起始顶点出发,逐层地访问与当前层相邻的未访问顶点。

4.3最小生成树:找到连接所有顶点的具有最小权值的无环边集合。

4.4最短路径:找到两个顶点之间最短路径的权值和。

4.5拓扑排序:找到一个顶点的线性序列,满足所有有向边的起点在终点之前。

5.数学算法5.1质数判断:判断一个数是否为质数(只能被1和自身整除)。

5.2求最大公约数:找到两个数的最大公约数。

5.3求最小公倍数:找到两个数的最小公倍数。

C语言经典算法大全

C语言经典算法大全

C语言经典算法大全1. 冒泡排序(Bubble Sort):比较相邻的元素,如果顺序错误就交换位置,直到整个序列有序。

2. 快速排序(Quick Sort):选择一个中间元素作为基准,将序列分成两部分,左边的元素都小于等于基准,右边的元素都大于等于基准,然后递归地对两个子序列进行排序。

3. 插入排序(Insertion Sort):将元素逐个插入到已经排序的序列中,直到整个序列有序。

4. 选择排序(Selection Sort):每次选择一个最小(或最大)的元素放到有序序列的末尾(或开头),直到整个序列有序。

5. 归并排序(Merge Sort):将序列分成若干个子序列,对每个子序列进行排序,然后再将已排好序的子序列合并成一个有序序列。

6. 希尔排序(Shell Sort):将序列划分成若干个小的子序列分别进行直接插入排序,然后逐渐减小子序列的间隔直到整个序列有序。

7. 堆排序(Heap Sort):利用堆这种数据结构进行排序,构建一个大(或小)根堆,依次将根节点(最大或最小值)和最后一个节点交换位置,然后重新调整堆。

8. 计数排序(Counting Sort):统计每个元素的出现次数,然后根据统计结果,将元素按照顺序放入相应位置,从而实现排序。

9. 桶排序(Bucket Sort):将元素分到不同的桶中,桶内元素进行排序,然后按照桶的顺序将元素取出,从而实现排序。

10.基数排序(Radix Sort):根据元素的位数进行排序,首先排个位,然后排十位,以此类推,直到排完最高位。

除了上述排序算法之外,C语言中还有许多其他经典算法,例如二分查找、递归、深度优先、广度优先、贪心算法、动态规划等等。

这些算法都有各自的特点和应用场景,对于提高编程水平和解决实际问题都有很大的帮助。

总结起来,掌握C语言的经典算法对于编程爱好者来说是非常重要的。

它们可以帮助我们更好地理解计算机科学的基本原理和数据结构,提高我们编写程序的能力和效率。

滑动平均滤波c语言_常用滤波算法及c语言程序实现

滑动平均滤波c语言_常用滤波算法及c语言程序实现

滑动平均滤波c语言_常用滤波算法及c语言程序实现滑动平均滤波是一种常用的信号处理算法,用于平滑噪声信号,降低信号的噪声干扰。

C语言是一种广泛应用于嵌入式系统和信号处理领域的编程语言。

本文将以中括号为主题,详细介绍滑动平均滤波算法以及如何使用C语言来实现该算法。

第一部分:什么是滑动平均滤波算法?滑动平均滤波算法是一种基本的数字信号处理技术,用于平滑噪声信号。

该算法通过计算信号的移动平均值,将噪声信号的高频部分滤波掉,从而得到平滑的输出信号。

滑动平均滤波算法基于以下原理:将最近N个采样值的平均值作为当前的输出值,其中N是滑动窗口的大小。

随着新的采样值的输入,最早的采样值将被抛弃,而新的采样值将被加入到滑动窗口中。

滑动平均滤波算法主要有两种实现方式:简单滑动平均滤波和指数滑动平均滤波。

简单滑动平均滤波将滑动窗口中的所有采样值进行相加,然后除以窗口大小得到平均值。

指数滑动平均滤波则使用加权平均值,新的采样值会根据一定的权重比例与旧的滑动平均值相结合。

第二部分:C语言实现简单滑动平均滤波算法下面将介绍如何使用C语言来实现简单滑动平均滤波算法。

假设我们有一个长度为N的数组来存储输入信号的采样值,我们需要计算每个采样值的滑动平均值。

首先,我们需要定义一个指向输入信号数组的指针,并初始化滑动窗口的大小N。

c#define N 10 滑动窗口大小float input[N]; 输入信号数组float simpleMovingAverage(float *input, int windowSize){int i;float sum = 0;计算滑动窗口中所有采样值的和for (i = 0; i < windowSize; i++) {sum += input[i];}返回平均值return sum / windowSize;}在上述代码中,我们定义了一个简单滑动平均滤波函数`simpleMovingAverage()`,该函数接受输入信号数组和滑动窗口的大小作为参数,并返回滑动平均值。

C+常用经典算法及其实现

C+常用经典算法及其实现

C+常用经典算法及其实现 This manuscript was revised by the office on December 10, 2020.常用算法经典代码(C++版)一、快速排序void qsort(int x,int y) a[n]数组中{int h=x,r=y;int m=a[(x+y)>>1]; a[n]数组中{for(int i=1;i<n;i++) a[n]数组中{for(int i=1;i<n;i++) n。

注:图不一定是连通的{d);d);d);d);d);d);child=l; ather=i; child=r; ather=i; a=a[l].da+a[r].da;a>a[s].da)&&(a[s].father==0)) ather=0,说明这个结点还不是别个结点mins=s; ather==0) {a[x].code=”“;}ather].lchild==x)a[x].code=a[a[x].father].code+'0';if(a[a[x].father].rchild==x) a[x].code=a[a[x].father].code+'1';if(a[x].lchild!=0)inorder(a[x].lchild);child==0)&&(a[x].rchild==0))a<<':'<<a[x].code<<endl; if(a[x].rchild!=0) inorder(a[x].rchild);rom=1;elist[i].to=i+1;elist[i].w=a[1][i+1];}for (int i=1;i<=n-1;i++)<elist[m].w) m=j;if(m!=i) >a[elist[i].to][elist[j].to])elist[j].w=a[elist[i].to][elist[j].to];}}for(int i=1;i<=n-1;i++);}如果要求出哪些边构成最小生成树,在更新第i+1至n-1条边到已经生成的树中最小距离时(上面代码中加粗的部分),还要加上elist[j].from=elist[i].to;语句,即在更新权值时,还应该更新起点。

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全一、排序算法1、冒泡排序它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

设数组为a[0…n-1]C语言实现如下://冒泡排序void bubbleSort(int arr[], int n)int i, j, temp;bool flag;//表示n次排序过程for(i = 0; i < n - 1; i++)//每次排序将最大的数放到最右边flag = false;for(j= 0; j< n-1-i; j++)if(arr[j] > arr[j+1])temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;flag = true;}}//如果趟排序没有进行数据交换,说明数据已经有序if (flag == false)break;}}2、快速排序它采用了分治法的思想,基于快速排序的思想,可以对数组进行非常快速的排序。

设数组为a[0…n-1]C语言实现如下://快速排序// arr[left] 为起始值,arr[right] 为末尾值void quickSort(int arr[], int left, int right)int i, j, base;if (left > right)return;}i = left;j = right;base = arr[left];//定义基准值,可以是数组的第一个值while (i != j)// 因为基准值是 arr[left],所以左边右移,直到找到小于基准值的值while (arr[j] >= base && i < j)j--;}// 因为基准值是 arr[left],所以右边左移while (arr[i] <= base && i < j)i++;}//如果i<j,表示找到了,交换位置if (i < j)int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}//将基准值放到i位置arr[left] = arr[i];。

c语言常见算法

c语言常见算法

c语言常见算法C语言是一种非常流行的编程语言,广泛应用于软件开发和计算机科学领域。

在C语言中,算法是解决问题的关键步骤。

本文将介绍一些常见的C语言算法,包括排序算法、搜索算法和递归算法。

一、排序算法1. 冒泡排序算法冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的两个元素,并交换它们的位置,直到整个列表排序完成。

2. 插入排序算法插入排序算法通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3. 快速排序算法快速排序是一种高效的排序算法,它通过选择一个元素作为基准,将列表分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。

二、搜索算法1. 线性搜索算法线性搜索算法逐个地检查列表中的元素,直到找到目标元素或者遍历完整个列表。

2. 二分搜索算法二分搜索算法适用于已排序的列表。

它通过比较目标元素和列表的中间元素,将列表分为两部分,然后在适当的部分继续搜索,直到找到目标元素或者确定目标元素不存在。

三、递归算法递归算法是一种自我调用的算法,它将问题分解成更小的子问题,然后在子问题上递归地调用自身,直到达到基本情况。

对于C语言中的算法来说,递归函数的编写非常重要。

需要确保递归的终止条件,并正确处理递归调用中传递的参数。

四、其他常见算法1. 图算法图算法是解决与图相关的问题的算法。

它可以解决最短路径问题、最小生成树问题等。

2. 动态规划算法动态规划算法是一种通过将问题分解成更小的子问题来解决复杂问题的算法。

它通常用于解决最优化问题。

3. 贪心算法贪心算法通过每一步选择当前最优解来构建问题的解决方案。

它通常不能保证找到全局最优解,但在某些情况下可以得到较好的近似解。

总结C语言常见算法涵盖了排序算法、搜索算法、递归算法以及其他常用的算法。

对于每个算法,我们都介绍了其基本原理和应用场景。

在实际编程中,根据具体的问题,选择合适的算法是非常重要的。

熟悉C语言中的常见算法,可以帮助程序员更好地解决问题,提高代码的效率与质量。

crc16常见的标准算法及c语言实现

crc16常见的标准算法及c语言实现

crc16常见的标准算法及c语言实现CRC16是一种常用的校验算法,用于检测数据传输或存储过程中是否发生错误。

CRC16有多种标准算法,其中最常见的是CRC-16-CCITT和CRC-16-XMODEM。

以下是CRC-16-CCITT的C语言实现:```c#include <stdint.h>uint16_t crc16_ccitt(uint8_t *data, size_t length) {uint16_t crc = 0xFFFF;while (length--) {crc ^= *data++ << 8;for (size_t i = 0; i < 8; i++) {if (crc & 0x8000) {crc = (crc << 1) ^ 0x1021;} else {crc <<= 1;}}}return crc;}```以下是CRC-16-XMODEM的C语言实现:```c#include <stdint.h>uint16_t crc16_xmodem(uint8_t *data, size_t length) { uint16_t crc = 0xFFFF;while (length--) {crc ^= *data++ << 8;for (size_t i = 0; i < 8; i++) {if (crc & 0x8000) {crc = (crc << 1) ^ 0x04C11DB7;} else {crc <<= 1;}}}return crc;}```需要注意的是,以上代码中的数据是按照字节顺序进行处理的,因此在使用时需要保证数据没有字节序问题。

另外,CRC算法的实现取决于具体的标准,不同的标准可能会使用不同的初始值、多项式和反转字节顺序等参数。

因此,在实际使用时需要根据具体的标准选择合适的实现方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C常用经典算法及其实

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
常用算法经典代码(C++版)
一、快速排序
void qsort(int x,int y) a[n]数组中
{int h=x,r=y;
int m=a[(x+y)>>1]; a[n]数组中
{for(int i=1;i<n;i++) a[n]数组中
{for(int i=1;i<n;i++) n。

注:图不一定是连通的
{d);d);d);d);d);d);child=l; ather=i; child=r; ather=i;
a=a[l].da+a[r].da; a>a[s].da)&&(a[s].father==0)) ather=0,说明这个结点还不是别个结点
mins=s; ather==0) {a[x].code=”“;}ather].lchild==x)
a[x].code=a[a[x].father].code+'0';
if(a[a[x].father].rchild==x) a[x].code=a[a[x].father].code+'1';
if(a[x].lchild!=0)
inorder(a[x].lchild);child==0)&&(a[x].rchild==0))a<<':'<<a[x].code<<e ndl;
if(a[x].rchild!=0) inorder(a[x].rchild);rom=1;
elist[i].to=i+1;
elist[i].w=a[1][i+1];
}
for (int i=1;i<=n-1;i++)<elist[m].w) m=j;
if(m!=i) >a[elist[i].to][elist[j].to])
elist[j].w=a[elist[i].to][elist[j].to];}
}
for(int i=1;i<=n-1;i++);
}
?
如果要求出哪些边构成最小生成树,在更新第i+1至n-1条边到已经生成的树中最小距离时(上面代码中加粗的部分),还要加上
elist[j].from=elist[i].to;语句,即在更新权值时,还应该更新起点。

Prime算法适用于顶点不是太多的稠密图,如果对于顶点数较多的稀疏图,就不太适用了。

?
十九、Dijkstra算法
void dijkstra(int x) ;
while(h<r)
{while(elist[h].w<m) h++;
while(elist[r].w>m) r--;
if(h<=r)
{edge tmp=elist[h];elist[h]=elist[r];elist[r]=tmp;h++;r--;}
}
if(x<r) qsort(x,r);
if(h<y) qsort(h,y);
}
?
int getfather(int x)rom);o);;}//不在同一个集合,合并,即第i条边可以选取。

if(sum>n-1)
break;//已经确定了n-1条边了,最小生成树已经生成了,可以提前退出循环了
}
if(sum<n-1)
cout<<"Impossible"<<endl; //从t条边中无法确定n-1条边,说明无法生成最小生成树
else
cout<<ans<<endl;
}
?
克鲁斯卡尔算法,只用了边集数组,没有用到图的邻接矩阵,因此当图的结点数比较多的时候,输入数据又是边的信息时,就要考虑用Kruscal算法。

对于岛国问题,我们就要选择此算法,如果用Prim算法,还要开一个二维的数组来表示图的邻接矩阵,对于10000个点的数据,显然在空间上是无法容忍的。

?
二十一、Floyed算法
void floyed(void)// a[i][j]表示结点i到结点j的最短路径长度,初始时值为<I,J>的权值。

{for(int k=1;k<=n;k++) //枚举中间加入的结点不超过K时f[i][j]最短路径长度,K相当DP中的阶段
for(int i=1;i<=n;i++) //i,j是结点i到结点J,相当于DP中的状态
for(int j=1;j<=n;j++)
if (a[i][j]>a[i][k]+a[k][j]) a[i][j]=a[i][k]+a[k][j];//这是决策,加和不加中间点,取最小的值
}
?
弗洛伊德算法适合于求没有负权回路的图的最短路径长度,利用FLOYED算法,可写出判断结点i和结点J是否连通的算法。

?
二十二、01背包问题
n为物品的数量,w[i]表示第i个物品的重量,c[i]表示第i个物品的价值,v 为背包的最大重量。

有状态转移方程f[i][j]=max{f[i-1][j],f[i-1][j-w[i]]+c[i]}。

f[i][j]表示前i个物品,在背包载重为j时获得的最大价值。

显然f[n][v]即为所求。

边界条件为f[0][s]=0,s=0,1, (v)
for(int i=1;i<=n;i++)//枚举阶段
for(int j=0;j<=v;j++)//枚举状态,当然此处也可写成:for(int
j=v;j>=0;j--)
{
f[i][j]=f[i-1][j];//不选第i个物品
if(f[i][j]<f[i-1][j-w[i]]+c[i]) f[i][j]=f[i-1][j-w[i]]+c[i];//选第i 个物品
}
cout<<f[n][v]<<endl;//输出结果。

?
优化:用一维数组实现,把第i-1阶段和第i阶段数据存在一块。

for(int i=1;i<=n;i++)//枚举阶段
for(int j=v;j>=0;j--)//枚举状态,当然此处也可写成:for(int
j=v;j>=0;j--)
{
f[j]=f[j];//不选第i个物品,可省略此语句。

if((j>w[i])&&(f[j]<f[j-w[i]]+c[i])) f[j]=f[j-w[i]]+c[i];//选第i个物品
}
cout<<f[v]<<endl;//输出结果。

?
对比优化前后,我们不难发现,优化后的代码实际上就是在原来基本的代码基础上,减少了阶段这一维,同时在枚举状态时,为了保证结果的正确性,枚举的顺序只能是v到0,而不能是0到v。

大家细想一下为什么就是保证在求第i 阶段j状态时,f[j-w[i]]为第i-1阶段的值。

?
进一步优化,在上面代码中,枚举状态时,还可以写成for(int
j=v;j>=w[i];j--),此时下面的判断条件j>=w[i]就可以省略了。

?
二十三、完全背包问题
和01背包问题不同的是,完全背包,对于任何一个物品i,只要背包重量允许,可以多次选取,也就是在决策上,可以选0个,1个,2个,…,v/w[i]个。

状态转移方程f[i][j]=max{f[i-1][j],f[i-1][j-w[i]]+c[i],f[i-1][j-
2*w[i]]+2*c[i],...,f[i-1][j-k*w[i]]+k*c[i]}。

k=0,1,2,...,v/w[i]。

f[i][j]表示前i个物品,在背包载重为j时获得的最大价值。

显然f[n][v]即为所求。

边界条件为f[0][s]=0,s=0,1, (v)
for(int i=1;i<=n;i++)//枚举阶段
for(int j=0;j<=v;j++)//枚举状态,当然此处也可写成:for(int
j=v;j>=0;j--)
{f[i][j]=f[i-1][j];//k=0的情况作为f[i][j]的初始值,然后在
k=1,2,…,v/w[i]中找最大值
for(int k=1;k<=v/w[i];k++)
if(f[i][j]<f[i-1][j-k*w[i]]+k*c[i]) f[i][j]=f[i-1][j-
k*w[i]]+k*c[i];//选第i个物品
}
cout<<f[n][v]<<endl;//输出结果。

?
二十四、多属性背包问题
?
二十五、多背包问题
?
二十六、最长不降(上升)子序列问题
?
f[i]表示从第1个数开始,以第i个数结尾的最长递增子序列。

?
状态转移方程:f[i]=max{f[j]}+1 (1≤j≤i-1,1≤i≤n,a[i]≥a[j])
临界状态:f[1]=1;
?
二十七、最长公共子序列问题
?
f[i][j]表示第一个串前i个字符和第二个串前j个字符的最长公共子序列数。

状态转移方程:
f[i-1][j-1] (若a[i]==b[j])
f[i][j]=
max{f[i-1][j],f[i][j-1]}+1 (若a[i]≠b[j]) ?
临界状态:f[0][j]=0,f[i][0]=0。

相关文档
最新文档