七年级数学上学期期末模拟试卷及答案

合集下载

七年级上册数学期末模拟试卷(含答案)

七年级上册数学期末模拟试卷(含答案)

七年级上册数学期末模拟试卷(含答案)一、选择题1.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)32.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯C .66.04810⨯D .60.604810⨯3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x+= C .10040062x x += D .1004006x 2x+= 6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .77.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +18.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<011.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.17.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 18.36.35︒=__________.(用度、分、秒表示)19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.﹣213的倒数为_____,﹣213的相反数是_____. 21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.22.方程x +5=12(x +3)的解是________. 23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使50AOC ∠=︒,将一直角三角板的直角项点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.()1如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.此时BON ∠=__ 度;()2如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由;()3将图1中的三角板绕点O 按每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,若第t 秒时,,,OA OC ON 三条射线恰好构成相等的角,则t 的值为__ (直接写出结果). 26.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 27.已知x ay b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____.28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 29.先化简,再求值:()()223321325x x x x --+---,其中1x =-. 30.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF 平分∠AOD ,∠AOE=36°.(1)求∠COD 的度数; (2)求∠BOF 的度数.四、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

七年级上学期期末模拟考试数学试卷-附含有答案

七年级上学期期末模拟考试数学试卷-附含有答案

七年级上学期期末模拟考试数学试卷-附含有答案学校:班级:姓名:考号:一.选择题(共10小题,满分30分,每小题3分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021的相反数是()A.2021B.﹣2021C.−12021D.120212.(3分)数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.1.86×1011吨3.(3分)已知代数式−13x b y a−1与22x2y是同类项,则a+b的值为()A.2B.4C.3D.1 4.(3分)下列各式中,去括号正确的是()A.1﹣(a2﹣2ab+b2)=1﹣a2+2ab+b2B.x﹣2(y﹣1)=x+2y+2C.﹣5(﹣a+3)﹣ab=﹣5a﹣15﹣abD.﹣[(x﹣z)﹣y2]=﹣x+z+y25.(3分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱6.(3分)下列各式中,哪个是多项式()A.3a B.0C.12mD.7m﹣8n7.(3分)如图,从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是()A.两点确定一条直线B.两点之间线段最短C.经过一点可以画无数条直线D.两点之间线段的长度,叫做这两点之间的距离8.(3分)已知C、D、E三点在直线AB上,P为直线AB外一点,PC=1,PD=2,PE=3,则点P到直线AB的距离()A.小于1B.不小于1C.大于1D.不大于19.(3分)如图,AB为⊙O的直径,点C,D在圆上,若∠D=64°,则∠BAC的度数为()A.64°B.34°C.26°D.24°10.(3分)已知M=79a﹣1,N=a2−119a(a≠1),则M,N的大小关系为()A.M=N B.M<N C.M>N D.不能确定二.填空题(共6小题,满分18分,每小题3分)11.(3分)若min{m,n}表示m,n两数中较小的数,则min{−12,−13}的值为.12.(3分)用度来表示78°29′24″=.13.(3分)一辆汽车行走的路程为5,所用的时间为t,则它的速度为.14.(3分)如图,AE∥CD,若∠1=37°,∠DAC=89°,∠DBC=46°,则∠AEC的度数为.15.(3分)如图,点C,D在线段AB上.若C是线段AB中点,CD=14AC,AB=16,则BD长为.16.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…,则第15个图形中有个三角形.三.解答题(共12小题,满分72分) 17.(4分)计算:(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5); (2)(+456)﹣(+335)﹣(﹣316)﹣(+125).18.(4分)小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f (3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f (4,﹣2). (1)直接写出计算结果,f (4,12)= ,f (5,3)= ;(2)关于“有理数的除方”下列说法正确的是 .(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算:f (5,3)×f (4,13)×f (5,﹣2)×f (6,12).19.(5分)计算:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2. 20.(5分)化简: (1)3a ﹣2a +(﹣a ); (2)3a 2+2a ﹣4a 2﹣7a . (3)13(9x −3)+2(x +1).(4)4x +2y ﹣(2x ﹣y ).21.(6分)先化简,后求值:2xy2﹣[3xy﹣(2xy﹣2xy2)],其中x=−12,y=2.22.(6分)如图所示的方格纸中,每小方格的边长都为1cm.请在方格纸上画图并回答问题:(1)在点A的正东方向取一点B,使A、B两点间的距离为4cm.(2)过点A画直线AB的垂线.(3)在点A的正北方向取点C,使AC=AB.(4)以点A为端点,画A点的北偏东45°方向的射线交BC于D点.(5)过点D画直线AB的平行线交AC于点E.(6)在线段AB上取一点F,使得AF=3FB,并画射线EF.(7)写出图中∠ACD的一个同位角,点B到直线AC的距离.(8)用数字1在图上标出∠CDE的对顶角,用数字2标出∠EFB的一个邻补角.23.(6分)如图,直线AB和CD交于点O,OE平分∠DOB.(1)在∠BOC内部,过点O作射线OF⊥CD;(2)在(1)的条件下,若∠EOF=63°,求∠BOF的度数.24.(6分)某学校深入开展足球进校园活动,为了提高足球运动员快速转身抢断能力,体育老师设计了折返跑训练.在足球场上画一条东西方向的直线,如果约定向东为正,向西为负,一运动员折返跑训练的记录如下(单位:米):+15,﹣19,+16,﹣18,+21,﹣30,+35,﹣25,+25,﹣10.请解答下列问题:(1)该运动员最后到达的地方在出发点的哪个方向?距出发点多远?(2)该运动员本次训练结束,共跑了多少米?25.(7分)如图:AB∥CD,AE、DF分别是∠BAO、∠CDO的平分线,求证:AE∥DF.26.(7分)观察下列表格中两个代数式及其相应的值,回答问题:x…﹣2﹣1012…﹣2x+5…9753a…2x﹣7…﹣11﹣9﹣7﹣5b…【初步感知】(1)根据表中信息可知:a=;b=;【归纳规律】(2)表中﹣2x+5的值的变化规律是:x的值每增加1,﹣2x+5的值就都减少2.类似地,2x﹣7的值的变化规律是:;【问题解决】(3)请直接写出一个含x的代数式,要求x的值每增加1,代数式的值就都减小5,且当x=0时,代数式的值为﹣7.27.(8分)如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在CD与之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请证明;(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.28.(8分)如图,数轴上点A表示的数是﹣4,点B表示的数是6,动点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,运动时间为t秒(t>0).(1)直接写出线段AB的长度;(2)当点P运动到点B的右侧时,直接写出线段BP的长度(用含t的代数式表示);(3)当t=3秒时,点M到点A,点P的距离相等;点N到点B,点P的距离相等,求此时线段MN 的长度;(4)当点P从点A出发时,另一个动点Q同时从B点出发,以每秒1个单位长度的速度沿数轴向右运动.①点P表示的数为:(用含t的代数式表示);点Q表示的数为:(用含t的代数式表示);②请直接写出B,P,Q三点中有一点恰好到另外两点的距离相等时的t值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:2021的相反数是:﹣2021.故选:B.2.【解答】解:186亿吨=186****0000吨=1.86×1010吨.故选:C.3.【解答】解:由题意知,b=2,a﹣1=1解得a=2∴a+b=4故选:B.4.【解答】解:A、1﹣(a2﹣2ab+b2)=1﹣a2+2ab﹣b2,故本选项错误,不符合题意;B、x﹣2(y﹣1)=x﹣2y+2,故本选项错误,不符合题意;C、﹣5(﹣a+3)﹣ab=5a﹣15﹣ab,故本选项错误,不符合题意;D、﹣[(x﹣z)﹣y2]=﹣x+z+y2,故本选项正确,符合题意;故选:D.5.【解答】解:∵圆锥的侧面展开图是扇形∴判断这个几何体是圆锥故选:A.6.【解答】解:A、3a是单项式,不合题意;B、0是单项式,不合题意;C、12m是分式,不合题意;D、7m﹣8n是多项式,符合题意;故选:D.7.【解答】解:从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是两点之间,线段最短.故选:B.8.【解答】解:∵垂线段最短∴点P到直线AB的距离不大于PC、PD、PE又∵PC=1,PD=2,PE=3∴点P到直线AB的距离不大于1故选:D.9.【解答】解:连接BC∵∠D=64°∴∠D=∠B=64°∵AB为⊙O的直径∴∠ACB=90°∴∠BAC=90°﹣∠B=26°故选:C.10.【解答】解:∵M=79a﹣1,N=a2−119a(a≠1)∴M﹣N=79a﹣1﹣(a2−119a)=79a﹣1﹣a2+119a=﹣a 2+2a ﹣1 =﹣(a ﹣1)2∵任何数的平方为非负数,且a ≠1 所以N >M . 故选:B .二.填空题(共6小题,满分18分,每小题3分) 11.【解答】解:∵12=36,13=26,36>26∴−12<−13 ∴min {−12,−13}=−12故答案为:−12.12.【解答】解:∵24″=(2460)′=0.4′,29.4′=(29.460)°=0.49°∴78°29'24''=78.49°. 故答案为:78.49°.13.【解答】解:根据题意得,速度为5t .读答案为:5t.14.【解答】解:在△ACD 中,∠1=37°,∠DAC =89° ∴∠D =180°﹣∠DAC ﹣∠1=54° ∵AE ∥CD∴∠BAE =∠D =54°∵∠DBC +∠BAE +∠AEB =180°,∠DBC =46° ∴∠AEB =180°﹣54°﹣46°=80°∴∠AEC =180°﹣∠AEB =180°﹣80°=100° 故答案为:100°.15.【解答】解:∵点C ,D 在线段AB 上.C 是线段AB 中点 ∴AC =CB =12AB ∵CD =14AC ,AB =16∴BD =34AC =38AB =38×16=6.故答案为:6.16.【解答】解:第1个图形中一共有1个三角形 第2个图形中一共有1+4=5个三角形 第3个图形中一共有1+4+4=9个三角形 …第n 个图形中三角形的个数是1+4(n ﹣1)=(4n ﹣3)个 当n =15时,4n ﹣3=4×15﹣3=57 故答案为:57.三.解答题(共12小题,满分72分)17.【解答】(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5) =18﹣6﹣19+20+5 =12﹣19+20+5 =﹣7+20+5 =13+5 =18;(2)(+456)﹣(+335)﹣(﹣316)﹣(+125)=+456−335+316−125=+456+316−125−335=8﹣(125+335)=8﹣5 =3.18.【解答】解:(1)f (4,12)=12÷12÷12÷12=4f (5,3)=3÷3÷3÷3÷3=127; 故答案为:4;127.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16 ∴f (6,3)≠f (3,6),故错误; ②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误; ④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为:②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(1a)n ﹣2(n 为正整数,a ≠0,n ≥2).(4)f (5,3)×f (4,13)×f (5,﹣2)×f (6,12)=127×9×(−18)×16 =−23.19.【解答】解:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2 =﹣1+16×[﹣4+9×(﹣2)+(﹣3)]÷254 =﹣1+16×(﹣4﹣18﹣3)×425 =﹣1+16×(﹣25)×425 =﹣1+(−23) =−53.20.【解答】解:(1)3a ﹣2a +(﹣a ) =3a ﹣2a ﹣a =0;(2)3a 2+2a ﹣4a 2﹣7a =(3﹣4)a 2+(2﹣7)a =﹣a 2﹣5a ;(3)13(9x −3)+2(x +1)=3x ﹣1+2x +2 =5x +1;(4)4x +2y ﹣(2x ﹣y ) =4x +2y ﹣2x +y =2x +3y .21.【解答】解:原式=2xy 2﹣(3xy ﹣2xy +2xy 2)=2xy2﹣3xy+2xy﹣2xy2=﹣xy当x=−12,y=2时原式=﹣(−12)×2=1.22.【解答】解:(1)如图,线段AB即为所求;(2)如图,直线l即为所求;(3)如图,线段AC即为所求(4)如图,射线AD,点D即为所求;(5)如图,直线DE即为所求;(6)如图,射线EF即为所求;(7)图中∠ACD的一个同位角∠AEF,点B到直线AC的距离4.故答案为:∠AEF(答案不唯一),4;(8)如图,∠1,∠2即为所求.23.【解答】解:(1)作图如下:(2)∵OF⊥CD∴∠DOF=90°∵∠EOF=63°∴∠DOE=90°﹣63°=27°∵OE平分∠DOB∴∠BOD=2∠DOE=2×27°=54°∴∠BOF=∠DOF﹣∠BOD=90°﹣54°=36°.24.【解答】解:(1)15﹣19+16﹣18+21﹣30+35﹣25+25﹣10=10(米)∴最后到达的地方在出发点的东边,距出发点10米.(3)|+15|+|﹣19|+|+16|+|﹣18|+|+21|+|﹣30|+|+35|+|﹣25|+|+25|+|﹣10|=15+19+16+18+21﹣30+35+25+25+10=214(米)∴该运动员本次训练结束,共跑了214米.25.【解答】证明:∵AB∥CD∴∠BAO=∠CDO又∵AE、DF分别是∠BAO、∠CDO的平分线∴∠EAO=12∠BAO=12∠CDO=∠FDO∴AE∥DF.26.【解答】解:(1)用2替换代数式中的xa=﹣2×2+5=1b=2×2﹣7=﹣3.故答案为:1;﹣3;(2)观察表格中第三行可以看出,x的值每增加1,2x﹣7的值都增加2故答案为:x的值每增加1,2x﹣7的值都增加2.(3)∵x的值每增加1,代数式的值就都减小5∴x的系数为﹣5.∵当x=0时,代数式的值为﹣7∴代数式的常数项为﹣7.∴这个含x的代数式是:﹣5x﹣7.27.【解答】解:(1)过点P作MN∥AB∵AB∥CD∴AB∥CD∥MN又∵∠A=20°,∠C=45°∴∠APM=∠A=20°∠MPC=∠C=45°∴∠P=∠APM+∠MPC=20°+45°=65°;故答案为:65;(2)∠ABP=∠CDP+∠BPD;理由如下:延长AB交PD于点H∴∠ABP是△PBH的一个外角∵AH∥CD∴∠CDP=∠BHP∴在△PBH,∠BPD+∠BHP=∠ABP∴∠ABP、∠CDP、∠BPD之间存在的数量关系为:∠ABP=∠CDP+∠BPD;(3)延长AB交PF于点H,过点G,作MN∥AB∵AB ∥CD∴MN ∥AB ∥CD∴∠HEG =EGM ,∠EHF =∠PFD ,∠MGF =∠GFD∵EB 平分∠PEG ,FP 平分∠GFD ,若∠PFD =40°∴∠PEH =∠HEG ,∠PFD =∠PFG =40°,∠GFD =80°∴∠G =∠EGM +∠MGF =∠HEG +∠GFD =∠PEH +80°,∠P +∠PEH =∠EHF =∠PFD =40° ∴∠P =40°﹣∠PEH∴∠G +∠P =∠PEH +80°+40°﹣∠PEH =120°.故答案为:120.28.【解答】解:(1)6﹣(﹣4)=10线段AB 的长度是10;(2)P 点表示的数为﹣4+3t线段BP 的长度为﹣4+3t ﹣6=3t ﹣10;(3)当t =3秒时AP =3×3=9点M 表示的数是0.5BP =AB ﹣AP =10﹣9=1点N 表示的数是5.5所以线段MN 的长度是5.5﹣0.5=5;(4)①点P 表示的数为﹣4+3t点Q 表示的数为6+t故答案为:﹣4+3t ,6+t②当B 是P 、Q 中点时,6﹣(﹣4+3t )=6+t ﹣6解得:t =52当P 是B 、Q 的中点时,﹣4+3t ﹣6=6+t ﹣(﹣4+3t )解得:t =4当Q 是B 、P 的中点时,6+t ﹣6=﹣4+3t ﹣(6+t )解得:t =10B ,P ,Q 三点中有一点恰好到另外两点的距离相等时的t 值为52、4或10.。

(完整版)人教版七年级数学上册期末模拟试卷及答案

(完整版)人教版七年级数学上册期末模拟试卷及答案

(完整版)人教版七年级数学上册期末模拟试卷及答案一、选择题1.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .2.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1125.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .76.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④B .②③C .③D .④ 7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣18.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 9.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=011.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.把53°30′用度表示为_____.14.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.22.计算7a 2b ﹣5ba 2=_____. 23.用“>”或“<”填空:13_____35;223-_____﹣3.24.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.三、解答题25.计算: (1)31324()864-⨯-- (2)43231[2(2)](3)5--⨯---- 26.计算:(1)()()3684-++-+; (2)()()231239-⨯+-÷.27.今年秋季,斗门土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙,丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一士特产,且必须装满,设装运甲种士特产的汽车有x 辆,装运乙种特产的汽车有y 辆,根据下表提供的信息,解答以下问题: 土特产种类 甲 乙 丙 每辆汽车运载量(吨) 436每吨土特产获利(元)1000 900 1600(1)装运丙种土特产的车辆数为 辆(用含有x ,y 的式子表示); (2)用含有x ,y 的式子表示这10辆汽车共装运土特产的数量;(3)求销售完装运的这批土特产后所获得的总利润(用含有x ,y 的式子表示).28.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?29.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2. 30.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB = ,BC = .(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.估算15在下列哪两个整数之间( ) A .1,2 B .2,3 C .3,4 D .4,5 11.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.﹣30×(1223-+45)=_____. 18.已知23,9n mn aa -==,则m a =___________.19.若方程11222m x x --=++有增根,则m 的值为____. 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.五边形从某一个顶点出发可以引_____条对角线. 22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.计算: (1)()7.532-⨯-(2(383+3233-- 26.解下列一元一次方程()1()23x x +=- ()2()113124x x --+=27.解方程:131 142x xx+-+=-28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?30.某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?四、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册数学期末模拟试卷(含答案)

七年级上册数学期末模拟试卷(含答案)

七年级上册数学期末模拟试卷(含答案)一、选择题1.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-2.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快3.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .44.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.66.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.7.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A .9B .11C .13D .158.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+9.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32 C .54 D .9410.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .36112.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为_____.15.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.16.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .17.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm . 18.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.19.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______ 20.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =……(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =____________.21.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 22.如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连按A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;按此规律继续下去,可得到△A 2019B 2019C 2019,则其面积S 2019=_____.三、解答题23.先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 24.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.25.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少? ②经过多长时间,P 、Q 两点相距5cm ?26.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.27.如图,数轴上点A表示的数为6,点B位于A点的左侧,10AB=,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动.(1)点B表示的数是多少?(2)若点P,Q同时出发,求:①当点P与Q相遇时,它们运动了多少秒?相遇点对应的数是多少?②当8PQ=个单位长度时,它们运动了多少秒?28.如图,线段AB上有一点O,AO=6㎝,BO=8㎝,圆O的半径为1.5㎝,P点在圆周上,且∠POB=30°.点C从A出发以m cm/s的速度向B运动,点D从B出发以n cm/s的速度向A运动,点E从P点出发绕O逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C、D、E三点同时开始运动.(1)若m=2,n=3,则经过多少时间点C、D相遇;(2)在(1)的条件下,求OE与AB垂直时,点C、D之间的距离;(3)能否出现C、D、E三点重合的情形?若能,求出m、n的值;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】 【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断. 【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的; 故选:D . 【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.2.C解析:C 【解析】 【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项. 【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C . 【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.3.D解析:D 【解析】 【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.4.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.5.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.7.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.8.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x元,则提高30%后的标价为+,列出方程即可.x+元;打9折出售,则售价为(130%)90%(130%)x由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+ 故选B 【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.9.D解析:D 【解析】 【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案. 【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关, ∴2m-3=0,-2+n=0, 解得:m=32,n=2, 故m n =(32)2= 94. 故选D . 【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键.10.C解析:C 【解析】 【分析】此题首先利用同号两数相乘得正判定a ,b 同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a ,b 的符号. 【详解】 解:∵ab >0, ∴a ,b 同号, ∵a+b <0, ∴a <0,b <0. 故选:C . 【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D【解析】【分析】首先把输入的x 的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D .【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.12.B解析:B【解析】【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.二、填空题13.﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.14.75【解析】【分析】由前几个图可发现规律:上面的数是连续的奇数1,3,5,7···2n -1,左下角的数是2,22,23,24,····,2n 可得b 值,右下角的数等于前两个数之和,即可求得a 值.解析:75【解析】【分析】由前几个图可发现规律:上面的数是连续的奇数1,3,5,7···2n-1,左下角的数是2,22,23,24,····,2n 可得b 值,右下角的数等于前两个数之和,即可求得a 值.【详解】解:观察每个图形最上边正方形中数字规律为1,3,5,7,9,11.左下角数字变化规律依次乘2为:2,22,23,24,25,26.所以,b =26观察数字关系可以发现,.右下角数字等于前同图形两个数字之和.所以a =26+11=75,故答案为:75.【点睛】本题考查数字变化规律,观察出左下角的数的变化规律及上边的数与左下角的数的和刚好等于右下角的数是解答的规律.15.8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是解析:8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是2,4,8,6四个一循环,所以2015÷4=503…3,则22015的末位数字是8.故答案为8.【点睛】题考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.16.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.17.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.18.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.【详解】解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.19.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35【解析】【分析】设这个角的度数为x ,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x ,1803(90)20x x ︒-=︒--︒,35x =︒.故答案为: 35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.20.-【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【详解】解:S1=,S2=-S1-1=--1=-,S3==-,解析:-1a a+ 【解析】【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【详解】解:S 1=1a ,S 2=-S 1-1=-1a -1=-1a a +,S 3=21S =-1a a +,S 4=-S 3-1=1111a a a -=-++ ,541S S ==-(a+1),S 6=-S 5-1=(a+1)-1=a ,S 7=611S a = ,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-1a a+. 故答案为:-1a a +. 【点睛】此题考查规律型中数字的变化类,根据数值的变化找出S n 的值,每6个一循环是解题的关键.21.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.22.192019【解析】【分析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC 即可求得答案.【详解】解:连接BC1,∵C1A=2CA ,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n =19n S △ABC 是解此题的关键.三、解答题23.-3a+b 2,559-【解析】【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-, 把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.24.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A 类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.25.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.26.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可.【详解】解:当OQ ,OP 第一次相遇时,2t +6t =120,t =15;当OQ 刚到达OA 时,6t =120,t =20;当OQ ,OP 第二次相遇时,2t 6t =120+2t ,t =30;(1)当t =2时,∠AOP =2t =4°,∠BOQ =6t =12°,∴∠POQ =∠AOB -∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t ≤15时,2t +40+6t=120, t =10;当15<t ≤20时,2t +6t=120+40, t =20;当20<t ≤30时,2t =6t -120+40, t =20(舍去);答:当∠POQ =40°时,t 的值为10或20.(3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ . 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.27.(1)点B 表示的数为4;- (2)①点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②当点P 运动25秒或185秒时,8PQ =个单位长度. 【解析】【分析】(1)由点B 表示的数=点A 表示的数-线段AB 的长,可求出点B 表示的数;(2)设运动的时间为t 秒,则此时点P 表示的数为6-3t ,点Q 表示的数为2t-4. ①由点P ,Q 重合,可得出关于t 的一元一次方程,解之即可得出结论;②分点P ,Q 相遇前及相遇后两种情况,由PQ=8,可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:(1)点A 表示的数为6,10AB =,且点B 在点A 的左侧, ∴点B 表示的数为6104-=-.(2)设运动的时间为t 秒,则此时点P 表示的数为63t -,点Q 表示的数为24t -.①依题意,得:6324t t -=-,解得:2t =,240t ∴-=,答:点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②点P ,Q 相遇前,63(24)8t t ---=, 解得:25t =; 当P ,Q 相遇后,24(63)8t t ---=, 解得:185t =. 答:当点P 运动25秒或185秒时,8PQ =个单位长度. 【点睛】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)145;(2)9cm 或6cm ;(3)能出现三点重合的情形,95m =,195n =或1511m =,1311n = 【解析】【分析】(1)设经过x 秒C 、D 相遇,根据14AC BD AO BO +=+=列方程求解即可; (2)分OE 在线段AB 上方且垂直于AB 时和OE 在线段AB 下方且垂直于AB 时两种情况,分别运动了1秒和4秒,分别计算即可;(3)能出现三点重合的现象,分点E 运动到AB 上且在点O 左侧和点E 运动到AB 上且在点O 右侧两种情况讨论计算即可.【详解】解:(1)设经过x 秒C 、D 相遇,则有,23=14x x +, 解得:14=5x ; 答:经过145秒C 、D 相遇; (2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,1421319CD cm =-⨯-⨯=,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,1424346CD cm =-⨯-⨯=;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间18030 2.560t -==,∴6 1.592.55m-==,8 1.5192.55n+==;②当点E运动到AB上且在点O右侧时,点E运动时间360305.560t-==,∴6 1.5155.511m+==,8 1.5135.511n-==.【点睛】本题考查的知识点是一元一次方程的应用,读懂题意,找出题目中的已知量和未知量,明确各数量间的关系是解此题的关键.。

七年级上册数学期末模拟试卷(含答案)

七年级上册数学期末模拟试卷(含答案)
A.40分钟B.42分钟C.44分钟D.46分钟
12.已知某商店有两个进价不同的计算器,都卖了100元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( )
A.不盈不亏B.盈利37.5元C.亏损25元D.盈利12.5元
二、填空题
13.|-3|=_________;
14.化简: __________.
A. B.
C. D.
5.在下边图形中,不是如图立体图形的视图是( )
A. B.
C. D.
6.如图是由下列哪个立体图形展开得到的?( )
A.圆柱B.三棱锥C.三棱柱D.四棱柱
7.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是( )
商场
优惠方案

全场按标价的六折销售

单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.
根据以上信息,解决以下问题
(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.
A.2(30+x)=24﹣xB.2(30﹣x)=24+x
C.30﹣x=2(24+x)D.30+x=2(24﹣x)
8.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()
A.2或2.5B.2或10C.2.5D.2

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或33.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .45.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3617.下列说法中正确的是( ) A .0不是单项式B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式8.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海10.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .2016201511.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -12.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 13.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A.c>a>b B.1b>1cC.|a|<|b| D.abc>014.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l)所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l)推算图(3)中P处所对应的数字是()A.1 B.2 C.3 D.415.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.916.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有().A.45条B.21条C.42条D.38条17.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1 B.52020-1 C.2020514-D.2019514-18.若x=1是关于x的方程3x﹣m=5的解,则m的值为()A.2 B.﹣2 C.8 D.﹣819.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a>﹣b C.a>b D.|a|>|b|20.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1521.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定22.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块23.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 24.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .425.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -26.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 27.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-128.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2729.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 30.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .3【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b ca b c++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.3.D解析:D 【解析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.5.D解析:D【解析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.D解析:D 【解析】 【分析】首先把输入的x 的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止. 【详解】解:4×4+5=16+5=21, 21<100, 21×4+5=84+5=89, 89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.7.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.8.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对; 故选:B . 【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.10.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.11.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时, 代入到得到x n +(-1)n+1y 2n-1=x 10-y 19. 故选:A . 【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.12.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.13.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..16.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条.故选:A.【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.17.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.18.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.19.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.20.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.21.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..22.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.23.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.24.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.25.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 27.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C28.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.29.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】A.25mn-的系数是25-,次数是2,正确,故该选项不符合题意,B.数字0是单项式,正确,故该选项不符合题意,C.14ab是二次单项式,正确,故该选项不符合题意,D.23xyπ的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.30.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.。

浙江省宁波市2023-2024学年上学期七年级期末数学模拟试卷(含答案)

浙江省宁波市2023-2024学年上学期七年级期末数学模拟试卷(含答案)

2023-2024学年第一学期浙江省宁波市七年级期末数学模拟试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2023的倒数是( )A. B. 3202 C.D. 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A .B .C .D .3. 下列化简正确的是( )A. B. C. D. 4. 下列说法正确的是( )A .的平方根是B .没有立方根C .的立方根是D .的算术平方根是5.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或56. 已知a ,b 都是实数,若,则的值是()A .B .C .1D .20237. 若整数a ,则整数a 是( )A. 2B. 3C. 4D. 58. 如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是( )A .10B .15C .20D .259. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A .不赚不赔B .赚9元C .赔18元D .赚18元2023-12023-1202351310⨯51.310⨯61.310⨯71.310⨯87x y x y -=-222a b ab ab-=222945a b ba a b -=541m m -=428-82±42()2210a b ++-=()2023a b +2023-1-a <<10. 如图,在同一平面内,,,点为反向延长线上一点(图中所有角均指小于的角).下列结论:①;②;③;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有6个小题,每小题4分,共24分)11.如图是时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 °.12 . 已知是方程的解,则m 的值是 .13. 如图放置一副三角板,若,则∠AOD 的度数是 °.14 .如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是_________15 .如图,已知线段,动点P 从点A 由发以每秒3cm 的速度向点B 运动,同时动点Q 从点B 出发以每秒2cm 的速度向点A运动,有一个点到达终点时另一点也随之停止运动.90AOB COD ∠=∠=︒AOF DOF ∠=∠E OF 180︒COE BOE ∠=∠180AOD BOC ∠+∠=︒90BOC AOD ∠-∠=︒180COE BOF ∠+∠=︒2x =423m x -=13BOC COD ∠=∠40cm AB =当时,则运动时间t = s .16 .有一个数值转换机,其原理如图所示,若第一次输入的x 的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,,那么第100次输出的结果是 .三、解答题(第17-19题各6分,第20题7分,第21题8分,第22题9分,第23题10分,共52分)17.计算:(1);(2).18.先化简,再求值:,其中,.19. 解方程:(1)3(x -2)+8x =5(2)20.小桂和小依玩猜数游戏,他们的对话如图所示,请按照他们的对话内容解决下列问题:15cm PQ =⋯223-++-()12512236⎛⎫-+⨯- ⎪⎝⎭()()22223449a ab a ab +-+-12a =3b =-250.536x x --=(1)设小桂出生的月份为,人口数为,用含,的代数式表示小桂所说的结果.(2)若小桂所说的结果为123,求小桂出生的月份和他家的人口数.21 .学校举行迎新活动,需要购买A 种灯笼15盏,B 种灯笼20盏,已知A 种灯笼的单价比B 种灯笼的单价多9元,购买A 种灯笼所花费用与B 种灯笼所花费用相同.(1)请问A 、B 两种灯笼的单价分别是多少?总共需多少费用?(2)由于灯笼布置设计方案改变,在总经费不变的情况下,还需购买单价为20元/盏的C 种灯笼,因此需要减少A ,B 两种灯笼的购买数量,其中B 种灯笼的减少数量是A 种灯笼减少数量的2倍,若三种灯笼都要买,如何购买可以买到最多数量的灯笼?22.已知数轴上点A 表示的数为6,B 是数轴上在原点左侧的一点,且A ,B 两点间的距离为10。

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案 一、选择题 1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .3 2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .123.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 6.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查7.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .348.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a - 9.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个10.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm 11.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 12.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.16.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.17.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18体育用品¥64.00- 10.19零食¥82.00- 10.20餐费¥100.00- 19.计算:()222a -=____;()2323x x ⋅-=_____.20.若a a -=,则a 应满足的条件为______.21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.钟表显示10点30分时,时针与分针的夹角为________.24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、解答题25.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.26.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费 元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费 元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?27.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角. ()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.28.如图,点P 是线段AB 上的一点,请在图中完成下列操作.(1)过点P 画BC 的垂线,垂足为H ;(2)过点P 画AB 的垂线,交BC 于Q ;(3)线段 的长度是点P 到直线BC 的距离.29.计算:﹣0.52+14﹣|22﹣4| 30.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.四、压轴题31.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.33.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C解析:C【解析】【分析】利用max }2,x x 的定义分情况讨论即可求解. 【详解】解:当max}21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C .【点睛】 此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.4.D解析:D【解析】【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C 表示的数为m ,∵点A 、B 表示的数互为相反数,∴AB 的中点O 为原点,∴点B 表示的数为3,∵点C 到点B 的距离为2个单位, ∴3m -=2,∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB ),32×211=25×211=216(KB ),(220−216)÷215=25−2=30(首),故选:B .【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.9.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA ⊥OC ,OB ⊥OD ,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.10.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.11.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.12.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键. 17.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】把x=2代入转换成含有a 的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键18.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.19.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a-=44a()2323⋅-=5x x-6x【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键20.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a aa0∴≥,≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、解答题25.AD=7.5cm.【解析】【分析】已知C点为线段AB的中点,D点为BC的中点,AB=10cm,根据线段中点的定义可得AC=CB=12AB=5cm,CD=12BC=2.5cm,由AD=AC+CD即可求得AD的长度.【详解】∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.26.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x公里,根据计价规则,列出关于x的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x 公里,根据题意得:2.3x+0.3×30+0.3(x ﹣10)=39.8,解得:x =13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.27.(1)10°;(2) 20;(3)见解析.【解析】【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;(3)根据根据内半角的定义列方程即可得到结论.【详解】解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,1COD AOB 352∠∠∴==, AOC 25∠=,BOD 70352510∠∴=--=,故答案为10,()2AOC BOD α∠∠==,AOD 60α∠∴=+,COB ∠是AOD ∠的内半角,()1BOC 60α60α2∠∴=+=-, α20∴=,∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角;理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,AOD 30α∠∴=+, ()130302αα∴+=-, 解得:10α=,103t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,30AOD ∠α∴=+,()130302αα∴+=-, 90α∴=,90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,36030αBOC ∠∴=+-,()136030α360α302∴+-=--, α330∴=,330t 110s 3∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,BOC 36030α∠∴=+-,()()136030α303036030α2∴+-=+-+-, 解得:α350=,350t s 3∴=, 综上所述,当旋转的时间为10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.【点睛】本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.28.(1)详见解析;(2)详见解析;(3)PH .【解析】【分析】利用尺规作出过一点作已知直线的垂线即可解决问题.【详解】解:(1)过点P 画BC 的垂线,垂足为H ,如图所示;(2)过点P 画AB 的垂线,交BC 于Q ,如图所示;(3)线段PH 的长度是点P 到直线BC 的距离.故答案为PH .【点睛】本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.29.【解析】【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】 本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.30.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键. 四、压轴题31.(1)4,16;(2)x =﹣28或x =52;(3)线段MN 的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.33.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10;。

人教版七年级数学上册期末模拟考试卷及答案

人教版七年级数学上册期末模拟考试卷及答案

人教版七年级数学上册期末模拟考试卷及答案考试时间:80分钟;满分:100分学校:___________姓名:___________班级:___________分数:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)地球距太阳约有120000000千米,数120000000用科学记数法表示为( )A .0.12×109B .1.2×108C .12×107D .1.2×1092.(3分)下列方程中,是一元一次方程的是( )A .3﹣2x =4B .2x −1x =0C .x 2+1=5D .2x +y =33.(3分)如果﹣2x m y 和5x 2y n +1是同类项,那么m ﹣n =( )A .2B .1C .0D .﹣14.(3分)有理数a 、b 在数轴上的对应的位置如图所示,则( )A .a <﹣bB .a >﹣bC .a =bD .a >b5.(3分)下列说法中正确的是( )A .−23πx 的系数是−23B .多项式12a 2﹣7a +9的次数是3C .a+b 2是一个单项式D .24abc 的次数是36.(3分)下列变形符合等式性质的是( )A .如果2x ﹣3=7,那么2x =7﹣3B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣27.(3分)已知点C 是线段AB 的中点,下列说法:①AB =2AC ;②BC =12AB ;③AC =BC .其中正确的个数是( )A .0B .1C .2D .3 8.(3分)某班级劳动时,将全班同学分成x 个小组,若每小组9人,则余下3人;若每小组10人,则有一组少4人.按下列哪个选项重新分组,能使每组人数相同?( )A .4组B .5组C .6组D .7组9.(3分)如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°10.(3分)一个角的补角比这个角的余角大( )A .70°B .80°C .90°D .100°二.填空题(共7小题,满分28分,每小题4分)11.(4分)−2πa 2x 23的系数是 .12.(4分)若盈余3万元记作+3万元,则﹣1万元表示 .13.(4分)若(m ﹣1)x |m |=7是关于x 的一元一次方程,则m = .14.(4分)如图线段AB =3cm ,延长线段AB 到C ,使BC =2AB ,那么AC = cm .15.(4分)若关于x 的一元一次方程2x ﹣k +4=0的解是x =3,则k = .16.(4分)已知4a 2+3b =1,则整式3﹣16a 2﹣12b 的值是 .17.(4分)如图所示,∠AOC =90°,点B ,O ,D 在同一直线上,若∠1=26°,则∠2的度数为 .三.解答题(共7小题,满分42分)18.(3分)计算:(﹣4)2÷2+9×(−13)﹣|﹣5|.19.(3分)解方程:x−24=1−4−3x 6. 20.(4分)先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣2ab 2+3a 2b ),其中a =﹣1,b =﹣2.21.(6分)如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点,若AB=15,CE=4.5,求出线段AD的长度.22.(8分)如图,O为直线AB上一点,OC为射线,OD,OE分别为∠AOC,∠BOC的平分线.(1)判断射线OD,OE的位置关系,并说明理由;(2)若∠AOD=30°,试说明OC为∠AOE的平分线.23.(9分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度0.8超过150度的部分1(1)若该市某居民7月交电费100元,则该居民7月份用电多少度?(2)若该市某居民8月用电250度,则该居民需交多少电费?(3)若该市某居民9月用电x度,则该居民需交多少电费?(用含x的代数式表示)24.(9分)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)地球距太阳约有120000000千米,数120000000用科学记数法表示为()A.0.12×109B.1.2×108C.12×107D.1.2×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120000000=1.2×108.故选:B.2.(3分)下列方程中,是一元一次方程的是()A.3﹣2x=4B.2x−1x=0C.x2+1=5D.2x+y=3【分析】根据一元一次方程的定义逐个判断即可.【解答】解:A.是一元一次方程,故本选项符合题意;B.是分式方程,不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元二次方程,不是一元一次方程,故本选项不符合题意;D.是二元一次方程,不是一元一次方程,故本选项不符合题意;故选:A.3.(3分)如果﹣2x m y和5x2y n+1是同类项,那么m﹣n=()A.2B.1C.0D.﹣1【分析】根据同类项的概念分别求出m、n,计算即可.【解答】解:∵﹣2x m y和5x2y n+1是同类项∴m=2,n+1=1解得m=2,n=0∴m﹣n=2﹣0=2.故选:A.4.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a<﹣b B.a>﹣b C.a=b D.a>b【分析】根据a ,b 两数在数轴的位置,依次判断所给选项的正误即可.【解答】解:a <0<b ,|a |>|b |∴a <﹣b ,故A 正确,B 错误;由数轴可得a <b ,故C 、D 错误故选:A .5.(3分)下列说法中正确的是( )A .−23πx 的系数是−23B .多项式12a 2﹣7a +9的次数是3C .a+b 2是一个单项式D .24abc 的次数是3【分析】根据单项式的系数与次数,多项式的次数与项数的确定方法,可得此题的正确结果为D .【解答】解:∵−23πx 的系数是−23 故选项A 不符合;∵多项式12a 2﹣7a +9的次数是2故选项,B 不符合;∵a+b 2=a 2+b 2 故a+b 2是多项式∴选项C 不符合;∵24abc 的次数是3故选项D 符合;故选:D .6.(3分)下列变形符合等式性质的是( )A .如果2x ﹣3=7,那么2x =7﹣3B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、等式2x﹣3=7的两边都加3,可得2x=7+3,原变形错误,故此选项不符合题意;B、等式−13x=1的两边都乘﹣3,可得x=﹣3,原变形正确,故此选项符合题意;C、等式﹣2x=5的两边都除以﹣2,可得x=−52,原变形错误,故此选项不符合题意;D、等式3x﹣2=x+1的两边都加﹣x+2,可得3x﹣x=1+2,原变形错误,故此选项不符合题意.故选:B.7.(3分)已知点C是线段AB的中点,下列说法:①AB=2AC;②BC=12AB;③AC=BC.其中正确的个数是()A.0B.1C.2D.3【分析】由线段的中点定义可得AC=BC=12AB,由此可求解.【解答】解:∵点C是线段AB的中点∴AC=BC=12AB∴AB=2AC故①②③正确;故选:D.8.(3分)某班级劳动时,将全班同学分成x个小组,若每小组9人,则余下3人;若每小组10人,则有一组少4人.按下列哪个选项重新分组,能使每组人数相同?()A.4组B.5组C.6组D.7组【分析】根据全班同学人数不变以及“将全班同学分成x个小组,若每小组9,则余下3;若每小组10,则有一组少4人”列出方程,求解即可.【解答】解:设将全班同学分成x个小组,根据题意得9x+3=10x﹣4解得x=7有:9x+3=9×7+3=6666=11×6则将全班同学分成6个小组,能使每组人数相同.故选:C.9.(3分)如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是()A.128°B.142°C.38°D.152°【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【解答】解:∵∠AOC=∠DOB=90°,∠DOC=38°∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣38°=142°.故选:B.10.(3分)一个角的补角比这个角的余角大()A.70°B.80°C.90°D.100°【分析】根据余角与补角的定义解决此题.【解答】解:设这个角为x,则这个角的余角为90°﹣x,补角为180°﹣x.∵180°﹣x﹣(90°﹣x)=180°﹣x﹣90°+x=90°∴一个角的补角比这个角的余角大90°.故选:C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)−2πa2x23的系数是−2π3.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式−2πa2x23的系数是−2π3.故答案为:−2π3.12.(4分)若盈余3万元记作+3万元,则﹣1万元表示亏损1万元.【分析】由于“盈余”与“亏损”为相反意义的量,根据正数和负数的意义可得﹣1万表示出亏损1万元.【解答】解:若盈余3万元记作+3万元,则﹣1万元表示亏损1万元.故答案为:亏损1万元.13.(4分)若(m﹣1)x|m|=7是关于x的一元一次方程,则m=﹣1.【分析】根据一元一次方程的定义得出m﹣1≠0且|m|=1,再求出答案即可.【解答】解:∵方程(m﹣1)x|m|=7是关于x的一元一次方程∴m﹣1≠0且|m|=1解得:m=﹣1故答案为:﹣1.14.(4分)如图线段AB=3cm,延长线段AB到C,使BC=2AB,那么AC=9cm.【分析】根据BC=2AB,可得BC的长,根据线段的和差,可得答案.【解答】解:∵AB=3cm,BC=2AB∴BC=3×2=6(cm)∴AC=AB+BC=3+6=9(cm).故答案为:9.15.(4分)若关于x的一元一次方程2x﹣k+4=0的解是x=3,则k=10.【分析】把x=3代入方程计算即可求出k的值.【解答】解:把x=3代入方程得:6﹣k+4=0解得:k=10故答案为:10.16.(4分)已知4a2+3b=1,则整式3﹣16a2﹣12b的值是﹣1.【分析】观察题中的两个代数式x﹣2y和3﹣16a2﹣12b,可以发现,3﹣16a2﹣12b=3﹣4(4a2+3b),因此可整体代入求值.【解答】解:∵3﹣16a2﹣12b=3﹣4(4a2+3b)当4a2+3b=1时原式=3﹣4×1=﹣1.故答案为:﹣1.17.(4分)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为116°.【分析】由图示可得,∠1与∠BOC 互余,结合已知可求∠BOC ,又因为∠2与∠COB 互补,即可求出∠2的度数.【解答】解:∵∠1=26°,∠AOC =90°∴∠BOC =64°∵∠2+∠BOC =180°∴∠2=116°.故答案为:116°.三.解答题(共7小题,满分42分)18.(3分)计算:(﹣4)2÷2+9×(−13)﹣|﹣5|.【分析】利用有理数的混合运算的法则对式子进行运算即可.【解答】解:(﹣4)2÷2+9×(−13)﹣|﹣5|=16÷2+(﹣3)﹣5=8﹣3﹣5=0.19.(3分)解方程:x−24=1−4−3x 6. 【分析】方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:x−24=1−4−3x 6去分母,得3(x ﹣2)=12﹣2(4﹣3x )去括号,得3x ﹣6=12﹣8+6x移项,得3x ﹣6x =4+6合并同类项,得﹣3x =10系数化为1,得x =−103.20.(4分)先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣2ab 2+3a 2b ),其中a =﹣1,b =﹣2.【分析】先去括号、合并同类项把所求式子化简,再将a =﹣1,b =﹣2代入即可求值.【解答】解:原式=12a 2b ﹣4ab 2+6ab 2﹣9a 2b=3a2b+2ab2把a=﹣1,b=﹣2代入得:原式=3×(﹣1)2×(﹣2)+2×(﹣1)×(﹣2)2=3×1×(﹣2)+2×(﹣1)×4=﹣6﹣8=﹣14.21.(6分)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB=15,CE=4.5,求出线段AD的长度.【分析】根据中点的性质,可得BC的长,根据线段的和差,可得BE的长,AE的长,根据中点的性质,可得答案.【解答】解:∵点C为线段AB的中点,AB=15∴AC=12AB=7.5∴AE=AC+CE=7.5+4.5=12∵点D为线段AE的中点∴AD=12AE=6.22.(8分)如图,O为直线AB上一点,OC为射线,OD,OE分别为∠AOC,∠BOC的平分线.(1)判断射线OD,OE的位置关系,并说明理由;(2)若∠AOD=30°,试说明OC为∠AOE的平分线.【分析】(1)由角平分线的定义可求得∠COD=12∠AOC,∠COE=12∠BOC,结合平角的定义可求得∠DOE=90°,进而可说明OD与OE的关系;(2)由角平分线的定义可求解∠AOC的度数,利用∠AOE=∠AOD+∠DOE可求解∠AOE的度数,进而可得∠AOE=2∠AOC,即可证明结论.【解答】解:(1)OD⊥OE.理由:∵OD,OE分别为∠AOC,∠BOC的平分线∴∠COD=12∠AOC,∠COE=12∠BOC∵∠AOC+∠BOC=180°∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=90°∴OD⊥OE.(2)∵∠AOD=30°,OD平分∠AOC∴∠AOC=2∠AOD=60°∵∠DOE=90°∴∠AOE=∠AOD+∠DOE=30°+90°=120°∴∠AOE=2∠AOC∴OC为∠AOE的平分线.23.(9分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度0.8超过150度的部分1(1)若该市某居民7月交电费100元,则该居民7月份用电多少度?(2)若该市某居民8月用电250度,则该居民需交多少电费?(3)若该市某居民9月用电x度,则该居民需交多少电费?(用含x的代数式表示)【分析】(1)根据题意,该居民用电在第一梯度,设该居民7月份用电a度,则0.8a=100,解之即可;(2)根据题意,该居民用电在第二梯度,则8月份电费为150×0.8+(250﹣150)×1,计算即可.【解答】解:(1)若用电150度,则需要交电费150×0.8=120(元).设该居民7月份用电a度,则0.8a=100,解得a=125∴该居民7月份用电125度.(2)由题意可得,8月份电费:150×0.8+(250﹣150)×1=220(元)∴该居民需交220元电费.(3)当0<x≤150时,需交电费:0.8x(元)当x>150时,需交电费150×0.8+(x﹣150)×1=(x﹣30)(元).综上可知,当0<x≤150时,需交电费:0.8x元,当x>150时,需交电费(x﹣30)元.24.(9分)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=3.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①ab﹣2b2=﹣3②①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9。

四川省南充市2023-2024学年七年级上学期期末数学试题(解析版)

四川省南充市2023-2024学年七年级上学期期末数学试题(解析版)

2023—2024学年度(上)期末教学质量监测七年级数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 下列各数中,最小的有理数是( )A. B. 0 C. D. 【答案】D【解析】【分析】本题考查了有理数的大小比较.熟练掌握有理数的大小比较是解题的关键.根据,判断作答即可.【详解】解:由题意知,,故选:D .2. 年第一季度四川省各市出炉,南充以亿元位居全省第五,继续领跑川东北,用科学记数法表示亿正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定的值.根据绝对值大于1的数,用科学记数法表示为,其中,的值为整数位数少1,即可得答案.【详解】解:亿即大于1,用科学记数法表示为,其中,,∴亿用科学记数法表示为,故选:B .3. 下列各组数中互为相反数的一组是( )A. 和B. 和C. 和D. 和【答案】C【解析】【分析】根据只有符号不同两个数互为相反数,进行判断即可.的1-3- 3.14-3.14310-<-<-< 3.14310-<-<-<2023GDP 551.2551.295.51210⨯105.51210⨯8551.210⨯115.51210⨯a n ,10n a ⨯110a ≤<n 551.25512000000010n a ⨯ 5.512a =10n =551.2105.51210⨯2-2--12--12--23-()23-3223【详解】解:A 、,不是相反数,故选项错误;B 、,不是相反数,故选项错误;C 、,,故和互为相反数,故选项正确;D、和不是相反数,故选项错误;故选C .4. 南充创建全国卫生城市以来,全市人民积极努力,下图是一个写着“全国卫生城市”宣传标语的正方体魔方的展开图,请问“国”字对面的字是( )A. 卫B. 生C. 城D. 市【答案】B【解析】【分析】本题考查正方体展开图的相对面.根据正方体的展开图的相对面必定相隔一个正方形,进行判断即可.【详解】解:由题意,得:“国”字对面的字是“生”;故选:B .5. 如图,OA 表示北偏东25°方向的一条射线,OB 表示南偏西50°方向的一条射线,则∠AOB 的度数是( )A. 165°B. 155°C. 135°D. 115°【答案】B【解析】2=2---211221-==---239-=-()239-=23-()23-3223【分析】首先根据已知的方向角的度数,得到余角的度数,然后再根据所求得的余角的度数即可得到的度数.【详解】如图所示,OA 表示北偏东25°方向的一条射线,OB 表示南偏西50°方向的一条射线,∴,,∴,∴,故选:B .【点睛】本题主要考查的是方向角及其计算的知识,熟练掌握余角的定义是解题的关键.6. 下列说法正确的有( )(1)若,则;(2)若,则;(3)若,则;(4)若方程与的解相同,则a 的值为0.A. 4B. 3C. 2D. 1【答案】C【解析】【分析】本题主要考查了等式的性质,同解方程.根据等式的两边加(或减)同一个数(或式子)结果仍相等;等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等,可得答案.【详解】解:(1)若,时,无意义,故(1)错误;(2)若,则,故(2)正确;(3)若,则不一定成立,故(3)错误;AOB ∠25EOA ∠=︒50FOB ∠=︒40DOB ∠=︒259040155AOB ∠=︒+︒+︒=︒ac bc =a b =a b c c=-a b =-22x y =2244ax by -=-2511x a x +=-6322x a +=ac bc =0c =a b c c=-a b =-22x y =2244ax by -=-(4)若方程与的解相同,则a 的值为0,故(4)正确,故选C .7. 用一种彩色硬纸板制作某种长方体包装盒,每张硬纸板可制作盒身12个或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,若用张做盒身,要使盒身和盒底刚好配套,则下列所列方程正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查一元一次方程的实际应用.根据1个盒身与2个盒底配成一套,得到盒底的数量为盒身数量的2倍,列出方程即可.找准等量关系,是解题的关键.【详解】解:设用张做盒身,则用张做盒底,由题意,得:;故选:C .8. 点,,在同一直线上,已知,,则线段长是( )A. B. C. 或 D. 或【答案】D【解析】【分析】本题考查线段的和与差.分点在点的左侧和右侧,两种情况进行求解即可,采用分类讨论的思想是解此题的关键.【详解】解:∵点,,在同一直线上,,,∴或 ;故选D .9. 已知、、都为整数,且满足,则的结果为( )A. 0B. 0或1C. 1D. 1或2【答案】A 【解析】【分析】本题考查绝对值的意义,化简绝对值.根据题意,得到,,或,,整体代入法求值即可.的2511x a x +=-6322x a +=113x =x ()121828x x =-()1221828x x =⨯-()2121828x x ⨯=-()21221828x x ⨯=⨯-x ()28x -()2121828x x ⨯=-A B C 4cm AB =1cm BC =AC 2cm3cm 2cm 5cm 3cm 5cm C B A B C 4cm AB =1cm BC =5cm AC AB BC =+=3cm AC AB BC =-=a b c 20232024||||1a b b c -+-=a b b c a c -+---0a b -=1b c -=1a b -=0b c -=【详解】解:∵、、都为整数,且满足,∴,或,;当,时,,∴,∴;当,时,∴,∴;综上:的结果为0,故选A .10. 若关于的方程的解是整数,则整数的取值个数是( )A. 个B. 个C. 个D. 个【答案】A【解析】【分析】本题考查了一元一次方程的解,原方程依次去括号,移项,合并同类项,系数化为,得到关于的的值,根据“该方程的解是整数”,得到几个关于的一元一次方程,解之即可,正确掌握解一元一次方程的方法是解题的关键.【详解】解:,,,,由关于的方程的解是整数解,则整数或或,共个,故选:.二、填空题(本大题共6个小题,每小题4分,共24分)11. 如果收入100元记作“”元,那么支出100元应该记作________元.a b c 20232024||||1a b b c -+-=0a b -=1b c -=1a b -=0b c -=0a b -=1b c -=a b =b c a c -=-0110a b b c a c -+---=+-=1a b -=0b c -=b c=a b a c -=-1010a b b c a c -+---=+-=a b b c a c -+---x ()()20242022620241k x x --=-+k 65321k x k ()()20242022620241k x x --=-+()20242024620242022k x x -+=-+4kx =4x k=x ()()20242022620241k x x --=-+1k =±2±4±6A 100+【答案】【解析】【分析】本题考查正负数的意义.根据正负数表示一对相反意义的量,收入为正,则支出为负,进行作答即可.【详解】解:如果收入100元记作“”元,那么支出100元应该记作元;故答案为:.12. 如图1,A ,B 两个村庄在一条河(不计河的宽度)的两侧,现要建一座码头,使它到A ,B 两个村庄的距离之和最小,图2中所示的C 点即为所求码头的位置,那么这样做的理由是______.【答案】两点之间,线段最短【解析】【分析】本题主要考查两点之间线段最短,熟练掌握两点之间线段最短是解题的关键;因此此题可直接根据题意进行求解.【详解】解:由题意可知他这样做的理由是两点之间线段最短;故答案为:两点之间,线段最短.13. 若是关于的方程的解,那么的值为________.【答案】2【解析】【分析】本题考查方程的解,代数式求值,整式的加减运算,根据方程的解的定义和整体代入法进行求解即可.【详解】解:∵是关于的方程的解,∴,∴,∴100-100+100-100-1x =x 22210a x ax ++=()22421a a a a ---+1x =x 22210a x ax ++=2210a a ++=221a a +=-()22224214221a a a a a a a a ---+=--++221a a =--+.故答案为:2.14. 已知,互为相反数,,互为倒数,的绝对值是5.则________.【答案】87【解析】【分析】本题代数式求值,根据题意,得到,进而得到,代入代数式进行求解即可.解题的关键是掌握相反数,倒数的定义,绝对值的意义.【详解】解:由题意,得:,∴,∴;故答案为:87.15. 若关于的两个多项式与的和为三次三项式,则的值为________.【答案】1【解析】【分析】本题考查整式的加减,多项式的项数和次数.将多项式合并后,根据和为三次三项式,得到一次项的系数为0,求解即可.【详解】解:∵,为三次三项式,∴,∴;故答案为:1.16. 如图,用大小相同小正方形拼成大正方形,拼第1个正方形需4个小正方形,拼第2个正方形需9个小正方形……试一试,拼一拼,照这样的方法拼成的第个正方形比第个正方形多________个小正方形.的()221a a =-++()11=--+2=a b c d x ()3243x a b cd -+---=0,1,5a b cd x +===225x =0,1,5a b cd x +===225x =()()332432504132564287x a b cd -+---=----=+-=x 3282x x x -++32231x mx x +--m ()3233282223138221x x x x mx x x x m x -++++--=-+-+220m -=1m =n ()1n -【答案】【解析】【分析】本题考查了图形类的规律探究,完全平方公式等知识.根据题意推导一般性规律是解题的关键.由题意知,可推导一般性规律为:拼第个正方形需个小正方形,则第个正方形需个小正方形,根据,计算求解即可.【详解】解:由题意知,拼第1个正方形需个小正方形,拼第2个正方形需个小正方形,拼第3个正方形需个小正方形,……∴可推导一般性规律为:拼第个正方形需个小正方形,∴第个正方形需个小正方形,∴,故答案为:.三、解答题(本大题共9小题,共86分)17. 计算:(1);(2).【答案】(1)(2)【解析】21n +n ()21n +()1n -()2211n n -+=()221n n +-()2411=+()2921=+()21631=+n ()21n +()1n -()2211n n -+=()22121n n n +-=+21n +2240238177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭20247531112|4|12622⎛⎫---+⨯+-÷ ⎪⎝⎭3-8-【分析】本题考查了有理数的加减混合运算,含有乘方的有理数的混合运算,乘法运算律.熟练掌握有理数的加减混合运算,含有乘方的有理数的混合运算,乘法运算律是解题的关键.(1)根据有理数的加减混合运算计算求解即可;(2)先计算乘方,绝对值,乘、除法,然后进行加减运算即可.【小问1详解】解:;【小问2详解】解:.18. 先化简,再求值:,若,满足.【答案】,【解析】【分析】本题考查整式加减中的化简求值,非负性.去括号,合并同类项进行化简,再根据非负性求出的值,然后代值计算即可.掌握相关运算法则,正确的计算,是解题的关键.【详解】解: ;,又2240238177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭22(4038)2177⎛⎫=-++-+ ⎪⎝⎭21=--3=-20247531112|4|12622⎛⎫---+⨯+-÷ ⎪⎝⎭7531121212421262=--⨯+⨯-⨯+⨯1710188=--+-+8=-221523253x xy xy x ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦x y ()2230x y -++=6xy -+12,x y 222215232552653x xy xy x x xy xy x ⎡⎤⎛⎫--++=-++- ⎪⎢⎥⎝⎭⎣⎦6xy =-+20x -≥ ()230y +≥()2230x y -++=,,;故原式.19. 某水泥厂仓库6天内进出水泥的吨数如下(“”表示进库,“”表示出库):、、、、、.(1)经过这6天,增多或减少了多少吨?(2)如果进出仓库的水泥装卸费都是每吨5元,那么6天共需付多少元装卸费?【答案】(1)经过这6天,仓库的水泥减少吨(2)这6天装卸水泥的总费用为元【解析】【分析】(1)由题意知,根据,计算求解即可;(2)由题意知,根据,计算求解即可.【小问1详解】解:由题意知,经过6天仓库的水泥量变化为:(吨),经过这6天,仓库水泥减少吨.【小问2详解】解:由题意知,装卸水泥的总费用为:(元),答:这6天装卸水泥的总费用为元.【点睛】本题考查了正负数的实际应用,绝对值,有理数的加减混合运算的应用,有理数的混合运算的应用.熟练掌握正负数的实际应用,绝对值,有理数的加减混合运算的应用,有理数的混合运算的应用是解题的关键.20. 解方程:(1);(2).【答案】(1)(2)【解析】【分析】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括的20x ∴-=()230y +=2x ∴==3y -()23612=-⨯-+=+-50+45-33-48+49-36-651305()()()()504533484936+-+-++-+-5045334849365⎡+-+-++-+-⎤⨯⎣⎦()()()()50453348493665+-+-++-+-=-∴6550453348493651305⎡+-+-++-+-⎤⨯=⎣⎦1305()()26141x x x ---=-511126x x +-=0x =8.5x =-号、移项、合并同类项、系数化为1.(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【小问1详解】解:去括号,得:移项,得:,合并,得:,系数化1,得:;【小问2详解】去分母,得:移项,得:合并,得:系数化1,得:.21. 已知线段,如图所示,根据下列要求,依次画图或计算.(1)根据下列步骤画图,并用含有,的式子表示线段.①作出射线;②在射线上依次截取;③在线段上截取.(2)若,,是线段的中点,求线段的长.【答案】(1),作图见详解(2)线段的长是【解析】【分析】(1)按照步骤作图即可,(2)将、的值代入可求的长度,进而求出的长度,本题考查了线段的作图,中点的定义,解题的关键是:掌握线段作图的基本方法.【小问1详解】解:作答如下图所示:26644x x x --+=-64426x x x -+=+-x 0-=0x =()35116x x -+=35116x x --=217x -=8.5x =-a b a b OA OP OP OB BC CD a ===DO DA b =2a =3b =M OA OM 3OA a b =-OM 1.5a b OA OM由题可知:,【小问2详解】由(1)可知,,,,为的中点,,故答案为:线段的长是.22. 如图,长方形的长都为,宽都为,图①中内部空白部分为半圆,图②中2个圆与图③中8个圆大小分别相等,三个图形中阴影部分的面积分别记为、、.(结果保留)(1)计算( 用含,的代数式表示);(2)根据(1)问的结果,求当,时的值;(3)分别用含,的代数式表示、,然后判断3个图形中阴影部分面积的大小关系.【答案】(1);(2);(3),,.【解析】【分析】(1)图形(1)中阴影部分的面积是长方形与半圆的差;(2),代入(1)的式子即可计算;(2)图(2)中为长方形与两个小圆的差;图(3)中为长方形与八个小圆的差;分别求出它们的值后再比较即可得到结论.【详解】解:(1).(2)由(1)得,当,时,.3OA OB BC CD DA a b =++-=-3OA a b =-2a = 3b =3OA ∴=M OA 1 1.52OM OA ∴==OM 1.5a b 1S 2S 3S π1S a b 4a =2b =1S a b 2S 3S 2112S ab b π=-82π-2212S ab b π=-2312S ab b π=-123S S S ==1S 4a =2b =2S 3S 2112S ab b π=-2112S ab b π=-4a =2b =211422822S ππ=⨯-⨯=-(3),,则.【点睛】本题主要考查了列代数式及其应用,涉及了长方形与圆的面积公式,阴影部分的面积是两种图形面积的差.此题是代数式在实际生活中的应用.23. (1)如图1所示,直线,相交于,,.①直接写出图中的余角;②如果,求的度数.(2)如图2所示,已知为线段的中点,,,,求线段,的长.【答案】(1)①与互余得角有:、、;②;(2),【解析】【分析】(1)本题考查互余关系,几何图形中角度的计算.找准角度之间的数量关系,是解题的关键.①根据和为90度的两角互余,进行判断即可;②由①得到,推出,再根据,进行求解即可;(2)本题考查与线段中点有关的计算.线段之间的数量关系以及和差关系进行求解,是解题的关键.【详解】解:(1)①∵,,∴,∵,22212(22bS ab ab b ππ=-=-22318(42b S ab ab b ππ=-=-123S S S ==AB CD O 90AOE ∠=︒90COF ∠=︒AOF ∠15EOF AOD ∠=∠EOF ∠O AB 23AC AB =45BD AB =1OC =AB CD AOF ∠AOC ∠EOF ∠BOD ∠30EOF ∠=︒6AB =145CD =AOC EOF ∠=∠15AOC AOD ∠=∠180AOC AOD ∠+∠=︒90AOE ∠=︒90COF ∠=︒90,90AOF AOC AOF EOF ∠+∠=︒∠+∠=︒AOC BOD ∠=∠∴,∴与互余的角有:、、;②由①可知:,,,,,;(2)为线段的中点,,, ,,,.24. 某商场在元旦期间进行促销活动,方案如下表:一次性购物(原价)优惠方案不超过元不给予优惠超过元,但不超过元超过元的部分按折优惠超过元所购商品全部给予折优惠(1)若小明一次性购物元则实际应付款________元;(用含有的式子表示)(2)若小明在本次促销活动中购物两次分别支付了元和元,则两次共节省了多少元?【答案】(1)或(2)两次一共节约元或元【解析】90AOF BOD ∠+∠=︒AOF ∠AOC ∠EOF ∠BOD ∠AOC EOF ∠=∠15EOF AOD ∠=∠ 15AOC AOD ∴∠=∠180AOC AOD ∠+∠=︒ 6180AOC ∴∠=︒30AOC EOF ∴∠=∠=︒O AB 12AO AB ∴=23AC AB = 16OC AC AO AB ∴=-=66AB OC ∴==23AC AB = 45BD AB =7714615155CD AC BD AB AB ∴=+-==⨯=20020050020095008x ()200500x <≤x 236452()2000.9200x ⎡⎤+-⎣⎦()0.920x +32117【分析】()由已知条件可知小明的实际付款应该为超过的部分打折,列出代数式即可;()分别求出两次购物的原价,从而求出购物的原价总钱数,再减去两次实际支付的钱数即可;本题主要考查了列代数式,求代数式的值和一元一次方程的应用,解题关键是理解题意,列出代数式和方程.【小问1详解】,,,故答案为:;【小问2详解】经分析支付元,实际消费范围应在:超过元不超过元,∴设实际消费元,由()可知:,解得:,∴实际消费元;经分析支付元,实际消费范围:可能是超过元但不超过元,也可能是超过元,∴设实际消费元,时,,解得: ,时,,解得:,综上所述支付元实际消费为元或元,∵,,答:两次一共节约元或元.25. 【数学之美】三角尺中的数学.(1)如图1.将两块直角三角尺的直角顶点叠放在一起,.若,120092()2000.9200x +-2000.9180x =+-0.920x =+0.920x +236200500x 10.920236x +=240x =240452200500500y ①200500y <≤0.920452y +=480y =②500y >0.8452y =565y =452480565()()24048023645232+-+=()()240565236452117+-+=32117C 90ACD ECB ∠=∠=︒35ECD ∠=︒则________;若,则________;请直接写出与的数量关系________.(2)如图2.若两个同样的直角三角尺顶点重合如图放置,,则请猜想与的数量关系并说明理由.(3)如图3,已知点为直线上一点,在直线上方,,三角尺(其中)绕点旋转一周的过程中,写出与可能存在的数量关系,并说明理由.【答案】(1),,ACB =∠140ACB ∠=︒ECD ∠=ACB ∠ECD ∠60DAC GAF ∠=∠=︒GAC ∠DAF ∠O AB OC AB 60AOC ∠=︒90MON ∠=︒O COM ∠AON ∠145︒40︒180ACB ECD ∠+∠︒=(2),理由见解析(3)或,理由见解析【解析】【分析】本题考查三角板中角度的计算,找准角度之间的数量关系,和差关系,是解题的关键.(1)利用进行计算即可;(2)利用,即可得出结论;(3)分在内部和在外部,两种情况进行求解即可.【小问1详解】解:∵,,∴当时,,当时,,∵,∴,故答案为:,,;【小问2详解】猜想:,理由如下:∵,,∴;小问3详解】①如图所示:设的延长线为,则,【120GAC DAF ∠+∠=︒150COM AON ∠+∠=︒210︒ACB ACD BCE ECD =∠+∠-∠∠GAC GAF DAC DAF Ð=Ð+Ð-ÐON AOC ∠AOC ∠ACB ACD BCE ECD =∠+∠-∠∠90ACD ECB ∠=∠=︒35ECD ∠=︒18035145ACB ACD BCE ECD ∠=∠+∠-∠=︒-︒=︒140ACB ∠=︒40ECD ACD BCE ACB ∠=∠+∠-=︒∠ACB ACD BCE ECD =∠+∠-∠∠180ACB ECD ACD BCE +∠=∠+∠=︒∠145︒40︒180ACB ECD ∠+∠︒=120GAC DAF ∠+∠=︒GAC GAF DAC DAF Ð=Ð+Ð-Ð60DAC GAF ∠=∠=︒120GAC DAF GAF DAC ∠+∠=∠+∠=︒NO OE 90MOE ∠=︒60AOC ∠=︒180120BOC AOC ∴∠=︒-∠=︒AON BOE∠=∠;②当三角尺一边不在内部时,如图所示:,,;综上所述或.COM AON COM BOE∴∠+∠=∠+∠360MOE BOC=︒-∠-∠36090120150=︒-︒-︒=︒ON AOC ∠90MON ∠=︒ 60AOC ∠=︒3603609060210COM AON MON AOC ∴∠+∠=︒-∠-∠=︒-︒-︒=︒150COM AON ∠+∠=︒210︒。

七年级数学上册期末试卷及答案(多套题)

七年级数学上册期末试卷及答案(多套题)

七 年 级 上 册 期 末 数 学 试 卷(1)一、精心选一选1、下列式子正确的是( D )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 2、多项式12++xy xy 是( D )A .二次二项式B .二次三项式C .三次二项式D .三次三项式3、桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( A )A .①②③④B .①③②④C .②④①③D .④③①②4、一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( A )5、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( C )A .3瓶B .4瓶C .5瓶D .6瓶 二、填空题6、52xy -的系数是 51- 。

7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第6次后剩下的绳子的长度是641米。

图3 O O O O A B C D8、如图点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 155 度。

-|c -b |化简9、有理数a ,b ,c 在数轴上的位置如图,式子|a |-|b|+|a+b|结果为___-b+c ____10、如图:A 地和B 地之间途经C 、D 、E 、F 四个火车站,且相邻两站之间的距离各不相同,则售票员应准备___30____种火车票.11、用小立方块搭一几何体,使得它的从正面看和从上面看 形状图如图所示,这样的几何体最少要____9__个立方块,最 多要____13___个立方块.12、已知A=2x 2+3xy -2x -1,B=-x 2+xy-1,若3A +6B 的值与x 的值无关,则y 的值___52__三、对号入座13、(1)把下列各整式填入相应圈里ab +c ,2m ,ax 2+c ,-ab 2c ,a, 0, -x 21,y +2.(1)单项式:2m ,-ab 2c ,a ,0,-x 21 多项式:ab +c ,ax 2+c ,y +2AOBC D 单项式多项式C 地在A 2×2, 3×2, 4×3, 5×4,……,(1) 同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。

七年级上册数学期末模拟试题及答案解答(1)

七年级上册数学期末模拟试题及答案解答(1)

七年级上册数学期末模拟试题及答案解答(1)一、选择题1.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.92.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有(l)所示是一个33智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是⨯幻方,请你类比图(l)推算图(3)中P处所对应的数字是()一个未完成的33A.1 B.2 C.3 D.4=++,则称n为“好3.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”.例如:31111数”的个数共有()个A.1 B.2 C.3 D.44.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.20135.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形6.下列四个选项中,不是正方体展开图形的是()A .B .C .D .7.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海8. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3210.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -11.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 12.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .813.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .314.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9416.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >018.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度19.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-20.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.9121.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为()A.a﹣50 B.a+50 C.a﹣20 D.a+2022.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )A.1985 B.-1985 C.2019 D.-2019 23.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A.方案一B.方案二C.方案三D.不能确定24.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A.中B.国C.梦D.强25.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块26.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >027.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a +C .35a -D .3(5)a -28.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-129.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2230.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将两个式子相减后即可求解. 【详解】 两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..2.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.3.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.4.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.5.C解析:C 【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.6.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.12.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.18.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度), ∴估计他家6月份日用电量为9度,故选:D .【点睛】 本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.19.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.20.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.21.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B .【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.22.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.23.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C29.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.30.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秋七年级数学上学期期末模拟卷
一、选择题(每小题3分,共30分):
1.下列变形正确的是( )
A .若x 2=y 2,则x=y
B .若,则x=y
C .若x (x -2)=5(2-x ),则x= -5
D .若(m+n )x=(m+n)y ,则x=y
2.截止到2010年5月19日,已有21600名中外记者成为上海世博会的注册记
者,将21600用科学计数法表示为( )
A .0.216×105
B .21.6×103
C .2.16×103
D .2.16×104
3.下列计算正确的是( )
A .3a -2a=1
B .x 2y -2xy 2= -xy 2
C .3a 2+5a 2=8a 4
D .3ax -2xa=ax
4.有理数a 、b 在数轴上表示如图3所示,下列结论错误的是( )
A .b<a
B .
C .
D . 5.已知关于x 的方程4x -3m=2的解是x=m ,则m 的值是( )
A .2
B .-2
C .2或7
D .-2或7
6.下列说法正确的是( )
A .的系数是-2
B .32ab 3的次数是6次
C .是多项式
D .x 2+x -1的常数项为1 7.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )
A .0,6,0
B .0,6,1,0
C .6,0,9
D .6,1
8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成
了任务,而且还多生产了60件,设原计划每小时生产x 个零件,这所列方程为( )
A .13x=12(x+10)+60
B .12(x+10)=13x+60
C .
D . 9.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,
∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=
∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°. 其中正
确的个数是( )
A .1
B .2
C .3
D .4
10.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别
a
y a x =a b ->b a ->a b >3
2vt -5
y x +10126013=+-x x 10131260=-+x x (第4题图)b a (第9题图)D
A E
B O
C F E N M
D C B A
落在M 、N 的位置,且∠MFB=∠MFE. 则∠MFB=( ) A .30° B .36° C .45° D .72° 二、填空题(每小题3分,共18分): 11.x 的2倍与3的差可表示为 . 12.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是 .
13.买一支钢笔需要a 元,买一本笔记本需要b 元,那么买m 支钢笔和n 本笔记
本需要 元.
14.如果5a 2b m 与2a n b 是同类项,则m+n= .
15.900-46027/= ,1800-42035/29”= .
16.如果一个角与它的余角之比为1∶2,则这个角是 度,这个角与它的补
角之比是 .
三、解答题(共8小题,72分):
17.(共10分)计算:
(1)-0.52+; (2). 18.(共10分)解方程:
(1)3(20-y )=6y-4(y-11);
(2). 19.(6分)如图,求下图阴影部分的面积. 20.(7分)已知, A=3x 2+3y 2-5xy ,B=2xy -3y 2+4x 2,求: (1)2A -B ;(2)当x=3,y=时,2A -B 的值. 21.(7分)如图,已知∠BOC=2∠AOB ,OD 平分∠AOC ,∠BOD= 14°,求∠AOB 的度数.
22.(10分)如下图是用棋子摆成的“T ”字图案.
从图案中可以看出,第1个“T ”字型图案需要5枚棋子,第2个“T ”
字型图案需要8枚棋子,第3个“T ”字型图案需要11枚棋子.
2
19
4)211(424132⨯-----3)2(4
31)6.0(43321-+⨯-⨯÷-6
751413-=--x x 31-(第21题图)D
C
B
A O (第22题图).......
3[]
2[]
1[]
(1)照此规律,摆成第8个图案需要几枚棋子?
(2)摆成第n 个图案需要几枚棋子?
(3)摆成第2010个图案需要几枚棋子?
23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小
明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?
根据下面思路,请完成此题的解答过程:
解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t 小时,则
星期一中午小明从家骑自行车到学校门口所用时间为 小时,星期二
中午小明从家骑自行车到学校门口所用时间为 小时,由题意列方程
得:
24.(12分)如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm
(如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动(点Q 运动到点O 时停止运动),两点同时出发.
(1)当PA=2PB 时,点Q 运动到的 位置恰好是线段AB 的三等分 点,求点Q 的运动速度;
(2)若点Q 运动速度为3cm/秒,经过多长时间P 、Q 两点相距70cm ?
(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求 的值.
参考答案:
一、选择题:BDDCA ,CDBCB.
二、填空题:
11.2x-3; 12.11 13.am+bn
14.3 15.43033/,137024/31” 16.300.
三、解答题:
17.(1)-6.5; (2). 18.(1)y=3.2; (2)x=-1.
19.. 20.(1)2x 2+9y 2-12xy ; (2)31.
21.280.
22.(1)26枚;
(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第
[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×
EF
AP OB -3
31-ab 2
13(第24题图)
M
C B A O
(n-1)=3n+2]枚棋子;
(3)3×2010+2=6032(枚).
23.;;由题意列方程得:,解得:t=0.4, 所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km ), 即:星期三中午小明从家骑自行车准时到达学校门口的速度为:
4.5÷0.4=11.25(km/h ).
24.(1)①当P 在线段AB 上时,由PA=2PB 及AB=60,可求得:
PA=40,OP=60,故点P 运动时间为60秒.
若AQ=时,BQ=40,CQ=50,点Q 的运动速度为: 50÷60=(cm/s ); 若BQ=时,BQ=20,CQ=30,点Q 的运动速度为: 30÷60=(cm/s ). ②当P 在线段延长线上时,由PA=2PB 及AB=60,可求得:
PA=120,OP=140,故点P 运动时间为140秒.
若AQ=时,BQ=40,CQ=50,点Q 的运动速度为: 50÷140=(cm/s ); 若BQ=时,BQ=20,CQ=30,点Q 的运动速度为: 30÷140=(cm/s ). (2)设运动时间为t 秒,则:
①在P 、Q 相遇前有:90-(t+3t )=70,解得t=5秒;
②在P 、Q 相遇后:当点Q 运动到O 点是停止运动时,点Q 最多运动了
30秒,而点P 继续40秒时,P 、Q 相距70cm ,所以t=70秒,
∴经过5秒或70秒时,P 、Q 相距70cm .
(3)设OP=xcm ,点P 在线段AB 上,20≦x ≦80,OB-AP=80-(x-20)=100-x ,
EF=OF-OE=(OA+)-OE=(20+30)-, 101-t 101+t )10
1(9)101(15+=-x x 3AB 653AB 213AB 1453AB 1432AB 2
502x x -=

(OB-AP ). 22
50100=--=-x x EF AP OB。

相关文档
最新文档