圆的垂径定理试题(附答案).doc
垂径定理专题试题精选二附答案
垂径定理专题试题精选二附答案一.解答题(共29小题)1.(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.2.(2015•东西湖区校级模拟)如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.3.(2015•安徽模拟)如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B 是弧CF的中点.(1)求证:△ABF≌△DCB;(2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.4.(2015•黄浦区一模)已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:=;(2)当PA=1,∠BPO=45°时,求弦AB的长.5.(2015•大庆模拟)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.请完成下列填空:①请在图中确定并点出该圆弧所在圆心D点的位置,圆心D坐标;②⊙D的半径=(结果保留根号);③的长为.6.(2015•历城区一模)如图,AB是⊙O的直径,弦CD⊥AB,交AB于点E,∠CDB=30°,⊙O的半径为2cm,求弦CD的长.7.(2015•嘉定区一模)如图,已知AB是圆O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON:AN=2:3,OM⊥CD,垂足为点M.(1)求OM的长;(2)求弦CD的长.8.(2014•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.9.(2015•温州模拟)已知:如图,AB是⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB于点D,CD=4,AD=8.点E为的中点,延长AE交DC的延长线于点F.(1)求⊙O的半径;(2)求证:CA=CF.10.(2015•镇海区模拟)如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB 是菱形.11.(2015•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.12.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.13.(2015•绵阳模拟)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.14.(2015•黄陂区校级模拟)在△ABC中,∠A=90°,AB=3,AC=4.以点A为圆心,AC长为半径画弧交CB的延长线与点D,求CD的长.15.(2015•江岸区校级模拟)如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C、D两点.求证:AC=BD.16.(2015•东西湖区校级模拟)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.17.(2015•宝应县校级模拟)如图,过▱ABCD中的三个顶点A、B、D作⊙O,且圆心O在▱ABCD外部,AB=8,OD⊥AB于点E,⊙O的半径为5,求▱ABCD的面积.18.(2015•高密市一模)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连结OA,此时有OA∥PE(1)求证:AP=AO;(2)若弦AB=12,求tan∠OPB的值.19.(2015•武汉模拟)如图1,锐角△ABC内接于⊙O,∠BAC=60°,若⊙O的半径为2.(1)求BC的长度;(2)如图2,过点A作AH⊥BC于点H,若AB+AC=12,求AH的长度.20.(2012•长春)如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.21.(2012•怀远县校级模拟)如图,⊙O的弦AB垂直平分半径OC,若AB=2,求⊙O的半径.22.(2012•长春模拟)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,﹣3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.(1)求点B、C、D的坐标;(2)如果一个二次函数图象经过B、C、D三点,求这个二次函数解析式.23.(2011•怀化)如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.(1)求证:OF∥BC;(2)求证:△AFO≌△CEB;(3)若EB=5cm,CD=10cm,设OE=x,求x值及阴影部分的面积.24.(2011•南昌)如图,已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:sin60°=,cos30°=,tan30°=.)25.(2010•南充)如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.26.(2010•河池)如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)如果⊙O的半径为4,,求∠BAC的度数;(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.27.(2010•武汉模拟)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.28.(2010•宁波模拟)已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.(1)求证:∠CAB=∠CEG;(2)①求y与x之间的函数关系式.②x=时,点F是AB的中点;(3)当x为何值时,点F是的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.29.(2008•广安)如图,AB为⊙O的直径,OE交弦AC于点P,交于点M,且=.(1)求证:OP=BC;(2)如果AE2=EP•EO,且AE=,BC=6,求⊙O的半径.垂径定理专题试题精选二附答案参考答案一.解答题(共29小题)1.;2.;3.;4.;5.(2,0 );2;π;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.3;29.;。
2020--2021学年中考数学一轮复习专项练习圆的三大定理:垂径定理(含答案)
一轮复习专项练习圆的三大定理:垂径定理一.选择题1.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm2.如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A 于点D,则CD长为()A.5 B.4 C.D.23.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.44.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5 C.4 D.35.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.27.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果半径为4,那么⊙O的弦AB长度为()A.2 B.4 C.2D.48.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF =,则BF的长为()A.B.1 C.D.9.如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB.若AB=10,CD=6,则DE的长为()A.B.C.6 D.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11 D.15二.填空题11.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为.12.已知⊙O的半径为13,弦AB=24,CD=10,且AB∥CD,则弦AB与CD之间的距离为.13.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ =24,则OM的长为.15.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.三.解答题16.如图,AB为⊙O的直径,C,D是半圆上两点,且AC=CD=DB,AB=10cm (1)求AC的长度;(2)证明CD∥AB.17.如图,已知BC是⊙O的直径,弦AD⊥BC于点H,与弦BF交于点E,AD=8,BH=2.(1)求⊙O的半径;(2)若∠EAB=∠EBA,求证:BF=2AH.18.如图①,已知点O是∠EPF的平分线上的一点,以点O为圆心的圆与角两边分别交于A,B和C,D四点.(1)求证:AB=CD;(2)若角的顶点P在圆上,如图②,其他条件不变,结论成立吗?(3)若角的顶点P在圆内,如图③,其他条件不变,结论成立吗?19.如图,直线l:y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A2作x的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去.求:(1)点B1的坐标和∠A1OB1的度数;(2)弦A4B3的弦心距的长度.20.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.参考答案一.选择题1.解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在Rt△OAC中,OC===6(cm),故选:D.2.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=5,根据垂径定理,得DE=BE,∴CE=BE﹣BC=DE﹣2,根据勾股定理,得AD2﹣DE2=AC2﹣CE2,∴52﹣DE2=42﹣(DE﹣2)2,解得DE=,∴CD=DE+CE=2DE﹣2=.故选:C.3.解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.4.解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在Rt△ODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选:B.5.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,∵PC=4,OP=3,∴OC===5.故选:C.6.解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.7.解:如图;过O作OC⊥AB于D,交⊙O于C,连接OA;则AD=BD,由折叠的性质得:OD=CD,在Rt△OAD中,OD=CD=OC=2,OA=4;根据勾股定理得:AD===2,∴AB=2AD=4;故选:D.8.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD于J.∵=,∴AC=BC,OC⊥AB,∵AB是直径,∴ACB=90°,∴∠ACJ=∠CBF=45°,∵CF⊥AD,∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,∴∠CAJ=∠BCF,∴△CAJ≌△BCF(ASA),∴CJ=BF,AJ=CF=1+=,∵OC=OB,∴OJ=OF,设BF=CJ=x.OJ=OF=y,∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,∴△ACE≌△CBH(AAS),∴EC=BH=1,∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,∴△CEJ∽△COF,∴==,∴==,∴EJ=,∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,∴△BHF≌△CEJ(AAS),∴FH=EJ=,∵AE∥BH,∴=,∴=,整理得,10x2+7xy﹣6y2=0,解得x=y或x=﹣y(舍弃),∴y=2x,∴=,解得x=或﹣(舍弃).∴BF=,故选:A.9.解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,∵DE∥BC,∴MN⊥BC,DG⊥DE,∴DG=MN,∵OM⊥DE,ON⊥BC,∴DM=EM=DE,BN=CN,∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.∴CH=DH=CD=3,∴OH===4,∴BH=9,∴BC==3,∴BN=BC=,∴ON==,∵sin∠BCH==,即=,∴DG=,∴MN=DG=,∴OM=MN﹣ON=,∴DM==,∴DE=2DM=.故选:A.10.解:连接OP,OQ,∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=12,∴PH+QI=18﹣12=6,∴AB=OP+OQ=OH+OI+PH+QI=9+6=15,故选:D.二.填空题(共5小题)11.解:由已知可知,最长的弦是过M的直径AB,最短的是垂直平分直径的弦CD,已知AB=10,CD=6,则OD=5,MD=3,由勾股定理得OM=4.故答案为:4.12.解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=12﹣5=7;②当弦AB和CD在圆心异侧时,如图2,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=OF+OE=17.∴AB与CD之间的距离为7或17.故答案为7或17.13.解:∵CD⊥OB,∴CE=DE=CD=4,在Rt△OCE中,OE==3,∴AE=AO+OE=5+3=8(cm).故答案为8.14.解:作OF⊥PQ于F,连接OP,∴PF=PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18﹣x,在直角△OPF中,x2=122+(18﹣x)2,解得x=13,则MF=OF=OE=5,∴OM=5.故答案为:5.15.解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为:2+.三.解答题(共5小题)16.解:(1)连接OC,OD,∵AB为⊙O的直径,AB=10cm,∴OA=OB=5cm.∵AC=CD=DB,∴∠AOC=∠COD=∠BOD=60°,∴△AOC是等边三角形,∴OA=AC=5cm;(2)∵由(1)知∠AOC=∠COD=∠BOD=60°,∴△AOC、△COD与△BOD均是等边三角形,∴∠A+∠ACD=180°,∴CD∥AB.17.(1)解:连结OA交BF于G,如图,⊙O的半径为r,∵AD⊥OB,在Rt△OHA中,OH=r﹣2,OA=r,∴r2=42+(r﹣2)2,解得r=5,即⊙O的半径为5;(2)证明:连结CF,如图,∵AD⊥OB,∴弧AB=弧DB,∵∠EAB=∠EBA,∴弧BD=弧AF,∴弧AB=弧AF,∴OA⊥BG,∴BG=FG,∴∠OAH=∠OBG,在△OAH和△OBG中,,∴△OAH≌△OBG(AAS),∴AH=BG,∴BF=2AH.18.解:(1)相等.如图:作OG⊥AB于G,OH⊥CD于H,连接OA,OC,OB,OD.AG=BG,CH=DH,∵∠EPO=∠FPO,∴OG=OH.在Rt△OBG和Rt△ODH中,由HL定理得:△OBG≌△ODH,∴GB=HD,∴AB=CD;(2)点P在圆上,结论成立:顶点P在圆上,此时点P,A,C重合于点A,作OG⊥AB于G,OH⊥AD于H,∴AG=GB,AH=HD,∵∠EAO=∠DAO,∴OG=OH.在Rt△OAG和Rt△OAH中,由HL定理得:△OAG≌△OAH,∴AG=AH,∴AB=AD.即点P在圆上,结论成立.(3)顶点P在圆内,作OG⊥AB于G,OH⊥CD于H,则AG=GB,CH=HD,∵∠EPO=∠FPO,∴OG=OH,∴GB=HD,∴AB=CD.即点P在圆内,结论成立.19.解:(1)∵直线的解析式y=x,∴tan∠A1OB1==,∴∠A1OB1=60°,OA1=1,∴A1B1=,OA2=OB1=2,∴B1(1,).(2)连接A 4B 3,作OH ⊥A 4B 3于H .由题意OA 1=1,OA 2=2,OA 3=4,OA 4=8,∵OA 4=OB 3,OH ⊥A 4B 3,∴∠A 4OH =∠A 4OB 3=30°,∴OH =OA 4•cos30°=8×=4.20.解:(1)如图1中,连接OB ,OC .设BF =EF =x ,OF =y .∵AB ∥CD ,EF ⊥AB ,∴EF ⊥CD ,∴∠CEF =∠BFO =90°∴AF =BF =x ,DE =EC =2, 根据勾股定理可得:, 解得(舍弃)或,∴BF =4,AB =2BF =8.(2)如图2中,作CH ⊥AB 于H .∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.。
3.3 垂径定理(第1课时)
1 1 MD MN 6, EG行弦之间的距离分两种情况, 第12题图 分别是两弦心距的和与差.
B组 自主提高 12.已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm, EF=16cm,求弦MN和EF之间的距离. 【答案】如图分两种情况:MN,EF分别在圆心O的 同侧或异侧.作OD⊥MN于D,OG⊥EF于G,则
由勾股定理 OD= OM 2 MD 2 =8,OG= OE 2 EG 2 =6, ∴两平行弦之间的距离为8+6=14cm或8-6=2cm.
3.3 垂径定理(第1课时)
圆的轴对称性 例1 如图,AB是⊙O的一条弦, 作直径CD,使CD⊥AB,垂足为M. (1)右图是轴对称图形吗?如果是, 对称轴是什么? (2)图中有哪些等量关系? 说一说你的理由.
反思:圆是轴对称图形,它的每一条直径所在的直线 都是它的对称轴.
垂径定理
例2 一条30m宽的河上架有一半径为25m 的圆弧形 拱桥,请问一顶部宽为6m且高出水面4m的船能否通 过此桥?并说明理由. 解析:假设该桥恰能通过桥时,桥的半径为r,如图 所示,AB表示拱桥,EF为船顶部宽,CD为船顶到水面 的距离. (
A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5
答案:A
垂径定理的应用 例3 如图,△OCD为等腰三角形,底边CD交⊙O于 A、B两点.求证:AC=BD.
解:作OE⊥CD于E.则由垂 径定理,得AE=BE. ∵△OCD为等腰三角形, ∴CE=DE.∴AC=BD.
(
例
利用尺规作图把弧 AB 四等分.
5.如图所示,CD是⊙O的直径,AB是弦, OD⊥AB于M,则可得出AM=BM,AC=BC等结论, 请你按现有的图形再写出另外两个结 论: AD=BD,∠ACD=∠BCD等 .
圆的垂径定理试题(附答案)
2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )A.95B. 245C. 185D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )A. AG =BGB. AB ∥BFC.AD ∥BCD. ∠ABC =ADC4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) A. cm B. cm C. cm 或cm D. cm 或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A. cmB. 5cmC. 4cmD. cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D.8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. 2B.C.D.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A. 10B. 8C. 5D. 311、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C.6D.812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A. B. AF=BF C. OF=CF D. ∠DBC=90°13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A. 5B. 10C. 8D. 614、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O 的半径为()A. 4B. 5C. 4D. 315、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不.正确..的是()19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.图20 图21 图2220、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.图23 图24 图25 图26 图27 图2823、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB 的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为 ____________.30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
圆的垂径定理习题及答案
圆的垂径定理习题一. 选择题 1.如图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( )2.如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为()3.过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为()A* 9cmE, 5cm4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直位 D. 15个单位5.如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是()6. 下列命题中,正确的是(A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为A.4B. 6C. 7D. 8 B. 3 C. 4 D. 5B . 10个单位 C. 1个单A . 212个单位E & 5米B, 8米C. 7米D,出米D8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm9•已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm8. 已知AB 是O 0的直径,弦CDL AB E为垂足,CD=8 0E=1则AB= __________9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD的高度为13. 如图,矩形ABCDf圆心在AB上的圆0交于点G B、F、E, GB=10 EF=8 那么AD= ______14.___________________________________________________________________________ 如图,O O 的半径是 5cm P 是o o 外一点,PO=8cm / P=3GO,则 AB ______________________ cm是 __________________ Cm16. 已知AB 是圆O 的弦,半径OC 垂直AB 交AB 于D,若AB=8 CD=2则圆的半径为 _______________ 17. 一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 ___________________ 米 18. 在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的20. 如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点0 若 AC=8cm DE=2cm 则 OD 的长为 _____________ c m21. 已知等腰△ ABC 的三个顶点都在半径为5的。
2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)
中考数学专题复习:圆的垂径定理的应用(含解析)班级:姓名:一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是( )A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤108.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是( )A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C. D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【考点】垂径定理的应用,圆周角定理【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【考点】勾股定理,垂径定理的应用【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt △ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。
2022-2023学年北师大版九年级数学下册《3-3垂径定理》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《3.3垂径定理》同步练习题(附答案)一.选择题1.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.42.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm3.如图,C是以AB为直径的半圆O上一点,连接AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.204.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为的中点,P 是直径MN上一动点,则P A+PB的最小值为()A.B.C.1D.25.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3B.4C.6D.96.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2B.3C.4D.57.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是()A.(2,﹣4)B.(2,﹣4.5)C.(2,﹣5)D.(2,﹣5.5)8.小明想知道一块扇形铁片OAB中的的拱高(弧的中点到弦的距离)是多少?但他没有任何测量工具,聪明的小明观察发现身旁的墙壁是由10cm的正方形瓷砖密铺而成(接缝忽略不计).他将扇形OAB按如图方式摆放,点O,A,B恰好与正方形瓷砖的顶点重合,根据以上操作,的拱高约是()A.10cm B.20cm C.D.9.小王不慎把一面圆形镜子打碎了,其中三块如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.都不能二.填空题10.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.如果OD=3,AB=8,那么FC的长是.11.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为寸.12.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O 为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.13.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=.14.已知,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.15.在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是cm.16.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则AD的长是.三.解答题17.如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD 相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.18.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=8,⊙O的半径为5,求△ABC的面积.19.如图所示,某地欲搭建一座圆弧型拱桥,跨度AB=32米,拱高CD=8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距离桥的一端4米处欲立一桥墩EF支撑,求桥墩的高度.20.如图1是小明制作的一副弓箭,点A、D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.在自然状态下,弓臂BAC的长为cm;(2)如图3,将弓箭继续拉到点D2,使弓箭B2AC2为半圆,求D1D2的长.21.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.22.一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看作是抛物线的一部分,建立如图坐标系.要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看作是圆的一部分.要使高为3米的船通过,则其宽度须不超过多少米?23.车辆转弯时,能否顺利通过直角弯道的标准是:车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中②的位置),例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,则车辆就能通过.(1)试说明长8m,宽3m的消防车不能通过该直角转弯;(2)为了能使长8m,宽3m的消防车通过该弯道,可以将转弯处改为圆弧(分别是以O 为圆心,以OM和ON为半径的弧),具体方案如图3,其中OM⊥OM′,请你求出ON 的最小值.24.李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?25.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,求圆柱形饮水桶的底面半径的最大值.参考答案一.选择题1.解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2,∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=,在Rt△ODF中,DF===,∴CD=2DF=2;故选:C.2.解:连接AB,OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△ABE中,AE2+BE2=AB2,即AB=,∵OA=OC,OB=OC,OF⊥BC,∴BF=FC,∴OF=.故选:D.3.解:连接OP,OQ,分别交AC,BC于H,I,∵M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q,∴OP⊥AC,OQ⊥BC,由对称性可知:H,P,M三点共线,I,Q,N三点共线,∴H、I是AC、BC的中点,∴OH+OI=(AC+BC)=13,∵MH+NI=AC+BC=13,MP+NQ=7,∴PH+QI=13﹣7=6,∴AB=OP+OQ=OH+OI+PH+QI=13+6=19,故选:C.4.解:作A关于MN的对称点Q,连接MQ,BQ,BQ交MN于P,此时AP+PB=QP+PB =QB,根据两点之间线段最短,P A+PB的最小值为QB的长度,连接AO,OB,OQ,∵B为中点,∴∠BON=∠AMN=30°,∴∠QON=2∠QMN=2×30°=60°,∴∠BOQ=30°+60°=90°.∵直径MN=2,∴OB=1,∴BQ==.则P A+PB的最小值为.故选:B.5.解:设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.6.解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,OH=R﹣1,DH=则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选:B.7.解:过点M作MA⊥OP,垂足为A设PM=x,P A=x﹣1,MA=2则x2=(x﹣1)2+4,解得x=,∵OP=PM=,P A=﹣1=,∴OP+P A=4,所以点N的坐标是(2,﹣4)故选:A.8.解:连接AB,过O作OC⊥AB于C,交于D,则AC=BC=AB=20(cm),OC=30cm,由勾股定理得:OD=OA===10(cm),∴CD=OD﹣OC=(10﹣30)(cm),即的拱高约是(10﹣30)cm,故选:D.9.解:第②块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:B.二.填空题10.解:∵OE⊥AB,∴∠ADO=90°,∵∠ABC=90°,∴∠ABC=∠ADO=90°,∴OD∥BC,∵OA=OC,∴AD=DB=AB=4,AE=EF,∴OE是△AFC的中位线,∴CF=2OE,在Rt△ADO中,AO===5,∴CF=2OE=10,故答案为:10.11.解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.12.解:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2cm,∴AO=OD=2cm,S△AOD=AO•DO=AD•OF,∴OF=cm.13.解:点P是⊙O上的动点(P与A,B不重合),但不管点P如何动,因为OE⊥AP于E,OF⊥PB于F,根据垂径定理,E为AP中点,F为PB中点,EF为△APB中位线.根据三角形中位线定理,EF=AB=×10=5.14.解:①连接OA,如图所示:∵⊙O的直径CD=10,∴OA=5,∵弦AB=8,AB⊥CD,∴AM=AB=×8=4,在Rt△AOM中,由勾股定理得:OM===3,∴DM=OD+OM=5+3=8;②连接OA,如图所示:同①得:OM=3,∴DM=OD﹣OM=5﹣3=2;综上所述,DM的长为8或2,故答案为:8或2.15.解:连接OA,作OC⊥AB于C,如图,∵OC⊥AB,∴AC=BC=AB=8,在Rt△AOC中,OC===6,即点O到弦AB的距离为6cm.故答案为6.16.解:如图,连接OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD﹣BF=,∴OG=,GD=,在Rt△AGO中,AG==,∴AD=AG+GD=.故答案为:.三.解答题17.(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即()2+42=r2,解得:r=,即⊙O的半径为.18.(1)证明:∵OD⊥BC,∴=,∴AB=AC;(2)解:连接OB,∵OD⊥BC,BC=8,∴BD=DC=BC=×8=4,在Rt△ODB中,OD===3,∴AD=5+3=8,∴S△ABC=×8×8=32.19.解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O 点,设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣8)2+162,解得R=20;(2)OH⊥FE于H,则OH=CE=16﹣4=12,OF′=R=20,在Rt△OHF中,HF==16,∵HE=OC=OD﹣CD=20﹣8=12,EF=HF﹣HE=16﹣12=4(米),∴在离桥的一端4米处,桥墩高4米.20.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30,∴弓臂BAC的长为L扇形B1D1C1==20πcm;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,20π.21.解:过点O作OM⊥DE于点M,连接OD.∴DM=DE.∵DE=8(cm)∴DM=4(cm)在Rt△ODM中,∵OD=OC=5(cm),∴OM===3(cm)∴直尺的宽度为3cm.22.解:(1)设抛物线解析式为:y=ax2+c,∵桥下水面宽度AB是20米,高CD是4米,∴A(﹣10,0),B(10,0),D(0,4),∴,解得:∴抛物线解析式为:y=﹣x2+4,∵要使高为3米的船通过,∴y=3,则3=﹣x2+4,解得:x=±5,∴EF=10米;(2)设圆半径r米,圆心为W,∵BW2=BC2+CW2,∴r2=(r﹣4)2+102,解得:r=14.5;在Rt△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=2,此时宽度EF=4米.23.解:(1)消防车不能通过该直角转弯.理由如下:如图,作FH⊥EC,垂足为H,∵FH=EH=4,∴EF=4,且∠GEC=45°,∵GC=4,∴GE=GC=4,∴GF=4﹣4<3,即GF的长度未达到车身宽度,∴消防车不能通过该直角转弯;(2)若C、D分别与M′、M重合,则△OGM为等腰直角三角形,∴OG=4,OM=4,∴OF=ON=OM﹣MN=4﹣4,∴FG=OG﹣OF=×8﹣(4﹣4)=8﹣4<3,∴C、D在上,设ON=x,连接OC,在Rt△OCG中,OG=x+3,OC=x+4,CG=4,由勾股定理得,OG2+CG2=OC2,即(x+3)2+42=(x+4)2,解得x=4.5.答:ON至少为4.5米.24.解:如图,连接AC,作AC的中垂线交AC于G,交BD于N,交圆的另一点为M.则MN为直径.取MN的中点O,则O为圆心,连接OA、OC.∵AB⊥BD,CD⊥BD,∴AB∥CD∵AB=CD∴ABCD为矩形∴AC=BD=320cm,GN=AB=CD=40cm∴AG=GC=160cm,设⊙O的半径为R,得R2=(R﹣40)2+1602,解得R=340cm,340×2=680(cm).答:这个圆弧形门的最高点离地面的高度为680cm.25.解:过A、B、C三点作⊙O,连接OB.∵AD垂直平分BC∴点O必在AD上,BD=CD=24设⊙O的半径为r,则OD=48﹣r∵OD2+BD2=OB2∴(48﹣r)2+242=r2解得,r=30∴圆柱形饮水桶的底面半径的最大值30cm.。
垂径定理的应用专项练习60题(有答案)ok
垂径定理的应用专项练习60题(有答案)1.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为多少m?2.赵州桥建于1400多年前的隋朝,是我国石拱桥中的代表性的桥梁,桥拱是圆弧形(如图).经测量,桥拱下的水面距拱顶6m时,水面宽34.64m,已知桥拱跨度是37.4m,运用你所学的知识计算出赵州桥的大致拱高.(注意:运算时取37.4=14,34.64=20)3.有一圆弧形拱桥,水面AB的宽32米,当水面上升4米时,水面宽24米,当上游洪水来到时,水面每小时上升0.25米,问再过几小时,洪水会漫过桥面?4.有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.5.一个半圆形桥洞截面如图所示,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=16m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?6.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.7.某处一个圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面,量得AB的长为16cm,截面最深处为4cm,请你帮助维修人员确定管道圆形截面的半径长.8.已知排水管的截面为如图所示的圆O,半径为10,圆心O到水面的距离是6,求水面宽AB.9.如图是小方在十一黄金周某旅游景点看到的圆弧形门,小方同学很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮助小方同学计算出这个圆弧形门的半径是多少?10.某居民区一处圆形地下水管道破裂,修理工人准备更换一段新管道,经测量得到如图所示的数据,修理工人应准备内径多大的管道?11.在直径为650mm的圆柱形油罐内装进一些油后,其横截面如图,若油面宽AB=600mm,求油的最大深度.12.小明想知道一个大理石球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图),并量的两砖之间的距离是60cm,请你在图中利用所学的几何知识,求出大理石球的半径(要写计算过程).13.如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=(1)求⊙O的半径;(2)求截面中有水部分弓形的面积.(保留根号及π)14.一种花边是由如图的弓形组成,弧ACB的半径为5,弦AB=8.求弓形的高.15.有一座圆弧形的拱桥,桥下水面宽度8m,拱顶高出水面2m.现有一货船载一货箱欲从桥下经过,已知货箱宽6m,高1.5m(货箱底与水面持平),问该货船能否顺利通过该桥?16.我们在园林游玩时,常见到如图所示的圆弧形的门,若圆弧所在圆与地面BC相切于E点,四边形ABCD是一个矩形.已知AB=米,BC=1米.(1)求圆弧形门最高点到地面的距离;(2)求弧AMD的长.17.一辆卡车装满货物后,高4米,宽2.8米.(1)这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?请说明你的理由;(2)若将此隧道的上部(从边AB、CD的中点起)装上彩灯,请计算彩灯线的总长度L.(结果保留整数)18.如图,是一块残破的圆轮片,A、B、C是圆弧上的三点.(1)作出弧ACB所在的⊙O(不写作法,保留作图痕迹);(2)如果AC=BC=60cm,∠ACB=120°,求该残破圆轮片的半径.19.某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径了吗?请你建立一个用于求大理石球的几何模型,并写出你的计算过程.20.如图,有一座石拱桥的桥拱是以O为圆心,OA为半径的一段圆弧.(1)请你确定弧AB的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)如果已知石拱桥的桥拱的跨度(即弧所对的弦长)为24米,拱高(即弧的中点到弦的距离)为8米,求桥拱所在圆的半径.21.如图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分;图2是车棚顶部截面的示意图.(1)用尺规在图2中作出弧AB所在圆的圆心(保留作图痕迹,不写作法与证明);(2)车棚顶部是用一种帆布覆盖的,由图1中给出数据求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.求:(1)桥拱的半径.(2)现有一轮船宽60米,船舱顶部为长方形并高出水面9米要经过这里,这艘轮船能顺利通过吗?23.如图是有一部分埋藏在地下的圆形水管截面的示意图,小明量得这个圆形水管的弦AB=160cm,露出地面部分的高为40cm,求圆形水管的半径.24.小明家在进行新房装修时准备在阳台中间位置做一个圆弧形的观景台.已知阳台的宽为80cm,廊道的宽为60cm,观景台的跨度AB为120cm,观景台的外端到墙壁EF的最近距离为40cm.求设计的圆弧形的观景台的半径应为多少cm?25.如图,一条公路的转变处是一段圆弧(图中的弧AB),点O是这段弧的圆心,C弧AB是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,求这段弯路的半径.26.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.27.如图是某公园新建的圆形人工湖.为测量该湖的半径,小强和小丽沿湖边选取A、B、C三根木桩,使得A、B 之间的距离与B、C之间的距离相等,并测得B到AC的距离为3米,AC的长为60米,请你帮他们求出人工湖的半径.28.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?29.某地方有座弧形的拱桥,如图,桥下的水面宽为7.2米,拱顶高出水面2.4米,现有一艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱形桥吗?30.如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.31.如图是无为中学某景点内的一个拱门,它是⊙O的一部分.已知拱门的地面宽度CD=2m,它的最大高度EM=3m,求构成该拱门的⊙O的半径.32.如图是输水管的切面,阴影部分是有水部分,其中水面宽16cm,最深地方的高度是4cm,求这个圆形切面的半径.33.一辆汽车装满货物的卡车,2.5m的高,1.6m的宽,要进厂门形状如图某工厂,问这辆卡车能否通过门?请说明理由.34.在半径为13cm的圆柱形油槽内装入一些油后,截面如图.若油面宽AB=24cm,求油的最大深度.35.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).36.一条排水管的截面如右图所示,截面中有水部分弓形的弦AB为cm,弓形的高为6cm.(1)求截面⊙O的半径.(2)求截面中的劣弧AB的长.37.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,如图所示,则这个小孔的直径AB是多少毫米?38.如图,是一个直径为650㎜的圆柱形输油管的横截面,若油面宽AB=600㎜,求油面的最大深度.39.如图,半径是13cm圆柱形油槽,装入油后,油深CD为8cm,求油面宽度AB.40.①白云商厦服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元,为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?②如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?41.(1)试找出如图3所示的破残轮片的圆心的位置;(不写作法,保留作图痕迹)(2)如图4,在等边△ABC外接圆劣弧上任取一点P,连接PA、PB、PC,判断结论“PB+PC>PA”是否正确,若正确请证明,若不正确,请举反例.42.如图为桥洞的形状,其正视图是由圆弧和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB 为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.(1)求所在⊙O的半径DO;(2)若河里行驶来一艘正视图为矩形的船,其宽6米,露出水面AB的高度为h米,求船能通过桥洞时的最大高度h.43.如图是团风某座石拱桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为?44.当宽为3cm的刻度尺的一边与⊙O相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为多少cm?45.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弓形的高CD为多少?46.如图直径为26cm的圆柱形的油槽内装入一些油以后截面如图所示,若油面宽AB=24cm,求油的最大深度.47.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧的圆心,AB=300m,C是AB上一点,OC⊥AB,垂足为D,CD=45m,求这段公路的半径.48.某地有一座圆弧形拱桥,圆心为O,桥下水面宽度为7.2m,过O作OC⊥AB于D,交圆弧于C,CD=2.4m(如图所示).现有一艘宽3m、船舱顶部为正方形并高出水面AB,2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?49.如图,在直径为100mm的半圆铁片上切去一块高为20mm的弓形铁片,求弓形的弦AB的长.50.高速公路上一个隧道的横截面的形状是以O为圆心的圆的一部分(弓形ACB),如图,若路面AB=10米,隧道顶端与路面的最大距离(弓形高)CD=7米,求⊙O的半径.51.小明家位于六朝古都西安,一个星期天的早晨,小明吃过早饭,像往常一样来到菜地,帮助妈妈锄草,“铛”的一声,引起小明的注意,好奇的小明发现草丛下面的土里,有一个圆形的破损的古镜,爱动脑筋的小明想知道这个古镜的半径大小,他在古镜上随意找到了三个点A、B、C.若构成的△ABC恰好是等腰三角形,底边BC=8cm,腰AB=5cm,你能帮忙计算镜子的半径吗?52.将图中的破轮子复原,已知弧上三点A、B、C,(1)画出该轮子的圆心;(用直尺与圆规)(2)若△ABC是等腰三角形,底边BC=10cm,腰AB=6cm,求圆片的半径R.53.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处是否会受到噪音影响?若受到影响,求出影响的时间,若不受到影响,请说明理由.54.如图,要把破残的圆形模具复制完整,已知弧上的三点A、B、C;(1)用尺规作图法,找出B、A、C所在圆的圆心(保留作图痕迹,不写作法)(2)若△ABC是等腰直角三角形,腰AB=5cm,求圆形模具中弧AC的长.55.如图是一个装有水的水管的截面,已知水管的直径是100cm,装有水的液面宽度为AB=60cm,则水管中水的最大深度为多少?56.如图,某排水管模截面,已知原有积水的水平面宽CD=0.8m时最大水深0.2m,当水面上升0.2m时水面宽多少?57.如图是一个弓形零件的截面图.已知弓形高为9cm,弦长为6cm,求弓形所在圆的半径.58.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°.点A处有一所中学,AP=160m,一辆拖拉机从P 沿公路MN前行,假设拖拉机行驶时周围100m以内会受到噪声影响,那么该所中学是否会受到噪声影响,请说明理由,若受影响已知拖拉机的速度为18km/h,那么学校受影响的时间为多长?59.如图,两条公路EF和PQ在点O外交汇,∠QOF=30°,在点A处有一栋居民楼,AO=200米,如果公路上的汽车行驶时,周围200米以内会受噪音影响,那么一汽车在公路EF上沿OF的方向行驶时,居民楼是否会受影响?如果这辆汽车的速度是每小时72千米,居民楼受影响的时间约为多少秒?(≈1.732,精确到0.1秒)60.如图所示,某城区的过境公路MN和城区马路PQ在点P处交汇,且∠QPN=30°,现计划在点A(马路PQ边)处建一所中学,AP=160m,假设汽车行驶时,周围100m以内会受到噪声的影响.(1)那么汽车在公路MN上沿PN方向行驶时,学校A是否会受到噪声的影响?请说明理由;(2)如果受到影响,已知汽车的速度限为60km/小时,那么学校受到影响的时间为多少秒?参考答案:1.如图所示:已知AB=16m,半径OA=10m,AB为弦,∴OC垂直平分AB∴AD=AB=8m在Rt△AOD中,由勾股定理可得:OD2=AO2﹣AD2∴OD=6m∴CD=OC﹣OD=4m答:中间柱CD的高度为4m.2.如图,设圆弧所在圆的圆心为O,AB=37.4=14m,CD=34.6=20m,GE=6m.在Rt△OCE中,OE=OC﹣6,CE=10.∵OC2=CE2+OE2,∴OC2=(10)2+(OC﹣6)2.∴OC=28(m).∴OA=28.在Rt△OAF中,AF=7,∴.∴拱高GF=28﹣21=7(m).3.如图,AE=AB=16m,CF=CD=12m设OE=x,OF=4+x根据勾股定理R2=AE2+OE2=CF2+OF2即162+x2=122+(4+x)2解得x=12∴R==2020﹣(12+4)=44÷0.25=16∴时间为16小时4.不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.5.(1)∵OE⊥CD于E,CD=16,∴ED=CD=8.在Rt△DOE中,∵sin∠DOE==,∴OD=10(m);(2)在Rt△DOE中,OE==(m),根据题意知:水面要以每小时0.5m的速度下降,即时间t=6÷0.5=12(小时),故将水排干需12小时.6.过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.7.设圆形截面的圆心过O作OC⊥AB于D,交弧AB于C,连接AO,(1分)∵OC⊥AB,∴cm.(3分)由题意可知:CD=4cm,设半径为xcm,则OD=(x﹣4)cm在Rt△AOD中,由勾股定理得:OD2+AD2=OA2,∴(x﹣4)2+82=x2.∴x=10.(5分)答:这个圆形截面的半径为10cm.8.过O点作OC⊥AB,连接OB,∴AB=2BC,在Rt△OBC中,BC2+OC2=OB2,∵OB=10,OC=6,∴BC=8,∴AB=16.答:水面宽AB为16.9.∵AB⊥BD,CD⊥BD∴AB∥CD∵AB=CD∴ABCD为矩形∴AC=BD=200cm,GN=AB=CD=20cm∴AG=GC=100cm (3分)设⊙O的半径为R,得R2=(R﹣20)2+1002,解得R=260cm答:这个圆弧形门的半径是260cm10.过O作OD⊥AB于D,设内径为R,则有:AD2=DO2+AO2,故R2=(R﹣10)2+302,解得:R=50.答:修理工人应准备内径为50cm的管道.11.过点O作OD⊥AB于点C,交⊙O于点D,连接OA,由垂径定理得:AC=AB=×600=300(mm),在Rt△ACO中,AC2+OC2=AO2,∴3002+OC2=3252,解得:OC=125mm,∴CD=OD﹣OC=325﹣125=200(mm).答:油的最大深度是200mm12.连接AC,OA,OB,设⊙O的半径为r,∵AC=60cm,BD=10cm,OB⊥AC,∴AD=AC=×60=30cm,在Rt△ADO中,AD2+OD2=OA2,即302+(r﹣10)2=r2,解得r=50cm.答;大理石球的半径为50cm13.(1)过点O作OC⊥AB于点D ,交于点C,连接OB,设⊙O的半径为r,则OD=r﹣2,∵OC⊥AB,∴BD=AB=×4=2,在Rt△BOD中,∵OD2+BD2=OB2,即(r﹣2)2+(2)2=r2,解得r=4;(2)∵由(1)可知,BD=2,OB=4,∴sin∠BOD===,∴∠BOD=60°,∴∠AOB=2∠BOD=120°,∴S弓形=S扇形AOB﹣S△AOB =﹣×2×2=﹣214.如右图,连接OC、OA,设OC与AB的交点为D点.在Rt△OAD中,OA=5,OD=5﹣CD,AD=AB=4;由勾股定理得:52=(5﹣CD)2+42,解得CD=2.故弓形的高为2.15.作出弧AB所在圆的圆心O,连接OA、ON,则NH=MN=6=3,设OA=r,则OD=OC﹣CD=r﹣2,AD=AB=4,在Rt△AOD中,∵OA2=AD2+OD2,∴r2=42+(r﹣2)2,∴r=5(m)在Rt△ONH中,OH2=ON2﹣NH2∴,∴FN=DH=OH﹣OD=4﹣3=1(m),∵1<1.5,∴货船不可以顺利通过这座拱桥.16.(1)设圆弧所在圆的圆心为O,连接OE交AD于F,连接OA,如图所示:设⊙O半径为x,则OF=x ﹣米,AF=米在Rt△AOF中x2=()2+(x ﹣)2解得:x=1 圆弧门最高点到地面的距离为2米.(2)∵OA=1,OF=1﹣=∴∠AOF=30°∴∠AOD=60°(8分)弧AMD的长==米.17.(1)如图,设半圆O的半径为R,则R=2,作弦EF∥AD,且EF=2.8,OH⊥EF于H,连接OF,由OH⊥EF,得HF=1.4,(3分)又OH=,∴此时隧道的高AB+OH>2.6+1.4=4(米),∴这辆卡车能通过此隧道;(2)L=(AB+CD)+AD=2.6+2π=8.88≈9(米).18.①如图1所示:②如图2,∵AC=BC=60cm,∠ACB=120°∴∠AOC=∠BOC,又∵AO=CO,CO=BO,∴△AOC≌△COB,∴∠CBO=∠ACO=60°,∵BO=CO,∴∠OBC=∠BCO=60°,∴△OBC是等边三角形,∴半径为60cm.19.根据题意可以建立圆中垂径定理的模型如图:AC=60cm,BD=10cm,设半径为r,∵OB⊥AC,∴,在Rt△ADO中,AD2+OD2=OA2,可得:302+(r﹣10)2=r2,解得r=50cm.答:大理石球的半径为50cm.20.(1)如图:点E即为所求(2)设和AB的交点是D,在直角三角形AOD中,AB=24m,DE=8m,:r2=122+(r﹣8)2解得:r=13cm.答:桥拱所在圆的半径为13cm.21.(1)如图所示:;(2)如(1)中的图,根据垂径定理,得AD=2.设圆的半径是r.在直角三角形AOD中,根据勾股定理,得r2=(r﹣2)2+(2)2,解得r=4.则OD=2.∴∠AOD=60°,∴∠AOB=2∠AOD=120°,则弧AB 的长是=,则覆盖棚顶的帆布的面积是×60=160π(m2).22.(1)如图,点E是拱桥所在的圆的圆心,作EF⊥AB 于F,延长EF交圆于点D,则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,设圆的半径是r,则:r2=402+(r﹣20)2,解得:r=50;(2)货船能顺利通过这座拱桥.理由:连接EM,设MD=30米.∵DE⊥MN,EF=50﹣20=30(m),在Rt△DEM中,DE==40(米),∵DF=DF﹣EF=40﹣30=10(米)∵10米>9米,∴货船能顺利通过这座拱桥.23.设圆心为O,作OD⊥AB于点D,交圆于点C.∵OC⊥AB,∴BD=AB=×160=80cm,设圆形水管的半径是rcm,则在直角△ODB中,OB=rcm,OD=r﹣40cm.根据勾股定理可以得到:r2=802+(r﹣40)2.解得:r=100cm.24.找AB中点D,作OC垂直AB于D,连OB.OC为⊙O半径,设⊙O半径为x.由图可知,CD=80﹣40=40cm∵D是AB的中点,AB=120cm,∴BD==60cm,∵△BOD是直角三角形,∴OB2=OD2+BD2,即x2=(x﹣40)2+602,x2=x2﹣80x+1600+3600,80x=5200,解得,x=65cm.答:设计的圆弧型的观井台的半径应为65cm.25.∵OC⊥AB,∴BD=AB=×300=150m,∵设这段弯路的半径长是r,则在直角△OBD中,OB=r,OD=r﹣50m,OB2=OD2+BD2,∴r2=1502+(r﹣50)2,解得:r=250m26.这辆卡车能通过厂门.理由如下:如图M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,则CD=MN=1.6m,AB=2m,由作法得,CE=DE=0.8m,又∵OC=OA=1m,在Rt△OCE中,OE===0.6(m),∴CM=2.3+0.6=2.9m>2.5m.所以这辆卡车能通过厂门.27.设点O为圆心,连接半径OA、OB、OC,设OB交AC 于点D.∵AB=BC,∴=,∴OB⊥AC,∴∠AOB=∠COB,∵OA=OC,∴AD=CD=30米.设OA=x米,则有x2﹣(x﹣3)2=302,解得x=151.5(米).故人工湖的半径为151.5米28.过O作OD⊥AB,交AB于点C ,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==2π.29.假设圆心在O处,连接OA,OC,过O作OK⊥AB于K,交CD于H,交圆O于G点.设圆O的半径为r,则OA=OG=r,GK=2.4,OK=OG﹣GK=r﹣2.4,又∵AB为7.2米,所以AK=3.6米,在直角三角形AOK中,根据勾股定理得:(r﹣2.4)2+3.62=r2解得:r=3.9,∴OK=3.9﹣2.4=1.5(米),当CD=3米时,HC=1.5米,则OH2=3.92﹣1.52,解得OH=3.6,∴HK=OH﹣OK=3.6﹣1.5=2.1米>2米.∴此货船能顺利通过这座拱形桥.30.(1)如图:⊙O即为所求;(2)∵AB⊥CD,∴AD=AB=12cm,设OA=x,OD=(x﹣8)cm,∵OA2=OD2+AD2,即x2=144+(x﹣8)2,解得:x=13.∴圆的半径为13.31.连接OC.设⊙O的半径为xm,∵EM⊥CD,∴CM=CD=1m.在Rt△OCM中,由OM2+CM2=OC2,得(3﹣x)2+1=x2.解得:x=.答:构成该拱门的⊙O 的半径为m32.设圆形切面的半径,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=AB=×16=8cm,∵最深地方的高度是4cm,∴OD=r=4,在Rt△OBD中,OB2=BD2+OD2,即r2=82+(r﹣4)2,解得r=10(cm).答:这个圆形切面的半径是10cm.33.这辆卡车能通过厂门.理由如下:如图M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,则CD=MN=1.6m,AB=2m,由作法得,CE=DE=0.8m,又∵OC=OA=1m,∴OE==0.6m∴CM=0.6+2.3=2.9m>2.5m∴卡车能通过大门.34.过O作OC⊥AB于C,交优弧AB于D,连OA,如图,∵OA=OD=13cm,AB=24cm,∴AC=BC=12cm,在Rt△AOC中,OA=13,AC=12,∴OC=5,∴CD=5+12=17(cm).所以油的最大深度为17cm.35.如图;连接OA;根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC==5cm;∴CD=OD﹣OC=8cm;∴油面高为8cm.36.(1)设⊙O半径为r,作OC⊥AB于C点,交弧AB于D点∵AB=12,∴AC=BC=AB=6,∵CD=6,∴,解得:r=12(cm)答:截面⊙O的半径为12cm.(2)连接AD,∵∴AD=OA=OD∴△AOD是等边三角形,∴∠AOD=60°同理∠BOD=60°∴∠AOB=120°∴弧长.答:截面中有水部分弓形的弧AB的长为8πcm.37.如图,设钢珠的圆心为O,过O作OC⊥AB于C,交优弧AB于D,连OC,则OA=12÷2=6mm,CD=9mm,OC=9mm﹣6mm=3mm,∵OC⊥AB,∴CA=CB,在Rt△AOC中,AC===3,∴AB=6mm.所以这个小孔的直径AB是6毫米.38.过点O作OD⊥AB于点D ,交于点F,连接OA,∵AB=600mm,∴AD=300mm,∵底面直径为650mm,∴OA=×650=325mm,∴OD===125mm,∴DF=OF﹣OD=×650﹣125=200mm.答:油面的最大深度为200mm.39.连接OA,故OC⊥AB于点D,由垂径定理知,点D为AB的中点,AB=2AD,∵OA=13cm,∴OD=OC﹣CD=13﹣8=5(cm),由勾股定理知,AD===12(cm),故油面宽度AB=24cm.40.①∵如果每件童装每降价4元,那么平均每天就可多售出8件,∴如果每件童装每降价1元,那么平均每天就可多售出2件,设每件童装应降价x元,根据题意列方程得,(40﹣x)(20+2x)=1200,解得x1=20,x2=10(舍去),答:每件童装应降价20元;②连接OA,OM,设OA=r,ME=2,则OM=r,DG=2,∵AB=7.2,∴AD=3.6,∵CD=2.4,∴OD=r﹣2.4,在Rt△AOD中,∵OA2=AD2+OD2,∴r2=3.62+(r﹣2.4)2,∴r=3.9,OD=3.9﹣2.4=1.5,∴OG=OD+DG=1.5+2=3.5,在Rt△OMG中,MG2=OM2﹣OG2=3.92﹣3.52=2.96,∴MG==,∴MN=2MG=≈3.44>3,∴该货箱能顺利通过该桥.41.(1)点O就是所求的圆心.(2)在PA上截取PE=PC,连接CE,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∴△PCE是等边三角形,∴PC=CE,∠PCE=∠ACB=60°,∴∠PCB=∠ACE,∵BC=AC,∠PBC=∠CAE,∴△ACE≌△PBC,∴PB=AE,∴PA=PB+PC.故结论“PB+PC>PA”不正确42.(1)∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2(m),在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m;(2)如图所示:假设矩形的船为矩形MQRN,船沿中点O为中心通过,连接MO,∵MN=6m,∴MY=YN=3m,在Rt△MOY中,MO2=YO2+NY2,则52=YO2+32,解得:YO=4,答:船能通过桥洞时的最大高度为4m.43.如图,桥拱所在圆心为E,作EF⊥AB,垂足为F,并延长交圆于点H.由垂径定理知,点F是AB的中点.由题意知,FH=10﹣2=8m,则AE=EH,EF=EH﹣HF.由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣HF)2,即AE2=122+(AE﹣8)2,解得:AE=13m.答:桥拱的半径为13m.44.连接OC,交AB于点D,连接OA,由图可得:AB=9﹣1=8(cm),∵刻度尺的一边与⊙O相切,∴OC⊥CE,∵AB∥CE,∴OD⊥AB,∴AD=AB=4cm,设OA=xcm,则OD=(x﹣3)cm,在Rt△OAD中,OA2=OD2+AD2,∴x2=(x﹣3)2+42,解得:x=.∴该圆的半径为cm.45.找出圆心O,连接OA,OC,D必然在OC上,∴OA=OC=5,∵OC⊥AB,AB=8,∴AD=BD=4,在Rt△AOD中,OA=5,AD=4,根据勾股定理得:OD==3,则弓形的高CD=OC﹣OD=5﹣3=2.46.连接OB,过点O作OC⊥AB于点D,交⊙O于点C,∵AB=24cm,∴BD=AB=×24=12cm,∵⊙O的直径为26cm,∴OB=OC=12cm,在Rt△OBD中,OD===5cm,∴CD=OC﹣OD=13﹣5=8cm.答;油的最大深度为8cm.47.如图,设半径为r,则OD=r﹣CD=r﹣45,∵OC⊥AB,∴AD=BD=AB,∴在Rt△AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣45)2=22500+r2﹣90r+2025,90r=24525,解得,r=272.5m.答:这段弯路的半径是272.5m.48.如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=r,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB,2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥.49.OA=50mm,CD=20mm∴OD=OC﹣CD=30mm在Rt△AOD中AD==40(mm)∴AB=2AD=80mm.50.∵CD⊥AB且过圆心O,∴AD=AB=×10=5m,设半径为rm,∴OA=OC=rm,∴OD=CD﹣OC=(7﹣r)m,∴在Rt△AOD中,OA2=OD2+AD2,∴r2=(7﹣r)2+52,解得:r=,⊙O 的半径为.51.连接AO,OB,∵△ABC恰好是等腰三角形,∴AB=AC ,∴=,∴AO⊥BC,∵BC=8cm,∴BD=4cm,∵AB=5cm,∴AD==3(cm),设圆片的半径为R,在Rt△BOD中,OD=(R﹣3)cm,∴R2=52+(R﹣3)2,解得:R=8.5(cm),答:圆片的半径R为8.5cm52.(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,∵BC=10cm,∴BD=5cm,垂径定理的应用----21∵AB=6cm,∴AD==cm,设圆片的半径为R,在Rt△BOD中,OD=(R ﹣)cm,∴R2=52+(R ﹣)2,解得:R=cm,∴圆片的半径R 为cm.53.如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16(秒).54.(1)如图所示:(2)连接AO,∵△ABC是等腰直角三角形,腰AB=5cm,∴AC=5,BC==5,∴AO⊥BC,∴∠AOC=90°,∴圆的半径为:,∴弧AC 的长为:=π.55.连接OA,根据题意得:CD⊥AB,∴AD=AB=×60=30(cm),∵水管的直径是100cm,∴OA=50cm,在Rt△AOD中,OD==40(cm),∴CD=OC+OD=90(cm).∴水管中水的最大深度为90cm.56.如图,AB为水面上升0.2m时水面宽,CD=0.8m,过O作OH⊥AB于H,交CD于F,交⊙O于E,则EF=0.2m,FH=0.2m,连OA,OC,∵OH⊥AB,∴OF⊥CD,∴CF=DF=0.4m,AH=BH,设⊙O的半径为R,在Rt△OCF中,OF=R﹣0.2,∴R2=(R﹣0.2)2+0.42,解得R=0.5,在Rt△OAH中,OH=R﹣0.4=0.1,∴AH==,∴AB=m.即当水面上升0.2m 时水面宽为m.57.连接OA,过点O作OE⊥AB于点E,∵OE⊥AB,AB=6cm,∴AE=3cm,设弓形所在圆的半径OA=r,则OE=9﹣r,在Rt△AOE中,OA2=OE2+AE2,即r2=(9﹣r)2+32,解得r=5cm.垂径定理的应用----22故弓形所在圆的半径为5cm58.过点A作AB⊥MN于B,∵∠QPN=30°,AP=160m,∴AB=AP=×160=80(m),∵80<100,∴该所中学会受到噪声影响;以A为圆心,100m为半径作圆,交MN于点C与D,则AC=AD=100m,在Rt△ABC中,BC==60(m),∵AC=AD,AB⊥MN,∴BD=BC=60m,∴CD=BC+BD=120m,∵18km/h=5m/s,∴学校受影响的时间为:120÷5=24(秒).59.过点A作AD⊥EF,∵∠QOF=30°,AO=200米,∴AD=AO•sin30°=200×=100米<200米,∴居民楼会受到影响;连接AB,∵OA=200米,AD⊥OB,∴OB=2DO,∵在Rt△AOD中,AO=200米,AD=100米,∴OD===100米,∴OB=200米,∵这辆汽车的速度是每小时72千米=20米/秒,∴=10≈17.3秒.答:居民楼受影响的时间约为17.3秒.60.(1)汽车在公路MN上沿PN方向行驶时,学校A会受到噪声的影响.理由是:过A作AE⊥PN于E,∵∠QPN=30°,AP=160,∴AE=80<100,∴汽车在公路MN上沿PN方向行驶时,学校A会受到噪声的影响.(2)以A为圆心,以100m为半径作圆,交PN与C、D,连接AC、AD,AC=AD=100,∵AE⊥CD,∴CE=DE==60,∴CD=120m,60KM/小时=m/秒,∴120÷=7.2(秒),答:学校受到影响的时间为7.2秒.垂径定理的应用----23。
垂径定理练习题
垂径定理一、选择题(共9小题)1.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE 为矩形,这个矩形的面积是()A.2B.C.D.【答案】B【解答】解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.2.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.【答案】D【解答】解:过点O作OD⊥BC,垂足为D,∵OB=5,OD=3,∴BD=4,∵∠A=∠BOC,∴∠A=∠BOD,∴tan A=tan∠BOD==,故选:D.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8【答案】D【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°【答案】C【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE,=,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选:C.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【答案】B【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.6.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD 的长为()A.3B.6C.6D.12【答案】C【解答】解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【答案】B【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.8.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D =30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【答案】B【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.9.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【答案】B【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sin A==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选:B.二、填空题(共16小题)10.如图,圆O的直径CD=10cm,AB是圆O的弦,且AB⊥CD,垂足为P,AB=8cm,则sin∠OAP=.【答案】见试题解答内容【解答】解:∵AB⊥CD,∴AP=BP=AB=×8=4cm,在Rt△OAP中,OA=CD=5,∴OP==3,∴sin∠OAP==.故答案为:.11.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为2.【答案】见试题解答内容【解答】解:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=AC•BD=×1×4=2.故答案为:2.12.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为24度.【答案】见试题解答内容【解答】解:∵OA⊥BC,∴∠ODB=90°,∵∠ACB=33°,∴∠AOB=2∠ACB=66°,∴∠OBC=90°﹣∠AOB=24°.故答案为:24.13.如图,在边长为1的正方形网格中,若一段圆弧恰好经过四个格点,则该圆弧所在圆的圆心是图中的点C.【答案】见试题解答内容【解答】解:圆心是弦EF和弦FG的中垂线的交点,是C.故选C.14.如图,△ABC内接于⊙O,AO=2,BC=2,则∠BAC的度数为60°.【答案】见试题解答内容【解答】解:连结OB、OC,作OD⊥BC于D,如图,∵OD⊥BC,∴BD=BC=×2=,在Rt△OBD中,OB=OA=2,BD=,∴cos∠OBD==,∴∠OBD=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴∠BAC=∠BOC=60°.故答案为60°.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.【答案】见试题解答内容【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3.【答案】见试题解答内容【解答】解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.17.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.【答案】见试题解答内容【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.18.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.【答案】见试题解答内容【解答】解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.19.如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=12cm,则CD=2cm.【答案】见试题解答内容【解答】解:∵⊙O的半径是10cm,弦AB的长是12cm,OC是⊙O的半径且OC⊥AB,垂足为D,∴OA=OC=10cm,AD=AB=×12=6cm,∵在Rt△AOD中,OA=10cm,AD=6cm,∴OD===8cm,∴CD=OC﹣OD=10﹣8=2cm.故答案为:2.20.如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为3.【答案】见试题解答内容【解答】解:连接OC,∵AB为⊙O的直径,AB=10,∴OC=5,∵CD⊥AB,CD=8,∴CE=4,∴OE===3.故答案为:3.21.如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD =4.【答案】见试题解答内容【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.22.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE=4cm.【答案】见试题解答内容【解答】解:∵CD⊥AB∴CE=CD=×6=3cm,∵在Rt△OCE中,OE=cm.故答案为:4.23.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN 于点E,CD⊥MN于点F,P为EF上的任意一点,则P A+PC的最小值为.【答案】见试题解答内容【解答】解:连接OB,OC,作CH垂直AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则P A+PC的最小值为.故答案为:24.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.【答案】见试题解答内容【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.25.如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6 cm2.【答案】见试题解答内容【解答】解:如图作△DBF的轴对称图形△CAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△CAG,由于C、D为直径AB的三等分点,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴=,在Rt△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=×2=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在Rt△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为:6.三、解答题(共5小题)26.如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.【答案】见试题解答内容【解答】解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.27.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.【答案】见试题解答内容【解答】(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.28.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【答案】见试题解答内容【解答】解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.29.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【答案】见试题解答内容【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.【答案】见试题解答内容【解答】解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠DCB=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.。
专题22 圆锥曲线中的垂径定理(解析版)
专题22: 圆锥曲线中的垂径定理一、知识框架二、概念及相关典型例题 (一) 圆中的垂径定理(问题背景:直线斜率存在)图1 图2 图3 (1)如图1,在圆O 中,E 为弦AB 中点,则OE ⊥AB ,即1-=⋅AB OE k k (2)如图2,在圆O 中,l 与圆O 相切于E 点,则OE ⊥l ,即1-=⋅AB OE k k .(若切点坐标为),(00y x E ,可得切线l 方程:200r y y x x =+)(3)如图3,AB 为圆O 直径,E 圆上异于A 、B 两点的动点,则BE ⊥AE ,即1-=⋅BE AE k k .(二)圆锥曲线中的垂径定理(问题情景假设:假设下列问题讨论所涉及的直线斜率都存在情况下)1.椭圆中的垂径定理(以焦点在x 轴的椭圆方程)0(12222>>=+b a b y a x 为例)图1 图2 图3 (1)如图1,在椭圆C 中,E 为弦AB 的中点,则22ab k k ABOE -=⋅;(证明:用点差法)(2)如图2,在椭圆C 中,l 与椭圆相切于E 点,则22ab k k l OE -=⋅;(证明:法一:极限思想,当A 无穷接近B 点;法二:换元法变换为122='+'y x 证明即可;法三:导数)(3)如图3,l 过中心O,交椭圆于A,B 两点,E 是椭圆上异于A 、B 点的动点则22ab k k AEBE -=⋅.(证明:取AE 重点M ,连接OM ,即可用(1)证明)2.双曲线中的垂径定理(以焦点在x 轴的双曲线方程)00(12222>>=-b a by a x ,为例)图1 图2 图3 图4 图5(1)如图1或图2,E 为弦AB 的中点,则22ab k k ABOE =⋅; (2)如图3,l 与双曲线相切于E 点,则22ab k k l OE =⋅;(3)如图4,过O 点的l 交双曲线于A,B 两点,E 是双曲线上异于A 、B 点的动点,则22abk k AEBE =⋅. (4)如图5,l 交上双曲线两渐近线于A,B 两点,E 为线段AB 的中点,则22ab k k ABOE =⋅. 【注意:若焦点在y 轴上的双曲线方程)00(12222>>=-b a b x a y ,,则上面斜率乘积结论变为:22ba ,即=⋅AB OE k k =⋅l OE k k 22ba k k AEBE =⋅】(三)例题点评1.例题初探【例1】过点M(1,1)作斜率为21-的直线与椭圆)0(12222>>=+b a b y a x C :相交于A,B 两点,若M 是线段AB的中点,则该椭圆的离心率为 .【解析】方法一:点差法 方法二:由垂径定理,22)21(11a b k k ABOM -=-⨯=⋅,2122222=-=a c a a b ,即2112=-e ,因为0<e<1,所以圆、椭圆与双曲线中的垂径定理可以归结为(统称为有心圆锥曲线):(1)若方程,且00(122>>=+n m ny m x 或0<mn )存在以上关系,则上述结论可表述为:m n -, 即=⋅AB OE k k =⋅l OE k k mn k k AE BE -=⋅,其中n m ,分别是22,y x 系数的倒数. (2)若方程)0,00(122<>>=+AB B A By Ax 或且存在以上关系,则上述结论可表述为:BA -, 即=⋅AB OE k k =⋅l OE k k BA k k AE BE -=⋅,其中B A ,分别是22,y x 系数.解的22=e 【例2】已知A 、B 为椭圆)0(12222>>=+b a by a x 的左右顶点,P 为椭圆上异于A 、B 的点,PA 、PB 的斜率分别为21,k k ,且4321-=k k ,则该椭圆的离心率为 【解析】答案为21=e【例3】设双曲线C :)0,0(12222>>=-b a by a x 的顶点为21,A A ,P 为双曲线上一点,直线1PA 交双曲线C 的一条渐近线于M 点,直线M A 2和P A 2的斜率分别为21,k k ,若12PA M A ⊥且0421=+k k ,则双曲线C 离心率为( ) A 、2 B 、25C 、5D 、4【解析】利用双曲线过中心弦结论2221a b k k PA PA =,即22114141ab k k ==⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛- 答案:B 【例4】已知A 、B 是双曲线)0,0(12222>>=-b a bx a y 的两个顶点,P 是双曲线上异于A 、B 的另一点,P 关于y 轴的对称点为Q ,记直线AP 、BQ 的斜率分别为21,k k ,且5421-=k k ,则双曲线的离心率为【解析】1k k AQ -=,由垂径定理得235411221=⇒=-=-e e k k 答案:23【例5】过双曲线)0(12222>>=-b a by a x 的左焦点F 且斜率为1的直线与双曲线的两条渐近线交于A 、B 两点,记线段AB 的中点为M ,且FM 等于半焦距,则双曲线的离心率=e【解析】 0>>b a ,∴双曲线的开口较小,渐近线斜率的绝对值比1小,故直线与双曲线的交点都位于y 轴左侧,当直线竖起来时中点即F ,而直线斜率为1,故中点M 位于第三象限,由 135=∠MFO ,FO FM =(O 为坐标原点),∴125.22tan -== OM k由垂径定理得21122=⇒-=⋅e e k OM 答案:42【例6】已知直线l 的斜率为1,且与双曲线2212x y -=相切于第一象限于点A ,则点A 的坐标为______.来源学科网ZXXK]【解析】法一:因为直线l 的斜率为1,所以设:l y x m =+代入双曲线2212x y -=得224220x mx m +++=因为直线与双曲线相切,所以0∆=,即()22164220m m -+=,解得1m =±当1m =时,22112y x x y =+⎧⎪⎨-=⎪⎩,解得21x y =-⎧⎨=-⎩,当1m =-时,22112y x x y =-⎧⎪⎨-=⎪⎩,解得21x y =⎧⎨=⎩ 因为切点A 在第一象限,所以点()2,1A .故答案为:()2,1. 法二:设切点坐标为()00,y x A ,由垂径定理得:212200===⋅a b x y K K l OA ,又因为点()00,y x A 在双曲线上,可得:122020=-y x ,解得10=y ,所以20=x , 所以点()2,1A .故答案为:()2,1.2.提高与巩固例题【例1】已知直线l 交椭圆805422=+y x 于M 、N 两点,B 是椭圆与y 轴正半轴的交点,若△BMN 的重心恰好为椭圆的右焦点,则直线l 的方程为【解析】设),(11y x M ,),(22y x N ,)4,0(B ,由重心公式得6021=++x x ,0421=++y y【三角形ABC 重心的坐标公式为)3,3(321321y y y x x x ++++,其中),(),,(),,(332211y x C y x B y x A 】 ∴线段MN 的中点为)2,3(-D ,由垂径定理得5412-=-=⋅e k k MN OD (O 为坐标原点)∴56=MN k ,∴直线l 的方程为02856=--y x【例2】已知椭圆1422=+y x ,P 是椭圆的上顶点,过P 作斜率为)0(≠k k 的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B , (1)求△PAB 面积的最大值(2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围【解析】(1)B PAB x x x S =-=∆2121,∴面积最大为2 (2)方法一(与椭圆联立):4122-=-=a b k k BP AP ,∴k k kk BP 441=⇒-=中垂线,N 刚到下顶点)1,0(-时,中垂线14-=kx y ,PB :141+-=x k y 与椭圆联立可求得⎪⎪⎭⎫ ⎝⎛+-+1414,148222k k k k B ∴PB 中点为⎪⎪⎭⎫⎝⎛++144,144222k k k k M 在中垂线上,代入得42±=k 方法二(与直线联立):由垂径定理得4112-=-=e kk BP ,∴PB :141+-=x ky 与边AP 平行的中位线kx y =联立得PB 中点为⎪⎪⎭⎫ ⎝⎛++144,144222k k k k M ,由M 与)1,0(-构成的中垂线斜率k k k k k 41441144222=+++,解得42±=k 【例3】设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 两条渐近线分别交于A ,B ,若点)0,(m P 满足PB PA =,则该双曲线的离心率是【解析】方法一(垂径定理):记M 为PM 的中点,则PM :033=-+m y x 与直线AB 联立,容易得)53,54(m m M由垂径定理得141122-=⇒-=e e k k PM AB 答案:25方法二(暴力计算)直线分别与两条渐近线联立得)3,3(a b bm a b am A --,)3,3(ba bmb a am B ++-∴AB 的中点为)93,9(222222a b m b a b m a --,所以线段AB 的中垂线斜率为3923222-=-=ba b k 方法三(渐近线点差法):设AB 中点为),(00y x ,则由点差法知310202==y a x b k又中点在直线上,故0300=+-m y x ①,由PB PA =得300-=-mx y ②由①②得34333000000=⇒+=-=x y x y x y m ,∴4122=a b 【例4】已知某椭圆的焦点是)0,4(),0,4(21F F -,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且三、自我素养养成练习与思考1.如图,已知椭圆)0(12222>>=+b a by a x ,过原点的直线交椭圆于点P 、A 两点(其中点P 在第一象限),过点P 作x 轴的垂线,垂线为C ,连AC 并延长交椭圆于B ,若PB PA ⊥,则椭圆的离心率为【解析】记1k k PB =,2k k AB =,延长PC 交椭圆于D ,连AD ,由初中几何知识得22k k AP =,由PBPA ⊥得1221-=k k ,由垂径定理得1221-=e k k 答案:222.已知双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,右顶点为A ,P 为双曲线右支上一点,1PF 交双曲线的左支于点Q ,与渐近线x aby =交于点R ,线段PQ 的中点为M ,若12PF RF ⊥,1PF AM ⊥,则双曲线的离心率为【解析】由直角三角形斜边的中线等于斜边的一半得c OR =,故),(b a R ∴ca b k PQ += 由垂径定理得2222)(1a c a b k a b e k k OM PQOM +=⇒=-=⋅联立直线PQ :)(c x c a b y ++=与直线OM :x ac a b y 2)(+=得)2)(,2(2c a c a b c a a M +++,)0,(a A 由2)(ac a b b c a k AM +=+-=得0202222=--⇒=+-e e ac c a ,解得2=e 答案:23.如图,已知椭圆)0(12222>>=+b a by a x 的左右顶点分别为A 、B ,P 为第一象限内一点,且AB PB ⊥,连接PA 交椭圆于点C ,连BC 、OP ,若BC OP ⊥,则椭圆的离心率为【解析】1k k PA =,2k k BC =,由初中几何知识得12k k OP =, 1221-=k k ,∴由垂径定理得211221-=-=e k k22=⇒e 答案:22 4.如图,1F ,2F 分别是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,B 是虚轴的端点,直线B F 1与C的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线MN 与x 轴交于点M ,若212F F MF =,则C 的离心率是 。
九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)
圆的性质大题一.解答题(共25小题)1.如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.2.如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)当∠BAC为多少度时,四边形OBDC是正方形?3.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A 的度数.4.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE 上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.5.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:AD=CE.6.如图,在⊙O中,=2,AD⊥OC于D.求证:AB=2AD.7.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,EC=2,求AB的长.8.如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.9.如图,⊙O的半径为5,弦AB⊥CD于E,AB=CD=8.(1)求证:AC=BD;(2)若OF⊥CD于F,OG⊥AB于G,试说明四边形OFEG是正方形.10.如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.11.在⊙O中,AB是⊙O直径,AC是弦,∠BAC=50°.(Ⅰ)如图(1),D是AB上一点,AD=AC,延长CD交⊙O于点E,求∠CEO的大小;(Ⅱ)如图(2),D是AC延长线上一点,AD=AB,连接BD交⊙O于点E,求∠CEO的大小.12.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.13.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧上,连接CE.(1)求证:CE平分∠AEB;(2)连接BC,若BC ∥AE,且CG=4,AB=6,求BE的长.14.如图,已知AD是⊙O的直径,BC切⊙O于点E,交AD延长线于点B,过点A作AC⊥BC交⊙O于点G,交DE于点F.(1)求证:AD=AF;(2)若DE=2CF,试说明四边形OEFG为菱形.15.如图,点A、B、C是圆O上的三点,AB∥OC(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于E,交AC于点P,若AB=2,∠AOE=30°,求圆O的半径OC及PE的长.16.如图,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的⊙O经过点C,并交AB于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.17.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.18.如图,点B,C为⊙O上两定点,点A为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=CD,试判断四边形EBCA的形状,并说明理由.19.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.20.如图,点B,C为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=6,则当CD=时,四边形EBCA是矩形.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.22.如图,AB是⊙O的直径,弦CD⊥AB于E,∠A=15°,AB=4.求弦CD的长.23.已知:如图,⊙O的直径AB的长为5cm,C为⊙O上的一个点,∠ACB的平分线交⊙O于点D,求BD的长.24.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.25.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.圆的性质大题参考答案与试题解析一.解答题(共25小题)1.【解答】(1)证明:∵∠B+∠D=90°,∴∠BHD=180°﹣90°=90°,即AB⊥CD,∵AB过O,∴CH=DH,即H是CD的中点;(2)解:连接OD,∵H为CD的中点,CD=2,AB过O,∴DH=CH=CD=,AB⊥CD,∴∠BHD=90°,由勾股定理得:BH===1,设⊙O的半径为R,则AB=2R,OB=OD=R,在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,即(R﹣1)2+()2=R2,解得:R=,∴AB=2×=3.2.【解答】证明:(1)连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)当∠BAC为45度时,四边形OBDC是正方形,理由是:∵∠BAC=45°,∴∠BOC=90°,∴四边形OBDC是正方形.3.【解答】解:∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.4.【解答】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3EC=EO+OC=5+3=8∴EA===4∴EF===2∴OF===5.【解答】证明:如图,∵AB∥CE,∴∠ACE=∠BAC.又∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠C=∠CAD,∴=,∴+=+,∴=,∴AD=CE.6.【解答】证明:延长AD交⊙O于E,∵OC⊥AD,∴,AE=2AD,∵,∴,∴AB=AE,∴AB=2AD.7.【解答】解:(1)∵∠EDC+∠EDA=180°、∠B+∠EDA=180°,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠EDC=∠C,∴ED=EC;(2)连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BC=2EC=4,∵∠B=∠EDC、∠C=∠C,∴△ABC∽△EDC,∴AB:EC=BC:CD,又∵EC=2、BC=4、CD=3,∴AB=8.8.【解答】(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt △COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=3.则AF=3+1=4,即AE=AF+3=7.9.【解答】(1)证明:∵AB=CD,∴=,∴﹣=﹣,即=,∴AC=BD(2)四边形OFEG是正方形理由如下:如图,连接OA、OD.∵AB⊥CD,OF⊥CD,OG⊥AB,∴四边形OFEG是矩形,,.∵AB=CD,∴DF=AG.∵OD=OA,∴OD=OA,∴△OFD≌△OGA,∴OF=OG.∴矩形OFEG是正方形10.【解答】解:(1)连接OD,∵直径AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.11.【解答】解:(Ⅰ)∵AD=AC,∠A=50°,∴∠C=∠ADC=65°,∴∠ADE=180°﹣∠ADC=180°﹣65°=115°∵∠AOE=2∠C=130°,∴∠CEO=∠AOE﹣∠ADE=130°﹣115°=15°(Ⅱ)∵AD=AB,∠A=50°∴∠D=∠B=65°,∵OB=OE,∴∠OEB=∠B=65°,∵四边形ABEC是圆内接四边形,∴∠BEC=180°﹣∠A=130°∴∠CEO=∠CEB﹣∠OEB=130°﹣65°=65°12.【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC 是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S=•π•42=8π.13.【解答】(1)证明:∵CD⊥半圆AB,CD是直径,∴=.∴∠AEC=∠BEC;∴CE平分∠AEB;(2)解:∵CD ⊥AB,∴BG=AG=3.∠BGC=90°,在Rt△BGC中,∵CG=4,BG=3,∴BC=5,∵BC∥AE,∴∠AEC=∠BCE.又∠AEC=∠BEC,∴∠BCE=∠BEC∴BE=BC=5.14.【解答】证明:(1)如图,连接OE,∵BC是⊙O的切线,OE是半径,∴OE⊥BC,∴∠BEO=90°,∵∠ACB=90°,∴OE∥AC,∴∠OED=∠F,∵OD=OE,∴∠OED=∠ODE,∴∠ODE=∠F,∴AD=AF;(2)连接OG,∵OE∥AF,OD=OA,∴DE=EF,∵DE=2CF,∴EF=2CF,∵∠ACB=90°,∴∠F=60°,∵AD=AF,∴△ADF是等边三角形,∵∠A=60°,∵OA=OG,∴∠OGA=60°,∴∠OGA=∠F,∴OG∥EF,∵OE∥AF,∴四边形OEFG 是平行四边形,∵OE=OG,∴平行四边形OEFG是菱形.15.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.OA=2,∴∠EAP=∠OAE=30°,∴PE=AE×tan30°=1×=,即PE的长是.16.【解答】(1)证明:△BDE是等腰直角三角形.∵AE是⊙O 的直径∴∠ACB=∠ADE=90°,∴∠BDE=180°﹣90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC=.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.17.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF==0.8m,∴CD=1.6m.18.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC∵∠E=∠BAC∴∠E=∠DAC,∵BE∥AC∴∠E=∠ECA∴∠ECA=∠DAC∴EC‖AD;(2)四边形EBCA是矩形.理由如下,∵AC平分∠BAD,∴∠BAC=∠DAC又∵BC=CD∴∠ACB=∠ACD=90°∴AB为⊙O的直径.∴∠AEB=90°,又∵BE∥AC∴∠EBC=∠ACD=90°∴四边形EBCA是矩形.19.【解答】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半径为.20.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵∠E=∠BAC,∴∠E=∠DACM∵BE∥AC,∴∠E=∠ACE,∴∠ACE=∠DAC,∴AD∥EC.(2)解:当四边形ACBE是矩形时,∠ACB=90°,∴∠ACB=∠ACD=90°,∵∠BAC=∠DAC,∴∠ABD=∠D,∴AB=AD,∴BC=CD=6,故答案为6.21.【解答】(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB ⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.22.【解答】解:∵∠A=15°,∴∠COB=30°.∵AB=4,∴OC=2.∵弦CD⊥AB于E,∴CE=CD.在Rt△OCE中,∠CEO=90°,∠COB=30°,OC=2,∴CE=1.∴CD=2.23.【解答】解:∵AB为直径,∴∠ADB=90°,∵CD 平分∠ACB,∴∠ACD=∠BCD,∴=.∴AD=BD,在等腰直角三角形ADB中,BD=ABsin45°=5×=,∴BD=.24.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.25.【解答】解:(1)∵∠C=45°,∴∠A=∠C=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=45°;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=3,∴AB=6,∴⊙O的半径为3.。
垂径定理应用练习1
垂径定理应用练习1一.选择题(共40小题)1.如图,有一圆弧形门拱,拱高AB=1m,跨度CD=4m,那么这个门拱的半径为()A.2m B.2.5m C.3m D.5m2.如图,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.则下列结论正确的是()A.AB=2BC B.AB<2BC C.∠AOB=2∠CAB D.∠ACB=4∠CAB3.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD5.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm6.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.87.一条排水管的截面如图所示,已知排水管的截面圆半径OB=5,截面圆圆心O 到水面的距离OC是3,则水面宽AB是()A.8 B.5 C.4 D.38.如图,圆弧形石拱桥的桥顶到水面的距离CD为6m,桥拱半径OC为4m,则水面宽AB为()A .mB .2mC .4mD .6m9.如图,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为点E ,若OE=3,则AB 的长是( )A .4B .6C .8D .1010.如图,点P 是半径为5的⊙O 内一点,且OP=3.过点P 任作一条弦AB ,则弦AB 的长不可能为( )A .7.9B .8.5C .9D .1011.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB=8,AE=1,则弦CD 的长是( )A .B .2C .6D .812.如图,⊙O 中,OA ⊥BC ,AD ∥OC ,∠AOC=40°,则∠B 的度数为( )A.100°B.110°C.115° D.120°13.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.14.下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦15.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD 与EF的大小关系是()A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定16.如图,⊙O的直径CD⊥弦AB于点P,且点P为OD的中点,已知AB=2,则CD的值为()A.2 B.4 C.D.17.上体育课时,老师在运动场上教同学们学习掷铅球,训练时,李力同学掷出的铅球在场地上砸出了一个坑口直径约为10cm、深约为2cm的小坑,则该铅球的直径约为()cm.A.20 B.19.5 C.14.5 D.1018.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.419.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为()米?A.6 B.4 C.8 D.520.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA21.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A.4 B.8 C.2 D.422.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.423.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.424.在半径为1的圆中,长度等于的弦所对的弧的度数为()A.90°B.145°C.270° D.90°或270°25.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD 等于()A.100°B.110°C.120° D.135°26.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为()A.4 B.6 C.8 D.1027.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm28.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°29.在半径为10的⊙O内有一点P,OP=6,在过点P的弦中,长度为整数的弦的条数为()A.5条 B.6条 C.7条 D.8条30.在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1:5两部分,AB=6厘米,则弦CD的长为多少厘米()A.B.C.D.31.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()A.15°B.210°C.105°或15°D.210°或30°32.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.33.如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是()A.60°B.51°C.48°D.76°34.如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么BC的值为()A.1 B.2 C.3 D.435.如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:甲:1.作OD中垂线,交圆于B,C两点,2.连AB,AC,△ABC即为所求.乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,2.连AB,BC,CA,△ABC即为所求.对于甲、乙两人的作法,下列判断何者正确()A.甲、乙皆正确B.甲、乙皆错误C.甲正确、乙错误 D.甲错误、乙正确36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.2C.2D.837.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.1238.如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A.3 B.C.D.39.如图,弧BE是半径为6的圆D的圆周,C点是上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是()A.12<P≤18 B.18<P≤24 C.18<P≤18+6D.12<P≤12+640.如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD=OE=,则AB的最大值为()A.B.C.D.垂径定理应用练习1参考答案与试题解析一.选择题(共40小题)1.如图,有一圆弧形门拱,拱高AB=1m,跨度CD=4m,那么这个门拱的半径为()A.2m B.2.5m C.3m D.5m【分析】设这个门拱的半径为r,则OB=r﹣1,根据垂径定理求出BC的长,再根据勾股定理求出r的值即可.【解答】解:设这个门拱的半径为r,则OB=r﹣1,∵CD=4m,AB⊥CD,∴BC=CD=2m,在Rt△BOC中,∵BC2+OB2=OC2,即22+(r﹣1)2=r2,解得r=2.5m.故选B.【点评】本题考查的是垂径定理的应用,此类问题应用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.2.如图,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.则下列结论正确的是()A.AB=2BC B.AB<2BC C.∠AOB=2∠CAB D.∠ACB=4∠CAB【分析】首先取的中点D,连接AD,BD,由∠AOB=2∠BOC,易得AD=BD=BC,继而证得AB<2BC,又由圆周角定理,可得∠AOB=4∠CAB,∠ACB=∠BOC=2∠CAB.【解答】解:取的中点D,连接AD,BD,∵∠AOB=2∠BOC,∴=2,∴==,∴AD=BD=BC,∵AB<AD+BD,∴AB<2BC.故A错误,B正确;∵∠AOB=2∠BOC,∠BOC=2∠CAB,∴∠AOB=4∠CAB;故C错误;∵∠AOB=2∠ACB,∴∠ACB=∠BOC=2∠CAB,故D错误.故选B.【点评】此题考查了弧、弦与圆心角的关系以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【分析】根据垂径定理判断即可.【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.【点评】本题考查了垂径定理的应用,主要考查学生的推理能力和辨析能力.4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.5.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm【分析】连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.【解答】解:如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm),故选B.【点评】本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.6.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.7.一条排水管的截面如图所示,已知排水管的截面圆半径OB=5,截面圆圆心O 到水面的距离OC是3,则水面宽AB是()A.8 B.5 C.4 D.3【分析】先根据勾股定理求出BC的长,再由垂径定理得出AB=2BC,进而可得出结论.【解答】解:∵OB=5,OC=3,∴BC===4,∵OC⊥AB,∴AB=2BC=2×4=8.故选A.【点评】本题考查的是垂径定理在实际生活中的应用,有利于培养学生理论联系实际的能力.8.如图,圆弧形石拱桥的桥顶到水面的距离CD为6m,桥拱半径OC为4m,则水面宽AB为()A.m B.2m C.4m D.6m【分析】连接OA,根据桥拱半径OC为4m,求出OA=4m,根据CD=6m,求出OD=2m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为4m,∴OA=4m,∵CD=6m,∴OD=6﹣4=2m,∴AD===2m,∴AB=2AD=2×2=4(m);故选C.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.9.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是()A.4 B.6 C.8 D.10【分析】连接OA,根据勾股定理求出AE的长,进而可得出结论.【解答】解:连接OA,∵OC⊥AB,OA=5,OE=3,∴AE===4,∴AB=2AE=8.故选C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.10.如图,点P是半径为5的⊙O内一点,且OP=3.过点P任作一条弦AB,则弦AB的长不可能为()A.7.9 B.8.5 C.9 D.10【分析】先作辅助线,再根据垂径定理和勾股定理即可求出.【解答】解:过点P的最短的弦是作AB⊥OP,连接OA,根据垂径定理和勾股定理,得AB=8过点P最长的弦长是10,显然下列答案中,只有A不符合.故选A.【点评】注意能够正确分析出过圆内一点P的最长的弦即是直径,最短的弦即是垂直于OP的弦.综合运用勾股定理以及垂径定理.11.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OB﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.12.如图,⊙O中,OA⊥BC,AD∥OC,∠AOC=40°,则∠B的度数为()A.100°B.110°C.115° D.120°【分析】由平行线的性质得出∠A=∠AOC=40°,由对顶角相等得出∠2=∠1=50°,由垂径定理得出,得出∠AOB=∠AOC=40°,由圆周角定理求出∠D,再由三角形内角和定理即可得出结果.【解答】解:连接OB,如图所示:∵AD∥OC,∴∠A=∠AOC=40°,∵OA⊥BC,∴∠1=∠2=90°﹣∠A=90°﹣40°=50°,,∴∠AOB=∠AOC=40°,∴∠D=∠AOB=20°,∴∠B=180°﹣50°﹣20°=110°;故选:B.【点评】本题考查了垂径定理、圆周角定理、平行线的性质等知识;熟练掌握垂径定理是解决问题的关键.13.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.【分析】连接OA,根据垂径定理得到AM=AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=×13,于是得到结论.【解答】解:连接OA,∵CD为⊙O的直径,弦AB⊥CD,∴AM=AB=6,∵OM:MD=5:8,∴设OM=5x,DM=8x,∴OA=OD=13x,∴AM=12x=6,∴x=,∴OA=×13,∴⊙O的周长=2OA•π=13π,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦【分析】根据垂径定理对各选项进行逐一判断即可.【解答】解:A、平分弦(非直径)的直径垂直于弦,故本选项错误;B、平分弦的直径也必平分弦所对的两条弧,故本选项错误;C、弦的垂直平分线必平分弦所对的两条弧,符合垂径定理,故本选项正确;D、平分一条弧的直径必平分这条弧所对的弦,故本选项错误.故选:C.【点评】本题考查的是垂径定理,熟知弦的垂直平分线平分弦、垂直于弦,平分弦所对的两条弧是解答此题的关键.15.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD 与EF的大小关系是()A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定【分析】在弧EF上取一点M使弧EM=弧CD,推出弧FM=弧AB,根据圆心角、弧、弦的关系得到AB=FM,CD=EM,根据三角形的三边关系定理求出FM+EM>FE即可.【解答】解:如图,在弧EF上取一点M使弧EM=弧CD,则弧FM=弧AB,∴AB=FM,CD=EM,在△MEF中,FM+EM>EF,∴AB+CD>EF.故选B.【点评】本题主要考查对三角形的三边关系定理,圆心角、弧、弦的关系等知识点的理解和掌握,能正确作辅助线是解此题的关键.16.如图,⊙O的直径CD⊥弦AB于点P,且点P为OD的中点,已知AB=2,则CD的值为()A.2 B.4 C.D.【分析】连接OA,由CD垂直于AB,利用垂径定理得到P为AB的中点,求出AP的长,设OA=OD=x,由P为OD中点,得到OP为x,在直角三角形AOP中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,即为圆的半径,进而求出CD的长.【解答】解:连接OA,∵CD⊥AB,∴P为AB的中点,∴AP=AB=,∵P为AB的中点,∴OP=PD=OD,在Rt△AOP中,OA=x,OP=x,根据勾股定理得:OA2=OP2+AP2,即x2=x2+3,即x2=4,解得:x=2,则CD=4.故选B【点评】此题考查了垂径定理,勾股定理,利用了方程的思想,熟练掌握垂径定理是解本题的关键.17.上体育课时,老师在运动场上教同学们学习掷铅球,训练时,李力同学掷出的铅球在场地上砸出了一个坑口直径约为10cm、深约为2cm的小坑,则该铅球的直径约为()cm.A.20 B.19.5 C.14.5 D.10【分析】根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径.【解答】解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r﹣2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r﹣2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm故选:C.【点评】本题考查的是垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.18.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8 C.2 D.4【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为()米?A.6 B.4 C.8 D.5【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD的长,继而求得中间柱CD的高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8(m),∵半径OA=10m,在Rt△AOD中,OD==6(m),∴CD=OC﹣OD=10﹣6=4(m).故选B.【点评】此题考查了垂径定理的应用与勾股定理.此题比较简单,注意数形结合思想的应用.20.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.21.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A.4 B.8 C.2 D.4【分析】根据等边对等角可得∠OAC=∠OCA=22.5°,再根据三角形外角的性质可得∠COE=45°,然后利用三角函数可得CE的长,再根据垂径定理可得答案.【解答】解:∵CO=AO,∴∠OAC=∠OCA=22.5°,∴∠COE=45°,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴CE=EO,∴CE=CO•sin45°=4×=2,∴CD=4,故选:D.【点评】此题主要考查了垂径定理,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.22.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.4【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,由CD=OD ﹣OC即可得出结论.【解答】解:∵AB=16,OD⊥AB,OA=10,∴AC=AB=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选D.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.4【分析】先根据平行线的性质得∠A=∠FOE,再利用垂径定理得到AD=CD=AC=6,然后证明△ODA≌△EFO,则利用全等三角形的性质易得OF=AD=6.【解答】解:∵OE∥AC,∴∠A=∠FOE,∵OD⊥AC,∴AD=CD=AC=6,∠ADO=90°,∵EF⊥OB,∴∠OFE=90°,在△ODA和△EFO中,∴△ODA≌△EFO,∴AD=OF=6.故选C.【点评】本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了全等三角形的判定与性质.24.在半径为1的圆中,长度等于的弦所对的弧的度数为()A.90°B.145°C.270° D.90°或270°【分析】利用AB=,OA=OB=1,则AB2=OA2+OB2,根据勾股定理的逆定理得到△AOB为直角三角形,且∠AOB=90°进而得出长度等于的弦所对的弧长有两段,分别求出即可.【解答】解:如图,连接OA、OB;∵在⊙O中,AB=,OA=OB=1,∴AB2=OA2+OB2,∴△AOB为直角三角形,且∠AOB=90°,即长度等于的弦所对的弧长有两段:一段所对圆心角为90°,另一段所对圆心角为270°,∴长度等于的弦所对的弧的度数为90°或270°.故选:D.【点评】本题考查了勾股定理的逆定理以及圆心角、弧、弦的关系,利用已知得出长度等于的弦所对的弧长有两段,注意不要漏解.25.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD 等于()A.100°B.110°C.120° D.135°【分析】由已知可得,弦BC、CD、DA三等分半圆,从而不难求得∠BCD的度数.【解答】解:连接OC、OD,∵BC=CD=DA,∴∠COB=∠COD=∠DOA,∵∠COB+∠COD+∠DOA=180°,∴∠COB=∠COD=∠DOA=60°,∴∠BCD=×2(180°﹣60°)=120°.故选C.【点评】本题考查了弧、弦与圆心角的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.注意半圆对的圆心角为180°.26.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为()A.4 B.6 C.8 D.10【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【解答】解:由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点评】此题主要考查了学生对垂径定理及勾股定理的理解运用.27.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.28.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.29.在半径为10的⊙O内有一点P,OP=6,在过点P的弦中,长度为整数的弦的条数为()A.5条 B.6条 C.7条 D.8条【分析】过点P的弦有无数条,求出最长的和最短的弦,再判断长度为整数的条数.【解答】解:最长的弦是直径为20,最短的弦为16,∴长度为整数的弦还有19,18,17各2条,∴经过P点的所有弦中长度为整数的有8条,故选D.【点评】本题考查了勾股定理和垂径定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.注:最长的弦是直径,最短的弦是与直径垂直的弦.30.在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1:5两部分,AB=6厘米,则弦CD的长为多少厘米()A.B.C.D.【分析】先作图,然后连接OC.再求OE(在直角三角形中,30°角所对的直角边等于斜边的一半),再求CE,从而求出CD.【解答】解:如图,过点O作OE⊥CD于E,连接OC在Rt△OPE中,OP=3﹣1=2又∠EPO=30°∴OE=1在Rt△COE中,OC=3,OE=1∴CE=∴CD=2CE=故选B.【点评】此题主要考查垂径定理及在圆中的计算问题,还有勾股定理的使用.31.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()A.15°B.210°C.105°或15°D.210°或30°【分析】连接OC,OA,OB,根据已知可得到△OAC是等边三角形,△OAB是等腰直角三角形,从而分两种情况进行分析,不难求得∠BAC的度数.【解答】解:连接OC,OA,OB∵OC=OA=AC=5∴△OAC是等边三角形∴∠CAO=60°∵OA=OB=5,AB=5∴OA2+OB2=50=AB2∴△OAB是等腰直角三角形.∴∠OAB=45°点C的位置有两种情况:如图,C不在弧AB上时:∠BAC=∠CAO+∠OAB=60°+45°=105°如图,C在弧AB上时:∠BAC=∠CAO﹣∠OAB=60°﹣45°=15°.故选C.【点评】本题利用了等边三角形的判定和性质,勾股定理的逆定理求解.32.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.33.如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是()A.60°B.51°C.48°D.76°【分析】连接OD,要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.【解答】解:连接OD,∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=48°,∴∠AOB==78°,∴α==51°.故选B.【点评】本题考查的是圆心角、弧、弦的关系,熟知,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形等知识是解答此题的关键.34.如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么BC的值为()A.1 B.2 C.3 D.4【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC 的中位线,由三角形的中位线定理即可得出结论.【解答】解:∵OM⊥AB,ON⊥AC垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:B.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.35.如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:甲:1.作OD中垂线,交圆于B,C两点,2.连AB,AC,△ABC即为所求.乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,2.连AB,BC,CA,△ABC即为所求.对于甲、乙两人的作法,下列判断何者正确()A.甲、乙皆正确B.甲、乙皆错误C.甲正确、乙错误 D.甲错误、乙正确【分析】根据垂径定理和等边三角形的判定求解.【解答】解:甲的作图:BC是OD的中垂线,则在直角△OBE中,OE=OB,则∠OBE=30°,∠BOE=60°,∠BOC=120°,∴∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.乙的作图:连接BD,则△OBD是等边三角形.因而∠BAD=30°,∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.所以甲乙皆正确,【点评】AD经过圆心,则AD所在的直线是本题图形的对称轴.36.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.2C.2D.8【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【解答】解:连接BE,设⊙O半径为r,则OA=OD=r,OC=r﹣2,∵OD⊥AB,∴∠ACO=90°,AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r﹣2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC===2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.37.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.12【分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3,再利用勾股定理,可求得BH的长,继而求得答案.【解答】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.∴BH===4,∴BC=2BH=8.【点评】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.38.如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A.3 B.C.D.【分析】连结OC,AC,先根据直角的性质得到∠ABC的度数,再圆周角定理得到∠AOC的度数,根据等边三角形的性质和垂径定理得到⊙O的半径和直径,再解直角三角形即可求解.【解答】解:连结OC,AC,∵弦DC垂直AB于点E,∠DCB=30°,∴∠ABC=60°,∴△BOC是等边三角形,∵EB=3,∴OB=6,∴AB=12,AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB,AC=12×=6.。
九年级数学下册圆27.1.3垂径定理同步练习含答案解析华师版课时作业
垂径定理27.1.3一.选择题(共5小题)1.如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.52.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE 3.如图,⊙O的半径为10cm,弦AB的弦心距OC为6cm,则AB的长是()A.16cm B.10cm C.8cm D.6cm 4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30°B.120°C.150°D.60°5.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6二.填空题(共10小题)6.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是.7.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=cm.8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.9.如图,⊙O是△ABC的外接圆,且AB=AC=5,BC=8,则⊙O的半径为.10.如图,⊙O的直径CD与弦AB(非直径)交于点M,添加一个条件:,使得=.11.AB是⊙O的弦,半径OA=20cm,∠AOB=120°,则△AOB的面积是cm2.12.如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是cm.13.如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED=.14.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为10,AB=16,则CD的长是.15.半径等于16的圆中,垂直平分半径的弦长为.三.解答题(共6小题)16.在圆O中,直径CD⊥弦AB于E,AB=6,=,求DE的长.17.如图,△ABC中,∠ACB=90°,CA=15cm,CB=20cm,以CA为半径的⊙C交AB 于D,求AD的长.18.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,求DC的长.19.如图,AB是半圆O的直径,点C在半圆O上,CD⊥AB于D,AB=12,DB=4,求CD的长.20.如图,⊙O的半径OA=5cm,AB是弦,C是AB上一点,且OC⊥OA,OC=BC (1)求∠A的度数.(2)求AB的长.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.垂径定理27.1.3参考答案与试题解析一.选择题(共5小题)1.如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.5解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.2.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE 解:根据垂径定理和等弧对等弦,得A、B、C正确,只有D错误.故选:2.D.3.如图,⊙O的半径为10cm,弦AB的弦心距OC为6cm,则AB的长是()A.16cm B.10cm C.8cm D.6cm 解:连接OA,∵弦AB垂直OC,⊙O的半径为10cm,∴OA=10cm,OC=6cm,由勾股定理得:AC==8cm,∴AB=2AC=16cm,故选:A.4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30°B.120°C.150°D.60°解:如图所示:连接OA,OB,∵AB垂直且平分OD,∴AB=2AE,OA=2EO,∴∠OAE=30°,∴∠AOE=60°,同理,∠BOE=60°,∴∠AOB=∠AOE+∠BOE=120°.故选:4.B.5.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:C.二.填空题(共10小题)6.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是3≤OP≤5.解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=8,∴AM=4,在Rt△AOM中,OM=,OM的长即为OP的最小值,∴6.3≤OP≤5.7.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=3cm.解:∵OD⊥AC于点D,∴AD=CD,又∵OA=OB,∴OD为△ABC的中位线,∴OD=BC,∵BC=6cm,∴OD=3cm.故答案为3.8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.解:∵OC⊥弦AB于点C,∴BC=AC=AB=×4=2,在Rt△OBC中,OC=1,BC=2,∴OB==.故答案为9.如图,⊙O是△ABC的外接圆,且AB=AC=5,BC=8,则⊙O的半径为.解:过A作AD⊥BC于D,连接BO,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=3设⊙O的半径为x,Rt△OBD中,OB=x,OD=x﹣3根据勾股定理,得:OB2=OD2+BD2,即x2=(x﹣3)2+42,解得:x=.故答案是:.10.如图,⊙O的直径CD与弦AB(非直径)交于点M,添加一个条件:AB⊥CD,使得=.解:∵CD为⊙O的直径,AB为弦(非直径),∴可添加AB⊥CD,或AB平分CD即可,故答案为AB⊥CD,或AB平分CD(答案不唯一).11.AB是⊙O的弦,半径OA=20cm,∠AOB=120°,则△AOB的面积是100cm2.解:过O作OC⊥AB,交AB于点C,如图所示,则C为AB的中点,即AC=BC,∵OA=OB,∠AOB=120°,∴∠A=∠B=30°,在Rt△AOC中,OA=20cm,∠A=30°,∴OC=OA=10cm,根据勾股定理得:AC==10cm,∴AB=2AC=20cm,则S△AOB=AB•OC=×20×10=100cm2.故答案为:10012.如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是6cm.解:过O点作OH⊥EF于H,连OF,如图则EH=FH,在Rt△AOH中,AO=AD+OD=3+5=8,∠A=30°,则OH=OA=4,在Rt△OHF中,OH=4,OF=5,则HF==3,则EF=2HF=6cm.故答案为6.13.如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED=30°.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=4,∴DH=2;又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH==1(勾股定理);在Rt△OEH中,OH=OE,∴∠OEH=30°,即∠AED=30°.故答案为:30°.14.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为10,AB=16,则CD的长是4.解:连接OA,如图,∵OC⊥AB,∴AD=BD=AB=×16=8,在Rt△OAD中,OD==6,∴CD=OC﹣OD=10﹣6=4.故答案为4.15.半径等于16的圆中,垂直平分半径的弦长为16.解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.三.解答题(共6小题)16.在圆O中,直径CD⊥弦AB于E,AB=6,=,求DE的长.16.解:∵=,∴CE=3DE,∴CD=CE+DE=4DE,∴OD=CD=2DE,∴OE=OD﹣DE=DE,∴OA=OD=2DE,∴OA=2OE.∵CD垂直平分AB,∴AE=AB=×6=3,∠AEO=90°,∴∠OAE=30°,∴OA===2,∴DE=OA=×2=.17.如图,△ABC中,∠ACB=90°,CA=15cm,CB=20cm,以CA为半径的⊙C交AB 于D,求AD的长.解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=15,∴AB===25.过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=15,BC=20,AB=25,∴CM==12,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即225=AM2+144,解得:AM=9,∴AD=2AM=18.18.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,求DC的长.18.解:连接OA,∵OC⊥AB,∴AD=AB=4,由勾股定理得,OD==3,∴DC=OC﹣OD=2cm.19.如图,AB是半圆O的直径,点C在半圆O上,CD⊥AB于D,AB=12,DB=4,求CD的长.19.解:连接OC.∵AB是半圆O的直径,∴OC=OB=AB=×12=6.∴OD=OB﹣DB=6﹣4=2,∴在直角△OCD中,CD===4.20.如图,⊙O的半径OA=5cm,AB是弦,C是AB上一点,且OC⊥OA,OC=BC (1)求∠A的度数.(2)求AB的长.解:(1)连接OB,∵AO=OB,OC=BC,∴∠A=∠B=∠BOC.∵OA⊥OC,∴∠AOC=90°.∵∠A+∠B+∠BOC+∠AOC=180°,∴3∠A+90°=180°,∴∠A=30°;(2)∵∠A=30°,OA=5cm,∴AC===cm,BC=OC=AC=cm,∴AB=AC+BC=+=5(cm).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.。
垂径定理-中考数学专项训练(含解析)
垂径定理一、单选题A.82.如图,圆弧形桥拱的跨度A.2米B.43.如图,一个圆柱形的玻璃水杯,将其水平放置,截面是个圆,是弧AB的中点,2CD=cm,杯内水面宽A.6cm4.如图,CD是圆O长为()A.33A .45︒6.如图,O 的半径是A .27.如图是一段圆弧 AB 点.若63,AB CD =A .6πB .4π8.如图,在O 中,半径23r =,AB 过点C 作CD OC ⊥交O 于点D ,则A .4B的直径,11.如图,AB是O==,则CD5,3AB BC的弦,半径12.如图,AB是O中,直径13.如图,在O一点,连AE,过点C作14.如图,在圆O中,弦的直径15.如图.O为.的外接圆,16.如图,⊙O是ABC∠的度数为于点D,连接BD,则D三、解答题17.如图,AB为半圆O点D,若4,==AB AC(1)DE的长.(2)阴影部分的面积.18.如图,AB 为O 的直径,CD 为弦,CD AB ⊥于点E ,连接DO 并延长交O 于点F ,连接AF 交CD 于点G ,CG AG =,连接AC .(1)求证:AC DF ∥;(2)若12AB =,求AC 和GD 的长.19.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C D 、两点,若16cm 6cm AB CD ==,.(1)求AC 的长;(2)若大圆半径为10cm ,求小圆的半径.∠;(1)连接AD,求OAD(2)点F在 BC上,CDF∠=参考答案:∵OA OB =,C 为弦AB 中点,∴OC AB ⊥,4AC =,∴OE 平分 AB ,∵D 为 AB 的中点,∴点,D E 重合,∴,,O C D 三点共线,设圆的半径为r ,则:2OC OD CD r =-=-,由勾股定理,得:222OA AC OC =+,∴()22242r r =+-,解得:=5r ;故选B .4.C【分析】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.连接OC ,首先根据题意可求得63OC OE ==,,根据勾股定理即可求得CE 的长,再根据垂径定理即可求得CD 的长.【详解】解:如图,连接OC ,∵123AB BE ==,,∴63OB OC OE ===,,∵AB CD ⊥,∵50BOC ∠=︒,OC ∴OCB OBC ∠=∠=∵OC AB ⊥,∴AD BD =,故选:B.7.B【分析】本题考查的是垂径定理,勾股定理及弧长的计算公式,先根据垂径定理求出=长,由题意得OD OAOE AB ⊥ ,132AE BE AB ∴===,22OE OA AE ∴=-=在Rt COE △中,∵AB 是O 的直径,∴152OD OB AB ===∵,6CD AB CD ⊥=,∴13,2DE CD DEO ==∠∴22OE OD DE =-=∵5AB =,∴25OE =,∵DE 切O 于点E ,∴OE DE ⊥,∴90OED ∠=︒,∵1OA =,120AOB ∠=︒,∴30A B ==︒∠∠,AC BC =∴1122OC OA ==,AC =∵直径CD 长为4,∴1422OD =⨯=,∵1OG =,∴1DG OD OG =-=,∴AB 垂直平分OD ,OH 经过圆心O ,12AH BH AB ∴===∴2AO AH OH =+故答案为:5.在Rt AOD 中,12OD OA ==,,1cos 2AOD \Ð=,60AOD ∴=︒∠,OE AC ⊥ ,由垂径定理知,点E是CD的中点,也是AB是 的直径,CD⊥AB∴垂直平分CD,M是OA的中点,∴1122OM OA OD==,OA CD于点M,⊥∴点M是CD的中点,∴垂直平分CD,ABNC ND∴=,Q,∠=︒45CDFNCD NDC∴∠=∠=︒,45∴∠=︒,90CND。
(完整版)圆的垂径定理习题及答案
圆的垂径定理习题一.选择题1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8 2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.53.过⊙0内一点M的最长弦为10cm,最短弦长为8cm,则OM的长为()4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD,则直径AB的长是()6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B.7cm C. 3 cm或4 cm D.1cm 或7cm 9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3二、填空题1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为cm3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于4. 已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米6.半径为6cm的圆中,垂直平分半径OA的弦长为cm7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD 的高度为m11. 如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2) 和A(2,0),则点B的坐标是12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm15.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是Cm16.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径OA是___________米20.如图,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。
部编数学九年级上册24.4垂直于弦的直径垂径定理(基础篇)(人教版)含答案
专题24.4 圆的对称性-垂径定理(基础篇)(专项练习)一、单选题1.AB为⊙O的直径,弦CD⊥AB于点E,已知CD=16,OE=6,则⊙O的直径为( )A.8B.10C.16D.202.如图,⊙O的直径AB垂直于弦CD,垂足为点E,连接AC,∠CAB=22.5°,AB=12,则CD的长为( )A.B.6C.D.3.如图以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.2B.4C.6D.84.如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是()A .AE =BEB .OE =DEC .»»AC BC =D .»»AD BD=5.如图,点A ,B ,C ,D 在圆上,弦AB 和CD 交于点E ,则下列说法正确的是( )A .若CD 平分AB ,则CD AB ^B .若CD AB ^,则CD 平分ABC .若CD 垂直平分AB ,则圆心在CD 上D .若圆心在CD 上,则CD 垂直平分AB 6.如图,CD 是O e 的直径,弦AB CD ^于点E ,连接BC 、BD ,下列结论中不一定正确的是( )A .AE BE =B .»»AD BD =C .OE DE =D .»»AC BC=7.下列命题中假命题是( )A .平分弦的半径垂直于弦B .垂直平分弦的直线必经过圆心C .垂直于弦的直径平分这条弦所对的弧D .平分弧的直径垂直平分这条弧所对的弦8.如图,在⊙O 中,半径OC ⊥AB 于点E ,AE =2,则下列结论正确的是( )EC=A.2OE=B.2C.AB垂直平分OC D.OC垂直平分AB9.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为( )A.1B.2C.3D.410.如图,在⊙O中,弦AB的长是半径OA C为»AB中点,AB、OC交于点P,则四边形OACB是()A.平行四边形B.矩形C.菱形D.正方形11.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A .(3,2)B .(2,3)C .(1,3)D .(3,1)12.我国古代数学名著《九章算术》中有一个经典的“圆材埋壁”问题: “今有圆材埋壁中,以锯锯之,深一寸,锯道长一尺,问径几何? "意思是: 如图,CD 是⊙O 的直径, 弦 AB ⊥CD 于P ,CP =1寸,AB =10寸,则直径CD 的长是 ( )寸A .20B .23C .26D .30二、填空题13.圆的半径为5cm ,圆心到弦AB 的距离为4cm ,则AB =_______cm .14.如图,OE ⊥AB 于E ,若⊙O 的半径为10,OE =6,则AB =_______.15.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =则AB 和CD 之间的距离为______.16.某隧道口横截面如图所示,上部分是圆弧形,下部分是矩形、已知隧道口最高点E与DC的距离EF为4米,且弧DC所在圆的半径为10米,则路面AB的宽度为_____米.17.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,AD=,则AB=________cm.Ð的度数为18.如图,在⊙O中,弦AB的长为4,圆心O到弦AB的距离为2,则AOC______.19.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是_________.20.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是______.21.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径).如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点,请你说出小华此想法的依据是__.22.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.23.如图,某小区的一个圆形管道破裂,修理工人准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部的距离为20cm,则修理工人应准备的新管道的内直径是______cm.24.已知O e 的半径为2,弦BC =,A 是O e 上一点,且»»AB AC =,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题25.如图,在⊙O 中,直径AB =10,弦AC =8,连接BC .(1)尺规作图:作半径OD 交AC 于E ,使得点E 为AC 中点;(2)连接AD ,求三角形OAD 的面积.26.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长1尺(AB =1尺=10寸).问这块圆形木材的直径(AC )是多少?”如图所示,请根据所学的知识解答上述问题.27.已知:如图,在O e 中,AB AC 、为互相垂直的两条弦,,OD AB OE AC ^^,D 、E 为垂足.(1)若AB AC =,求证:四边形ADOE 为正方形.(2)若AB AC >,判断OD 与OE 的大小关系,并证明你的结论.28.如图,AB 为⊙O 的直径,弦CD AB ^于点F ,OE AC ^于点E ,若3OE =,OB=,求OF的长.5参考答案1.D【分析】连接OC ,由垂径定理可知,点E 为CD 的中点,且OE ⊥CD ,在Rt △OEC 中,根据勾股定理,即可得出OC ,从而得出直径.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E∴CE=12CD=8,∵OE=6.在Rt △OEC 中,由勾股定理得:OC 2=OE 2+EC 2,即OC 2=62+82解得:OC=10∴直径AB=2OC=20.故选D .【点拨】本题考查垂径定理,勾股定理.熟练掌握定理是解答关键.2.C【分析】连接OC ,求出∠COB =45°,根据垂径定理求出CD =2CE ,根据勾股定理求出CE 即可.解:连接OC ,则OC =12AB =12×12=6, ∵OA =OC ,∠CAB =22.5°,∴∠CAB =∠ACO =22.5°,∴∠COB=∠CAB+∠ACO=45°,∵AB⊥CD,AB为直径,∴CD=2CE,∠CEO=90°,∴∠OCE=∠COB=45°,∴OE=CE,∵CE2+OE2=OC2,∴2CE2=62,解得:CE,即CD=2CE,故选:C.【点拨】本题考查了等腰三角形的性质,勾股定理,三角形的外角性质,垂径定理等知识点,能求出CE=OE是解此题的关键.3.B【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,根据垂径定理得到AM=BM=8,再根据勾股定理得到82+(16-r)2=r2,解方程求出r=10,然后计算CD-CM即可.解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,∵AB⊥CD,∴AM=BM=12AB=8,在Rt△AOM中,82+(16-r)2=r2,解得r=10,∴MD=CD-CM=20-16=4.故选:B.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.B【分析】根据垂径定理即可判断.解:CD Q 是O e 的直径,弦AB CD ^于点E ,AE EB \=,»»AC BC =, »»AD BD=.故选:B .【点拨】本题主要考查垂径定理,掌握垂径定理是解题的关键.5.C【分析】根据垂径定理的内容和垂径定理的推论的内容进行判断.解:A 、平分弦(不是直径)的直径垂直于弦,原说法错误,不符合题意;B 、垂直于弦的直径平分弦,原说法错误,不符合题意;C 、弦的垂直平分线必经过圆心,原说法正确,符合题意;D 、AB 若也是直径,则原说法不符合题意;故选:C .【点拨】本题考查了垂径定理以及推论,解答时熟悉垂径定理的内容以及推论的内容是关键.6.C【分析】根据垂径定理判断即可;解:∵直径CD 垂直于弦AB 于点E ,则由垂径定理可得,AE BE =,»»AD BD=,»»AC BC=,故选项A ,B ,D 正确;OE DE =无法得出,故C 错误.故选C .【点拨】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.7.A【分析】根据垂径定理及其推论分别进行判断.解:A、平分弦(非直径)的半径垂直于弦,所以A为假命题;B、垂直平分弦的直线必经过圆心,所以B选项为真命题;C、垂直于弦的直径平分这条弦所对的弧,所以C选项为真命题;D、平分弧的直径垂直平分这条弧所对的弦,所以D选项为真命题.故选:A.【点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了垂径定理的性质.8.D【分析】由垂径定理和勾股定理分别对各个选项进行判断即可.解:连接OA,条件不足,不能求出OE和EC的长,故选项A、B不符合题意;∵OC⊥AB于点E,∴OC是线段AB的垂直平分线,故选项D正确,符合题意;选项C不符合题意,故选:D.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9.C【分析】根据垂径定理的推论,勾股定理即可求得OC的长解:OA OBQ点C是AB的中点,=Q ⊙O 的半径为5,弦AB =8,1,42OC AB AC BC AB \^===在Rt AOC △中3OC ==故选C【点拨】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.10.C【分析】根据弦AB 的长是半径OA C 为»AB 的中点,判定出四边形OACB 是平行四边形,再由AB OC ^,即可判定四边形OACB 是菱形.解:∵弦AB 的长是半径OA C 为»AB 的中点,OC 为半径,∴12AP AB AO AB OC ==^,,∴1122OP OA OC ===,∴12PC OC =,即OP PC =,∴四边形OACB 是平行四边形,又∵AB OC ^,∴四边形OACB 是菱形.【点拨】本题主要考查了勾股定理,菱形的判定,以及垂径定理的推论,读懂题意是解题的关键.11.A【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”作两条弦的垂直平分线,交点即为圆心.解:如图,作弦AB 、AC 的垂直平分线,∵点A 、B 、C 的坐标分别为(1,4),(5,4),(1,0),所以弦514AB =-=,弦404AC =-=,∴弦AB 的垂直平分线与x 轴相交于点(30),,弦AC 的垂直平分线与y 轴相交于点(0)2,,∴两条垂直平分线的交点1O即为三角形外接圆的圆心,且1O点的坐标是(3,2).故选:A.【点拨】本题考查了垂径定理,三角形的外接圆与圆心,熟知垂径定理是解题的关键.12.C【分析】连接OA构成直角三角形,先根据垂径定理,由DP垂直AB得到点P为AB的中点,由AB=6可求出AP的长,再设出圆的半径OA为x,表示出OP,根据勾股定理建立关于x 的方程,解方程直接可得2x的值,即为圆的直径.解:连接OA,∵AB⊥CD,且AB=10寸,∴AP=BP=5寸,设圆O的半径OA的长为x,则OC=OD=x,∵CP=1,∴OP=x-1,在直角三角形AOP中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴CD =26(寸).故选:C .【点拨】本题考查了垂径定理和勾股定理,正确作出辅助线构造直角三角形是关键.13.6【分析】根据题意,画出图形,利用垂径定理,可得2AB AC = ,然后利用勾股定理求出3AC cm =,即可求解.解:根据题意画出如下图形,半径5OA cm = ,OC AB ^ ,则4OC cm = ,∵半径5OA cm = ,OC AB ^ ,∴2AB AC = ,在Rt AOC △ 中,由勾股定理得:3A C cm === ,∴26A B A C cm == .故答案为:6 .【点拨】本意主要考查了垂径定理,勾股定理,利用垂径定理,得到2AB AC =是解题的关键.14.16【分析】连接OA ,由垂径定理可得2AB AE =,在Rt AOE D 中利用勾股定理即可求得AE 的长,进而求得AB .解:连接OA ,∵OE ⊥AB 于E ,∴2AB AE =,在Rt AOE D 中,10OA =,OE =6,∴8AE ==,∴216AB AE ==,故答案为:16【点拨】本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.15.±【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.解:作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,\==OEV中,在Rt OCFQ,C F4OC==\==OF当圆心O在AB与CD之间时,=+=EF OF OE当圆心O不在AB与CD之间时,=-=-EF OF OE即AB和CD之间的距离为故答案为:【点拨】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.16【分析】先根据勾股定理CF8=米,根据垂径定理求出DF=CF=8米,然后根据四边形ABCD为矩形,得出AB=DC=16米即可.解:∵EF=4米,OC=OE=10米,∴OF=OE-EF=6米,在Rt△OEC中,CF8=米,∵OF⊥DC,DC为弦,∴DF=CF=8米,∴DC=2×8=16米,∴四边形ABCD为矩形,∴AB=DC=16米,故答案为:16.【点拨】本题考查勾股定理,垂径定理,矩形性质,掌握勾股定理,垂径定理,矩形性质是解题关键.17.【分析】根据∠D =30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH ,再根据垂直于弦的直径平分弦得到AB =2AH 计算出AB .解:在Rt AHD V 中,∠D =30°∴2AD AH=∴AH =cm∵弦AB ⊥CD∴2==AB AH故答案为:【点拨】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.18.45°【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得.解:由题意得:OC AB ^,4AB =,122AC AB \==,2OC =Q ,AC OC \=,Rt AOC \V 是等腰直角三角形,45AOC =\а,故答案为:45°.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.19.(3,1)【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点D即为圆心,且坐标是(3,1).故答案为:(3,1).【点拨】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.20.(1,0).【分析】直接利用垂径定理推论得出圆心位置,进而利用A点坐标得出原点位置即可得出答案.解:如图示,∵点A的坐标为(0,3),据此建立平面直角坐标系如下图所示,连接AB,AC,作AB,AC的中垂线,交点是点D则,该圆弧所在圆的圆心坐标是:(1,0).故答案是:(1,0).【点拨】本题主要考查了垂径定理以及坐标与图形的性质,正确得出圆心位置是解题关键.21.等腰三角形三线合一的性质【分析】连接OA、OB,则△OAB是等腰三角形,依据等腰三角形的性质判断.解:连接OA、OB,则△OAB是等腰三角形,当MN⊥AB时,一定有MB过AB的中点,依据三线合一的性质可得.故答案是:等腰三角形三线合一的性质.【点拨】本题考查了垂径定理,正确转化为等腰三角形的性质解决问题是关键.22.48【分析】根据点D是弦AC的中点,得到OD⊥AC,然后根据∠DOC=∠DOA即可求得答案:解:∵AB是⊙O的直径,∴OA=OC.∵∠A=42°,∴∠ACO=∠A=42°.∵D为AC的中点,∴OD⊥AC.∴∠DOC=90°﹣∠DCO=90°﹣42°=48°.故答案为:48.23.100【分析】由垂径定理和勾股定理计算即可.解:如图所示,作管道圆心O,管道顶部为A点,污水水面为BD,连接AO,AO与BD垂直相交于点C.设AO=OB=r则OC=r-20,BC=140 2BD=有222 OB OC BC=+222(20)40r r =-+化简得r =50故新管道直径为100cm .故答案为:100.【点拨】本题为垂径定理的实际应用题,主要是通过圆心距,圆的半径及弦长的一半构成直角三角形,并应用勾股定理,来解决问题.24.1或3【分析】根据垂径定理建立直角三角形,再运用勾股定理求得OD ,进而分两种情况讨论即可.解:如图,连接OB ,»»AB AC =Q ,\由垂径定理可知,OA BC ^,BD CD ==则在Rt OBD △中,1OD ==,211AD r OD \=-=-=或213AD r OD =+=+=,故答案为:1或3.【点拨】本题考查了垂径定理,勾股定理计算圆周上点到弦得距离,熟练掌握基本定理,准确分类讨论是解题关键.25.(1)见分析(2)10【分析】(1)过点O 作OD ⊥AC ,交AC 于点E ,交⊙O 于点D ;(2)由题意可得OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,继而可得118422AE AC ==´=,然后根据三角形的面积公式即可求得答案.(1)解:如图,点E 即为所求;(2)解:如图,连接AD ,∵⊙O 的直径是10,∴OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,∴118422AE AC ==´=,∴11541022OAD S OD AE =×=´´=V .【点拨】本题主要考查了垂径定理、三角形的面积公式,熟练掌握垂径定理是解题的关键.26.这块圆形木材的直径(AC )是26寸【分析】设O e 的半径为x 寸,根据题意可得AD BD =,在Rt AOD △中,OA x =,1OD x =-,勾股定理求解即可.解:设O e 的半径为x 寸,∵OE AB ^,10AB =寸,∴152AD BD AB ===寸,在Rt AOD △中,OA x =,1OD x =-,由勾股定理得()22215x x =-+,解得13x =.∴O e 的直径226AC x ==(寸).答:这块圆形木材的直径(AC )是26寸.【点拨】本题考查了垂径定理的应用,掌握垂径定理是解题的关键.27.(1)见分析(2)OD <OE【分析】(1)先根据垂径定理,由OD ⊥AB ,OE ⊥AC 得到AD =12AB ,AE =12AC ,且∠ADO =∠AEO =90°,加上∠DAE =90°,则可判断四边形ADOE 是矩形,由于AB =AC ,所以AD =AE ,于是可判断四边形ADOE 是正方形;(2)由(1)得四边形ADOE 是矩形,可得OE =AD =12AB ,OD =AE =12AC ,又AB >AC ,即可得出OE 和OD 的大小关系.(1)证明:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC ,∴四边形ADOE 为矩形,且OD 平分AB ,OE 平分AC ,∴BD =AD =12AB ,AE =EC =12AC ,∵AB =AC ,∴AD =AE ,∴四边形ADOE 为正方形.(2)解:OD <OE ,理由如下:由(1)得四边形ADOE 是矩形,∴OE =AD ,OD =AE ,∵AD =12AB ,AE =12AC ,∴OE =12AB ,OD =12AC ,又∵AB >AC ,∴OD <OE .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧、也考查了正方形的判定.28.1.4【分析】根据垂径定理得到AE EC =,CF FD =,根据勾股定理求出AE .设OF x =,再次根据勾股定理得到等式2222AC AF OC OF -=-,代入求值即可解答.解:连接OC ,∵AB CD ^,OE AC ^,∴AE EC =,CF FD =,∵3OE =,5OB =,∴5OB OC OA ===,∴在Rt OAE △中,4AE ===,∴4AE EC ==,∴8AC =,设OF x =,∵在Rt CAF V 中,222CF AC AF =-,在Rt OFC V 中,222CF OC OF =-,∴2222AC AF OC OF -=-,∴()2222855x x -+=-,解得: 1.4x =,即 1.4OF =.【点拨】本题考查了垂径定理、勾股定理知识,关键在于合理运用垂径定理和勾股定理求出边的长度.。
垂径定理---圆心角---圆周角练习(专题经典).
垂径定理圆心角圆周角练习1.如图.⊙O中OA⊥BC,∠CDA=25o,则∠AOB的度数为_______.2.如图.AB为⊙O的直径,点C、D在⊙O上,∠BAC=50o.则∠ADC=_______.第1题第2题第3题3.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=25°,则∠ACB的大小为___________.第4题第5题4.已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=140°,则∠DCE=.5、如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.6、⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.7、已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=2,AD=1,则圆周角∠CAD的度数是()A.45°或60°B.60°C.105°D.15°或105°8、如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.20°B.30°C.40°D.50°9、如图,点A、B、C为圆O上的三个点,∠AOB=的度数.13∠BOC,∠BAC=45°,求∠ACB 10、如图,AD是∆ABC的高,AE是∆ABC的外接圆的直径.试说明狐B E CF。
DF11、如图,AB,AC是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.12、已知:如图,AB为⊙O的直径,AB=AC,B C交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.△13.如图所示,ABC为圆内接三角形,A B>AC,∠A的平分线AD交圆于D,作D E⊥AB于E,D F⊥AC于F,求证:BE=CFAEB CFD△14.如图所示,在ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库- 让每个人平等地提升自我2013 中考全国100 份试卷分类汇编圆的垂径定理1、(2013 年潍坊市)如图,⊙O的直径 AB=12,CD是⊙ O的弦,CD⊥ AB,垂足为 P,且 BP:AP=1:5,则 CD的长为().A.42B.82C. 25D. 4 5、年黄石如右图,在 Rt ABC 中,ACB 90 , AC 3,BC 4 ,以点 C 为圆心, CA 为2 (2013 )半径的圆与 AB 交于点 D ,则 AD 的长为()A. 9B. 24C. 18D. 55 5 5 23、(2013 河南省 ) 如图, CD是O 的直径,弦 AB CD 于点 G,直线EF与O 相切与点 D,则下列结论中不一定正确的是()A. AG=BGB. AB∥BF∥BC D.∠ABC=ADC4、(2013?泸州)已知⊙O 的直径 CD=10cm,AB是⊙O的弦, AB⊥CD,垂足为 M,且 AB=8cm,则 AC 的长为()A.cmB.cmC.cm或cmD.cm或cm5、(2013?广安)如图,已知半径OD与弦 AB互相垂直,垂足为点C,若 AB=8cm, CD=3cm,则圆 O 的半径为()A.cmB. 5cmC. 4cmD.cm6、(2013?绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为 8m,桥拱半径 OC为5m,则水面宽 AB为()1百度文库- 让每个人平等地提升自我A. 4mB. 5mC. 6mD. 8m7、(2013?温州)如图,在⊙O 中, OC⊥弦 AB于点 C, AB=4,OC=1,则 OB的长是()A.B. C. D.8、( 2013?嘉兴)如图,⊙O 的半径 OD⊥弦 AB于点 C,连结 AO并延长交⊙O 于点 E,连结 EC.若AB=8,CD=2,则 EC的长为()A.2B. C. D.9、(2013?莱芜)将半径为3cm的圆形纸片沿 AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3 210、(2013?徐州)如图, AB是⊙O的直径,弦 CD⊥AB,垂足为 P.若 CD=8,OP=3,则⊙O的半径为()A.10B.8C.5D.311、(2013 浙江丽水 ) 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽 AB=16,则截面圆心 O到水面的距离 OC是A.4B.512、(2013?宜昌)如图,DC 是⊙O直径,弦 AB⊥CD于 F,连接 BC,DB,则下列结论错误的是()2百度文库- 让每个人平等地提升自我A. B.AF=BF C. OF=CF D.∠DBC=90°13、(2013?毕节地区)如图在⊙O 中,弦 AB=8,OC⊥AB,垂足为 C,且 OC=3,则⊙O的半径()A.5B.10C.8D.614、(2013?南宁)如图, AB是⊙O的直径,弦 CD交 AB于点 E,且 AE=CD=8,∠ BAC= ∠BOD,则⊙O的半径为()A. 4B.5C.4D.315、(2013 年佛山)半径为3 的圆中,一条弦长为 4,则圆心到这条弦的距离是()B.4C. 5D. 716、( 2013 甘肃兰州4 分、 12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面 AB宽为 8cm,水面最深地方的高度为 2cm,则该输水管的半径为()A . 3cm B. 4cm C.5cm D.6cm17、(2013?内江)在平面直角坐标系xOy 中,以原点 O为圆心的圆过点A( 13,0),直线 y=kx﹣3k+4与⊙O交于 B、 C 两点,则弦 BC的长的最小值为.18、(13 年安徽省 4 分、 10)如图,点 P 是等边三角形 ABC外接圆⊙ O上的点,在以下判断中,不.正确的是()..19、(2013?宁波)如图, AE是半圆 O的直径,弦 AB=BC=4 ,弦 CD=DE=4,连结 OB,OD,则图中两个阴影部分的面积和为.3百度文库- 让每个人平等地提升自我图20图21图2220、(2013?宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕 AB的长为cm.21、(2013?包头)如图,点 A、B、C、D在⊙O上, OB⊥AC,若∠ BOC=56°,则∠ ADB=度.22、( 2013?株洲)如图 AB是⊙O的直径,∠BAC=42°,点 D是弦 AC的中点,则∠ DOC的度数是度.图23图24图25图26图27图2823、(2013?黄冈)如图, M是 CD的中点, EM⊥CD,若 CD=4,EM=8,则所在圆的半径为.24、(2013?绥化)如图,在⊙O 中,弦 AB垂直平分半径 OC,垂足为 D,若⊙O的半径为 2,则弦 AB 的长为.25、(2013 哈尔滨)如图,直线AB与⊙ O相切于点 A,AC、CD是⊙ O的两条弦,且 CD∥AB,若⊙O的半径为5,CD=4,则弦 AC的长为.226、(2013?张家界)如图,⊙O 的直径 AB与弦 CD垂直,且∠ BAC=40°,则∠ BOD= .27、(2013?遵义)如图, OC是⊙O的半径, AB是弦,且 OC⊥AB,点 P 在⊙O上,∠ APC=26°,则∠BOC=度.28、( 2013 陕西)如图, AB是⊙O的一条弦,点C是⊙ O 上一动点,且∠°,点、分别ACB=30 E F是 AC、BC的中点,直线 EF与⊙ O交于 G、H两点,若⊙ O的半径为 7,则 GE+FH的最大值为.29、( 2013 年广州市)如图 7,在平面直角坐标系中,点O为坐标原点,点 P在第一象限,P 与x轴交于 O,A 两点,点 A 的坐标为( 6,0 ),P 的半径为13,则点 P 的坐标为 ____________.430、 (2013 年深圳市 ) 如图 5 所示,该小组发现 8 米高旗杆 DE 的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
小刚身高 1.6 米,测得其影长为 2.4 米,同时测得 EG 的长为 3 米, HF 的长为 1 米,测得拱高(弧 GH 的中点到弦 GH 的距离,即 MN 的长)为 2 米,求小桥所在圆的半径。
31、(2013?白银)如图,在⊙O 中,半径 OC 垂直于弦 AB ,垂足为点 E . (1)若 OC=5,AB=8,求 tan ∠BAC ;(2)若∠ DAC=∠BAC ,且点 D 在⊙O 的外部,判断直线 AD 与⊙O 的位置关系,并加以证明.32、(2013?黔西南州)如图, AB 是⊙O 的直径,弦 CD ⊥AB 与点 E ,点 P 在⊙O 上,∠ 1=∠C ,(1)求证: CB ∥PD ;(2)若 BC=3,sin ∠P= 3,求⊙O 的直径.533、(2013?恩施州)如图所示, AB 是⊙O 的直径, AE 是弦, C 是劣弧 AE 的中点,过 C 作 CD ⊥AB 于点 D ,CD 交 AE 于点 F ,过 C 作 CG ∥AE 交 BA 的延长线于点 G .(1)求证: CG 是⊙O 的切线.(2)求证: AF=CF .( 3)若∠ EAB=30°, CF=2,求 GA 的长.534、(2013?资阳)在⊙O 中, AB 为直径,点 C 为圆上一点,将劣弧沿弦 AC 翻折交 AB 于点 D ,连结CD . (1)如图 1,若点 D 与圆心 O 重合, AC=2,求⊙O 的半径 r ;(2)如图 2,若点 D 与圆心 O 不重合,∠ BAC=25°,请直接写出∠ DCA 的度数.参考答案1、【答案】 D .【考点】垂径定理与勾股定理 .【点评】连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决 . 2、【答案】 C【解析】由勾股定理得 AB =5,则 sinA = 4,作 CE ⊥ AD 于 E ,则 AE =DE ,在 Rt △AEC 中, 5sinA =CE,即4CE ,所以,CE =12 , AE = 9 ,所以, AD =18AC535553、【答案】 C【解析】由垂径定理可知 :A 一定正确。
由题可知: EF ⊥CD,又因为 AB ⊥ CD,所以 AB ∥EF, 即 B 一定正确。
因为∠ ABC 和∠ ADC 所对的弧是劣弧, AC 根据同弧所对的圆周角相等可知 D 一定正确。
4、【答案】 C【考点】垂径定理;勾股定理.【专题】分类讨论【分析】先根据题意画出图形,由于点 C 的位置不能确定,故应分两种情况进行讨论【解答】解:连接 AC ,AO ,∵⊙O 的直径 CD=10cm ,AB ⊥CD , AB=8cm ,∴ AM=AB=×8=4cm ,OD=OC=5cm ,当 C 点位置如图 1 所示时,∵ OA=5cm , AM=4cm ,CD ⊥AB ,6∴OM===3cm,∴ CM=OC+OM=5+3=8cm,∴AC===4cm;当 C点位置如图 2 所示时,同理可得 OM=3cm,∵ OC=5cm,∴ MC=5﹣ 3=2cm,在 Rt△AMC中, AC===2cm.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、【答案】 A【考点】垂径定理;勾股定理.【分析】连接AO,根据垂径定理可知AC= AB=4cm,设半径为x,则 OC=x﹣ 3,根据勾股定理即可求得 x 的值【解答】解:连接AO,∵半径 OD与弦 AB互相垂直,∴ AC= AB=4cm,22 2设半径为 x,则 OC=x﹣3,在 Rt△ACO中, AO=AC+OC,即 x2=42 +( x﹣3)2,解得: x= ,故半径为 cm.【点评】本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理、勾股定理的内容,难度一般6、【答案】 D【考点】垂径定理的应用;勾股定理.【分析】连接 OA,根据桥拱半径 OC为 5m,求出 OA=5m,根据 CD=8m,求出OD=3m,根据 AD= 求出 AD,最后根据 AB=2AD即可得出答案.【解答】【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7、【答案】 B【考点】垂径定理;勾股定理.【分析】根据垂径定理可得AC=BC=AB,在 Rt△OBC中可求出 OB.【解答】解:∵ OC⊥弦 AB于点 C,∴ AC=BC=AB,在 Rt△OBC中, OB==.【点评】本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容8、【答案】 D【考点】垂径定理;勾股定理;圆周角定理【分析】先根据垂径定理求出 AC的长,设⊙O 的半径为 r ,则 OC=r﹣2,由勾股定理即可得出 r 的值,故可得出 AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出 CE的长.【解答】【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、【答案】 A【考点】圆锥的计算.【分析】过 O 点作 OC⊥AB,垂足为 D,交⊙O 于点 C,由折叠的性质可知 OD为半径的一半,而OA为半径,可求∠ A=30°,同理可得∠ B=30°,在△ AOB中,由内角和定理求∠ AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.【解答】10、【答案】 C【考点】垂径定理;勾股定理.【分析】连接 OC,先根据垂径定理求出 PC的长,再根据勾股定理即可得出 OC的长【解答】【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键11、【答案】 C【考点】垂径定理;勾股定理.【分析】根据垂径定理得出AB= 2BC,再根据勾股定理求出OC的长【解答】解:∵ OC⊥AB,AB=16,∴ BC等于AB= 8。