双相不锈钢的焊接

双相不锈钢的焊接
双相不锈钢的焊接

摘要

对双相不锈钢的发展历史、分类和性能作了简要介绍,重点介绍了双相不锈钢的焊接性、焊接接头的耐蚀性以及双相不锈钢的应用前景。

关键词:双相不锈钢;焊接

第一章前言

1.1 双相不锈钢简介

双相不锈钢(DSS),是指微观组织由铁素体与奥氏体两相所构成的一类不锈钢,且两相比例接近1:1,量少一相含量至少占30%[1,2]。由于具有铁素体和奥氏体双相的微观组织,双相不锈钢结合了铁素体和奥氏体不锈钢的优点,是一种强度高、耐烛性好的结构、功能一体化材料,被广泛应用于石油、化工、造纸、海洋、能源、建筑等行业,成为了近年来耐蚀合金领域研究的热点[3,4]。

1.2 双相不锈钢的发展历史

至今,双相不诱钢发展己有80多年历史[5],在上世纪30年代,瑞典在实验室中率先研制出双相不锈钢,自从1936年法国获得了第一个专利,它的发展经历了三代。第一代双相不锈钢是为了减轻早期高碳奥氏体不锈钢的晶间腐蚀问题而开发的,以美国40年代开发的329钢为代表,含高铬、钼,耐局部腐蚀性能好,但含碳量较高,因此焊接时失去相的平衡,且沿晶界析出碳化物导致耐腐烛性及靭性下降明显,焊后必须经过热处理重新获得平衡组织。随后至60年代中期,瑞典开发了著名的3Re60钢种,它也是第一代双相不诱钢的代表钢种,特点是超低碳,含铬量为18%,焊接及成型性能良好,广泛代替AISI304L,316L用做耐氯离子应力腐蚀的材料,该钢的问题是在焊接热影响区易出现单相的铁素体组织,导致耐应力腐蚀及晶间腐蚀性能下降。这些第一代双相不锈钢有良好的性能特点,但焊缝热影响区过多铁素体导致的韧性低,耐蚀性明显较母材差使得第

一代双相不诱钢的应用仅限于非焊接状态下的一些特定应用。

70年代以来,随着两次精炼技术如氩氧脱碳AOD(argon-oxygen decarburization)和真空氧脱碳VOD(vacuum oxygen decarburization)等方法的出现与普及以及连铸技术的发展,容易炼出超低碳的钢,同时发现氮作为奥氏体形成稳定元素对双相不绣钢有重要作用。双相不绣钢添加氮一方面能提高双相不锈钢本身的耐点蚀性,另一方面能大大改善双相不锈钢的辉接性能。氮能促成焊接过程中奥氏体相形成从而避免铁素体相过量的问题,同时降低了有害金属间析出相的形成速率。正是利用氮元素的独特效果,及钢种容易获得超低碳,改进了第一代双相不锈钢的缺点,从而开创了第二代新型的含氮双相不锈钢,开发了新的应用领域。第二代双相不锈钢无论18Cr型,还是22Cr和25Cr型大多数属于超低碳型,并且含有银、铜或桂等提高耐烛性的元素。针对酸性油井管及管线用钢的要求,瑞典开发了 SAF2205,广泛用于海上石油平台集气管道和处理设施,此钢种已纳入美国、法国、英国等国的相应材料标准。

80年代后期发展的超级双相不诱钢属于第三代双相不锈钢,典型牌号SAF2507,UR52N+等,这类钢的特点是含碳量很低(0.01%-0.02%C),含高钼和高氮(4%Mo,0.3%N),钢种的铁素体体积分数含量为40%-50%,此类钢具有优良的耐点蚀性能,点蚀抗力当量值PREN(PREN=Cr%+3.3Mo%+16N%)大于40。

1.3 双相不锈钢的分类

和奥氏体不锈钢一样,双相不锈钢的腐烛性能取决于它们的合金成分,尤其是点蚀有益元素(Cr、Mo、N等)的含量。双相不锈钢根据合金成分、PREN值、性能可以分为三类:低合金的经济节约型双相不诱钢(Lean Duplex Stainless Steel)、标准双相不锈钢(Standard Duplex Stainless Steel)、高合金的超级双相不诱钢(Super Duplex Stainless Steel)[6]。经济双相钢以N和Mn取代Ni 和Mo以达到节约昂贵的合金成本的目的,N—方面作为奥氏体稳定元素,另一方面能提高整个合金的耐烛性,Mn主要是稳定奥氏体相的作用。常见的经济型节约型双相不锈钢以LDX 2101、2304、ATI 2003为代表,这些合金的PREN —般在20-30之间,在普通氯离子环境下耐点蚀和缝隙腐蚀性能优于奥氏体304不诱钢,主要设计目的是为替代304的用途,它代表着双相不锈钢的未来一个重要发展方向。标准双相不绣钢包括22%Cr的双相不绣钢与25%Cr的双相钢,其合金成

分相对含量较高,PREN在35-40之间,其中22%主要代表是2205这种使用广泛的双相不锈钢。2205两个标准UNS S32205与UNSS31803的差别在于合金成分细微调整,尤其是氮元素的含量增加,UNSS32205较UNS S31803有更好的爆接性能。2205主要设计用来取代316L及904L这些合金含量较高的奥氏体不锈钢应用于海水、化工领域中,2205是最成熟的一种双相不诱钢,也是最被广泛使用的。超级双相不锈钢是指PREN在40以上,在氯化物酸等极其苟刻环境下具有极好耐蚀性能和很高力学性能一类双相不锈钢,以SAF 2507作为典型代表。超级双相不诱钢是6Mo型超级奥氏体不锈钢、钛材和玻璃纤维增强塑料的替代材料[7]。

第二章双相不锈钢的焊接

2.1 双相不锈钢的焊接性和焊接特点

2.1.1 双相不锈钢的焊接性

双相不锈钢中的C、S、P等杂质元素含量较低,因而其焊接热裂纹、冷裂纹敏感性低,但焊接时多次的热循环会导致其焊缝和热影响区难以保持合适的相比例,脆化和敏化倾向性大及需要焊后热处理而限制了其使用。焊接工艺参数对焊缝及热影响区的组织有很大的影响,合适的焊接工艺参数和一定的技术措施相结合能够保证焊缝及热影响区的组织和性能。

双相不锈钢焊接接头的力学性能和耐蚀性能取决于其能否保持适当的铁素体+奥氏体双相组织。过去的研究建立了许多预测相比例的公式,较有代表性的是WRC21992图,但都未考虑冷却速度对相比例的影响预测结果与实际测定值有很大的出入。Vitek等人利用神经网络结构模型,通过大量的试验建立了包含冷却速度这一重要因素的预测相比例的公式,预测结果与实际测定值能很好的吻合[8],但这种模型不考虑合金相变过程也存在一定的弊端。而KimYoon Jun等人从理论入手借助于热力学、相变动力学和扩散等经典理论来研究冷却速率对CD3MN 和CD3MWCuN组织转变的影响,得到了与试验测定结果有很好一致性的数学模型[9]。作为评价焊接可靠性的一个重要指标,准确的预测相比例含量将在今后一段时间内作为研究重点受到越来越多的关注。

近年来有部分学者通过成分来研究双相钢的焊接性研究的重点在Mo、Si、N、

RE等合金化元素研究认为Si(Si<3%)含量的增加能有效提高抗腐蚀性能,N含量的增加通过改变奥氏体在焊缝金属中的比例来提高耐腐蚀性能[10]。从现有的研究结果来看焊缝金属中两相比例为1:1时能得到最好的力学和耐腐蚀性能匹配,焊接性最好、焊缝可靠性最高。

2.1.2 双相不锈钢的焊接特点

由于双相不锈钢特殊的合金成分和相结构,其焊接性兼有奥氏体不锈钢和铁素体不锈钢的优点,并克服了二者的不足。双相不锈钢的主要焊接特点如下[11]:(1)双相组织的形成,阻止了奥氏体晶粒的长大,打乱了柱状晶的方向性,增加了晶界面积。同时,铁素体相可以降低相间的界面能,使残余的低熔点液相接触角增大,阻碍其润湿展开,并且可溶解较多的S和P。因此对热裂纹的敏感性要比奥氏体不锈钢小得多。

(2)对冷裂纹的敏感性比一般的低合金高强钢也小得多。

(3)双相不锈钢焊接的主要问题不在焊缝,而是在热影响区,热影响区的组织主要取决于合金成分以及焊接热循环。

(4)双相不锈钢含有较多的合金元素,焊接过程易产生金属间相、碳氮化合物。这些相或化合物的产生均会影响焊接接头的力学和耐腐蚀性能,其中脆性相ɑ是最危险的一种。

(5)双相不锈钢含有近50%的铁素体,保持了铁素体不锈钢475℃脆性及导热系数高等特点,但不如铁素体不锈钢那样明显。

(6)双相不锈钢焊接的关键是要在接头中保持理想的双相比例,尤其是要保持热影响区的相比例,对于焊缝金属区,使奥氏体的含量占优是双相不锈钢焊接发展的趋势。

(7)双相不锈钢的焊接,一般焊前不需要预热,焊后不需要热处理。

2.2 双相不锈钢的焊接工艺特点

双相不锈钢由于本身冶金特性的制约,在选择悍接方法时需要遵循如下原则:

(1)避免使用过低或过高的焊接热输入。过低的热输入使得奥氏体相析出大量减少,甚至形成纯铁素体相的组织,工艺与使用性能大幅下降。过高的热输入会使得焊缝金属和HTHAZ晶粒粗大韧性下降,同时有可能导致有害二次析出相的

析出。

(2)适合多道焊接。在焊接方法的选用上应考虑满足多道偉接的要求:多道次和低熔敷率。

(3)避免使用热处理。双相不锈钢焊接接头若需要揮后热处理去改善性能是,则需要采用较高温度固溶处理(达1050-1100℃),这是比较困难的。另外双向不锈钢在焊接中一般不会出现中温敏化的问题。

双相不锈钢常见的焊接方法有手工电弧焊(MMA)和钨极氩弧焊(GTAW)两种。手工电弧焊适合全方位的焊接,通用性和灵活性较好,是简单易行、大量使用的方法。钨极氩弧燥的特点是焊缝质量优良,广泛用于管道的封底焊缝及薄壁管道的焊接,此方法能保证焊件有非常好的力学性能和腐烛性能。

对于填丝电弧焊,根据耐烛性,焊缝韧性等要求及焊缝位置,可选择酸性或碱性焊料。采用酸性焊料时,脱渣良好,焊缝光滑,接头成形美观,但焊缝熔合区的冲击韧性低,同时还需要控制氢含量以抑制焊接氢致裂纹的产生。当要求较高冲击韧性,则采用碱性焊料。除之外,在根部封底悍时,通常也使用碱性焊料。

焊接热输入不仅影响焊缝两相比例,还影响合金元素在两相的分配。高热输入时,形成更多奥氏体相,然而铁素体晶粒易长大,且可能产生有害金属间析出相。低热输入则严重影响焊缝奥氏体数量。因此需要综合考虑,一般采用足够高的热输入以保证焊缝和热影响区奥氏体的再形成,控制0.5-2.0KJ/min,最高曾建温度控制150℃。

采用焊料进行多道焊接,后续焊道对前层焊道有热处理作用,焊缝金属中铁素体相进一步变成奥氏体,从而改善整个焊接接头的组织提高韧性与耐点烛性能,类似于短时高温固溶处理效果。焊接终了,在焊缝表面再施以一道工艺焊缝,这样可以对表层焊缝和邻近的焊缝HAZ进行短时热处理,可以改善组织,提高性能,工艺焊缝最后可以加工去掉。如果附加工艺焊缝有困难,在制定焊接工艺参数时,尽可能考虑最后一道焊缝处于非工作介质面上。

2.3 双相不锈钢的焊接缺陷

双相不锈钢的焊接缺陷同普通金属材料焊接一样,双相不锈钢焊接过程中同样存在一定的焊接缺陷,比如容易产生裂纹和脆化倾向。这主要表现在[12]:(1)焊接热输入太大,焊缝热影响区范围增大,金相组织中晶粒趋于粗大、

紊乱,易造成脆化,致使焊接接头塑性下降。焊接热输入太小,易造成淬硬组织及产生裂纹,对HAZ的冲击韧度同样不利。

(2)基材和焊缝金属的再热过程中,易析出ɑ相。脆性开裂都发生于σ相以及基体与σ相的界面焊缝金属的σ相脆化倾向比基材大得多。

(3)氢脆发生于ɑ相,且氢脆的敏感性随峰值温度的升高而增加。微观组织的变化为:峰值温度增加,γ相减少,ɑ相增加,以及ɑ相边界和内部析出的Cr2N 增加。

有研究表明,奥氏体由于其固有的低氢脆敏感性,起到了阻挡裂纹扩展的作用。含N量较低钢的点蚀电位对冷却速度很敏感,在焊接含N量较低的双相不锈钢时对冷却速度的控制要求很严。

第三章双相不锈钢焊接接头的耐蚀性焊接过程固有的局部加热、冷却的热循环作用以及材料本身的膨胀、收缩现象,造成焊接接头区域的性能与原始材料的性能存在着显著的差异,特别是耐蚀性能严重恶化。因此,研究焊接对双相不锈钢的影响具有重要的实际意义,国内外研究人员从不同的角度,采用了不同的测试方法,对其焊接接头的耐蚀性能进行了研究,得到了许多相关的研究成果。

3.1 焊接接头组织成分对焊接接头耐蚀性的影响

双相不锈钢焊接时要经历多次热循环作用,虽然该过程变化很快且历时短暂,但往往会导致接头热影响区以及焊缝金属区中的相比例和相分布状态发生变化,从而影响到整个焊接接头的耐蚀性能。此外,接头在冷却过程中易形成碳或氮的化合物,从而造成焊缝金属周围形成贫钝化元素区,严重影响到接头的耐腐蚀性[13]。双相不锈钢接头的耐蚀性,主要取决于钝化元素的含量及在两相中的分配,如两相在一定条件的介质中均产生钝化,便可避免发生相选择性腐蚀。因此,在焊接过程中应控制适宜的两相比例,促进两相平衡,防止ɑ相聚集长大,将有利于提高双相不锈钢接头的耐蚀性。

通过研究焊接金属中的二次相析出及对双相不锈钢焊管性能的影响研究[14]表明,焊缝金属和热影响区都有可能产生有害的金属间化合物,特别是在焊缝影响区的析出,对钢管的抗蚀性影响十分严重。

3.2 焊接工艺对焊接接头耐蚀性的影响

焊接工艺固有的局部快速升温和冷却过程,使焊缝和热影响区产生与母材相异的组织,恶化了耐蚀性能。因此,许多人从焊接工艺对双相不锈钢焊接接头耐蚀性的影响方面进行了研究。陈建俊等[15]对双相不锈钢UNS S32760的焊接性进行试验研究,从化学成分和显微组织方面对焊接接头性能变化的原因进行了分析,通过选用合适的焊接方法和材料及制定严格的工艺措施来保证焊缝的良好性能。实验得出,采用焊接线能量在0.2 -1.5 kJ/ mm、焊前不预热、层间温度控制在不大于150℃、焊后不进行热处理、盖面层加焊退火焊、RT合格后磨去的焊接工艺可以使材料具有较好的耐晶间腐蚀性。

Liou等[16]研究了双相不锈钢焊接接头热影响区40%CaCl2水溶液的耐应力腐蚀性能(试验温度为100 ℃)。结果发现,热影响区中奥氏体相含量的增加能有效提高接头热影响区的耐应力腐蚀性能;与此同时,提高接头热影响区中的氮含量和降低冷却速度也能起到同样的作用。杨松祥[17]通过研究UNSS32760制作海上石油平台压缩机油气分离罐的焊接工艺,提出了采用相匹配的填充金属、氩、氮混合保护气体以及控制较低的热输入量是确保焊接接头低温冲击韧性和抗H2S、氯离子应力腐蚀性能的关键措施。实验得出,双相不锈钢(包括超级双相不锈钢),限制焊接热输入与层间温度,并采取多层焊是提高其焊接接头冲击性能和耐蚀性能的有效方法。

随着化学工业能源工业及海洋工程的发展,在世界范围内对不锈钢的需求不仅在产量方面迅速增加,而且在耐腐蚀性能方面也在不断提高,尤其对不锈钢焊接接头在含氯离子(如海水)介质中抗点蚀能力的要求越来越高,因而如何通过控制焊接工艺参数来提高双相不锈钢焊接接头抗点蚀性能成为众多学者研究的重点。

屈金山等[18]根据母材临界点蚀温度CPT的试验结果,利用小试样的腐蚀实验方法研究了双相不锈钢焊接接头的耐点蚀性能。结果表明,手工电弧焊工艺过程对双相不锈钢材料的耐点蚀性能具有显著的影响,点蚀优先发生在焊缝金属或焊接热影响区中。

刘庆忠等[19]对SAF2205双相不锈钢进行了STT充氮保护焊接试验,研究了主要的焊接参数,特别是热输入量和保护气体对焊缝金属的金相组织、冲击韧性

的影响,同时进行了点蚀实验。实验得出,充氮保护完全可提高焊缝中奥氏体的含量,有利于提高焊缝的耐点蚀性能。胡礼木[20]对瑞典产五种双相不锈钢和超级双相不锈钢钢筋电阻对焊接头的抗点蚀性能进行了研究,发现双相不锈钢电阻对焊接头的抗点蚀性能与对应母材相比CPT有一定程度下降,下降范围在10℃以内;超级双相不锈钢电阻对焊接头的抗点蚀性能几乎与母材的相同,CPT高达65-68℃,且热影响区窄,晶粒长大倾向小,表现出极好的抗点蚀性和焊接性。

第四章总结

双向不锈钢的实用化已有20多年的历史,尤其是当代超低C含N双向不锈钢克服了焊接方面的一些问题,结合双向不锈钢所具有的耐局部腐蚀和综合力学性能好的一些优点,进一步扩大了双向不锈钢在一些苛刻介质中的应用领域。针对双向不锈钢特殊的应用场合,要求其焊接技术的发展应与其大规模工业应用同步。目前双向不锈钢的焊接研究主要集中在对焊接热循环的控制,但是保护气体中氮气的加入带来的影响也不容忽视,混合气体对双向不锈钢焊接工艺以及获得组织和性能的影响,也将是焊接研究的重点。

参考文献

[1] 吴玖.双相不锈钢[M].北京:冶金工业出版社,1999.

[2] Charles J.Super duplex stainless steels: structure and properties.In the Third

International Conference on Duplex Stainless Steels [C].Les Editions de Physique,Beane,1991.

[3] Nilsson J O.Super duplex stainless steel [J]. Materials Science and

Technology,1992,8(8):685-700.

[4] IMOA, Practical Guideline for the Fabrication of Duplex Stainless Steels,Second

edition [M].London: International Molybdenum Association, 2009.

[5] K.Karlsson,Welding duplex stainless steels- Old truths and new grades,In the

Duplex Stainless Steels Conference[C].Beaune,France,2010.

[6] 李钧,新型资源节约型高Mn-N双相不锈钢的制备、结构及性能研究,上海大

学博士学位论文,2010.

[7] 肖纪美,不锈钢的金属学问题[M].北京:冶金工业出版社,1983:56.

[8] 袁志钟,戴起勤,程晓农,and张成华.氮在奥氏体不锈钢中的作用[J].江苏大学学

报(自然科学版),2002(03):72-5.

[9] 曾德斌.双相不锈钢脆性的研究[D].昆明理工大学硕士学位论文,1999.

[10] 肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:199.

[11] 邓博.多相合金组织演变与电化学失效行为研究[D].复旦大学博士学位论

文,2010.

[12] Martin Becker.Nonlinear Transient Heat Conduction with Application to

Welding.ASME 32nd National Heat Transfer Conf.V ol.9 Manufacturing and Materials Processing,1997.

[13] 高娟.经济节樓型不绣钢局部腐烛行为研究[D].复且大学博士学位论文,2010.

[14] 张丽华.经济型双相不绣钢2101的腐烛行为研究[D].复旦大学博士学位论

文,2010.

[15] 方伟秉.铁素体奥氏体型双相不锈钢的焊接性[J].化工装备技术

199718(3)39-43.

[16] 张其枢,堵耀庭.不锈钢焊接[M].北京机械工业出版社2001.40-82.

[17] 陈建俊,王平,杨社教.超级双相不锈钢的焊接[J].压力容器200320(11)29-32.

[18] 杨松祥.超级双相不锈钢UNS S32760的焊接试验研究[J].南京工业大学学

报200224(3)65-68.

[19]肖志英,阮鑫,阮霄羽.奥氏体铁素体双相不锈钢设备的焊接缺陷及质量控制

研究[J].职业时空(研究版), 2008,4(12):151.

[20] 冈毅民.不锈钢腐蚀手册[M].北京:冶金工业出版社,1990.18-22.

不锈钢管道焊接工艺(完整资料).doc

此文档下载后即可编辑 不锈钢管道焊接工艺 1 技术特征 1.1材质规格:304( 相当于0Cr18Ni9) 1.2工作介质: 空气去离子水 1.3设计压力:0.2MPa,0.4MPa 1.4工作压力:2Kg/CM2 4Kg/CM2 1.5试验压力: 4.6Kg/CM2 2 本工程编制依据 2.1 F43C技术文件. 2.2 国标GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 2.3 国标GB50235-97《工业金属管道施工及验收规范》 2.4 本公司焊接工艺评定报告:HG1 3 焊工 3.1 焊工应具有“锅炉压力容器压力管道焊工考试规则”规定的焊工考试合格证。 3.2 焊工进入现场后应按GB50236-98规定先进行焊接实际操作考试合格,经总包方认可发证后方能担任本项目的焊接工作。 4 焊接检验 4.1焊接检验人员应熟悉F43C技术文件及有关国标和本工艺。 4.2对管材焊材按规定进行检验、填表验收。 4.3对焊工是否执行本工艺进行全面监督检查,对违反者进行教育帮助得以改正。对严重违反者或教育不改者有权令其停止焊接工作。以确保焊接质量。 4.4 做好本工艺第7条“焊接后检查和管理工作”。 4.5 邀请和欢迎总包方和监理方检查人员检查焊接质量。 5 焊前准备 5.1.1 管材、焊材必须具有符合规定的合格证明,并与实物核对无误。 5.1.2 管材型号为304级相当等于我国的0Cr18Ni9规格标准。按

项目图纸规定。 5.1.3 不锈钢焊丝型号规格为:H0Cr20Ni10Ti φ2.5mm φ2.0mm 5.1.4 不锈钢电焊条型号规格:A132 φ3.2mm φ2.5mm 5.1.5 铈钨电极型号规格:WCe-20 φ2.0mm 5.1.6 氩气纯度为99.99%。 5.2 焊件准备 内外表面10mm范围内的油、垢、毛刺等清理干净。 5.2.4 点固焊必须根部焊透不得有焊接缺陷。管径≤150 mm为4点长度为5 mm,管径>150 mm为6点,长度为5 mm。点固焊后即用医用胶布将焊口及两端封好,做好管内充氩准备,然后充氩焊接不得隔夜。 5.2.5氩弧焊打底焊接时管内必须充氩(氮)保护,并用火柴火苗检查证明管内空气确实已置换干净。方能开始焊接。管径≤100 mm为整管冲氩,管径>100 mm为局部充氩。(局部充氩保护的焊口组对时要防止里面堵板震脱落。) 5.3 管子组对焊口时应保持其轴线平直。在不得以时,距焊口中心200mm处测量平直度如图2所示,管径<100mm时允许偏差为1mm;管径≥100mm时允许偏差为2mm,但全长允许偏差均不大于10mm。万一超差时,只能用冷矫正,严禁加热矫正。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 1 技术特征 1.1材质规格:304( 相当于0Cr18Ni9) 1.2工作介质: 水软水 1.3设计压力: 2工作压力:5Kg/CM1.42试验压力: 7.5Kg/CM1.52 本工程编制依据2.1 F43C技术文件. 2.2 国标GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 2.3 国标GB50235-97《工业金属管道施工及验收规范》 2.4 本公司焊接工艺评定报告:HG1 3 焊工 3.1 焊工应具有“锅炉压力容器压力管道焊工考试规则”规定的焊工考试合格证。 3.2 焊工进入现场后应按GB50236-98规定先进行焊接实际操作考试合格,经总包方认可发证后方能担任本项目的焊接工作。 4 焊接检验 4.1焊接检验人员应熟悉F43C技术文件及有关国标和本工艺。 4.2对管材焊材按规定进行检验、填表验收。 对违反者进行教育帮,对焊工是否执行本工艺进行全面监督检查4.3.. 助得以改正。对严重违反者或教育不改者有权令其停止焊接工作。以

确保焊接质量。 4.4 做好本工艺第7条“焊接后检查和管理工作”。 4.5 邀请和欢迎总包方和监理方检查人员检查焊接质量。 5 焊前准备 5.1.1 管材、焊材必须具有符合规定的合格证明,并与实物核对无误。 5.1.2 管材型号为304级相当等于我国的0Cr18Ni9规格标准。按项目图纸规定。 5.1.3 不锈钢焊丝型号规格为:H0Cr20Ni10Ti φ2.5mm φ2.0mm 5.1.4 不锈钢电焊条型号规格:A132 φ3.2mm φ2.5mm 5.1.5 铈钨电极型号规格:WCe-20 φ2.0mm 5.1.6 氩气纯度为99.99%。 5.2 焊件准备 5.2.1 焊接口的分布位置必须符合国标GB50235-97和GB50236-98规范的规定。 5.2.2 管道为V型坡口,对接接头、组对应符合图1要求: 注:间隙3.5~4mm为焊接时的数据,组对点固焊时,应适当大于此数据,以补收缩。 .. . 图1.焊口组对数据

双相不锈钢焊条

? 铬不锈钢-双相不锈钢焊条 双相不锈钢电焊条简明表 A1002双相不锈钢焊条 符合 GB E312-16. 相当 AWS E312-16 说明: A1002是钛钙型药皮的双相钢焊条,由于熔敷金属中含有40%左右的铁素体,故 具有优良的抗裂性能。有良好的焊接工艺性能。 用途:用于高碳钢、工具钢、高温钢、装甲钢、异种钢等的焊接。 熔敷金属化学成分(%) 化学成分C Mn Si S P Ni Cr 保证值≤0.150.5~2.5≤0.90≤0.030≤0.0408.0~10.528.0~32.0 熔敷金属力学性能 试验项目σb(MPa)δ5(%) 保证值≥660≥22 参考电流 (AC、DC+) 焊条直径(mm)φ2.5φ3.2φ4.0φ5.0 焊接电流(A)50~8080~110110~160160~220 注意事项: 1.焊前焊条须经250℃左右烘焙1h。 2.尽可能采用直流电源,电流不宜过大。 焊接位置: FY.S2215双相不锈钢焊条 符合 GB E2209-15 相当 AWS E2209-15 说明:JQ.S2215是碱型药皮的超低碳双相不锈钢焊条,熔敷金属中含有40%-50%的铁素体,具有优异的力学性能和耐腐蚀性能,特别是具有可靠的耐氯化物腐蚀性能和高的耐点蚀性 能。采用直流反接,可全位置焊接。 用途:用于焊接超低碳00Cr22Ni5Mo3N、SAF2205等双相不锈钢。 熔敷金属化学成分(%) 化 学 成 分 C Mn Si S P Cu Ni Mo Cr N 保 证 值 ≤0.040.50~2.0≤0.90≤0.03≤0.04≤0.758.5~10.52.5~3.521.5~23.50.08~0.20 熔敷金属力学性能 试验项目σb(MPa)δ5(%)

双相不锈钢管道的焊接工艺

双相不锈钢管道的焊接工 艺 Prepared on 22 November 2020

双相不锈钢管道的焊接摘要:以辽阳石化80万吨/年PTA装置双相不锈钢管线为例,向读者介绍双相不锈钢2205的管道焊接,整个焊接具有一定的价值,为双相不锈钢焊接提供依据。 关键词:双相不锈钢管道焊接工艺耐腐蚀 0 前言 铁素体-奥氏体双相不锈钢是在超低碳铁素体不锈钢基础上发展起来的一种双相不锈钢,常温下为双相组织,与一般不锈钢相比,其Ni的质量分数低,Cr、N的质量分数高,具有较好的抗点蚀和抗应力腐蚀的性能。此外,其结晶结构中的Fe的质量分数高,所以比其他的不锈钢有更高的屈服强度。双相不锈钢由于具有奥氏体+铁素体双相组织,且两个相组织的含量基本相当,故兼有奥氏体不锈钢和铁素体不锈钢的特点。屈服强度可达400Mpa ~ 550MPa,是普通奥氏体不锈钢的2倍。与铁素体不锈钢相比,双相不锈钢的韧性高,脆性转变温度低,耐晶间腐蚀性能和焊接性能均显着提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、热导率高、线膨胀系数小,具有超塑性及磁性等。与奥氏体不锈钢相比,双相不锈钢的强度高,特别是屈服强度显着提高,且耐孔蚀性、耐应力腐蚀、耐腐蚀疲劳等性能也有明显的改善。辽阳石化80万吨/年PTA装置中共有双相不锈钢有497m,最小管径为Φ×,最大管径为×,属于中、低压管道。PTA装置双相不锈钢管道中介质为浓度60%~90%的高浓度醋酸,是具有强腐蚀和刺激性的介质,焊接质量的好坏直接关系到整个装置生产的安全性。 1 双相不锈钢2205的焊接性分析

铁素体-奥氏体双相不锈钢具有良好的焊接性,铁素体-奥氏体双相不锈钢被加热到足够的温度时,出现奥氏体向铁素体的转变,温度升高到1250-1300℃时,可转变为纯铁素体组织,此时在进行冷却,首先在铁素体晶界生成晶核,逐渐生成奥氏体。冷却速度较慢生成的奥氏体越多,反之生成的奥氏体越少。该双相不锈钢与铁素体不锈钢相比,焊接出现的裂纹倾向低;与奥氏体不锈钢相比,焊接产生的脆化倾向低。然而,焊接工艺掌握不好,这种双相钢组织会引起焊缝和热影响区的脆化和焊接热裂纹的产生。实验表明,焊缝和热影响区德铁素体含量超过80%时,会降低韧性并增加裂纹的产生,因此对焊缝的化学成分尤其是Ni的质量分数和冷却速度加以控制,防止单相铁素体以及晶粒粗大和裂纹的产生。双相不锈钢化成成分和力学性能见下表1、2: 2 双相不锈钢的焊接工艺 焊前准备 坡口的制备:坡口角度为70±5°,主要是考虑稍大的坡口角度有利于保证熔合比和提高脱渣性能,实践证明当坡口角度小于这个数值时,产生夹渣的几率会增大。 焊前清理:管道坡口表面的清洁性是双相钢成功焊接的一个关键因素,2205坡口表面的污染物主要是切割时表面的氧化皮、油脂和引起铁素体增多的脆化元素。因此,焊接前必须进行完全清理打磨,打磨时使用不锈钢专用砂轮片,防止渗碳等情况的发生。坡口加工完毕后,最后利用丙酮溶液清洗坡口内外100mm区域内的有机物、手印等。丙酮擦洗时不宜用棉质物擦洗。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 Document number:BGCG-0857-BTDO-0089-2022

摘要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。 1 案例分析 0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG 焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。 0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。 2 焊接方法及焊前准备 焊接方法 材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。 2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。 2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。 2.2.4 管内充氩气保护。 3 TIG焊工艺 焊接参数 采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。 操作方法 3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。 3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

(双相不锈钢)复合板焊接工艺

1 要求 1.1 材料 1.1.1 用于制造压力容器的不锈钢复合钢板材料及焊材应符合相应的国家标准或行业标准的规定,并具有材料制造厂的质量证明书。采用国外材料时,应符合《压力容器安全技术监察规程》第22条的规定。 1.1.2 用于主要受压元件的材料,其复验要求应符合《压力容器安全技术监察规程》第61条的规定。 1.1.3不锈钢复合钢板的使用范围应符合GB150的规定。 1.1.4材料不得有分层,表面不允许有裂纹、结疤等缺陷。用于制造有表面粗糙度要求的设备的不锈钢复合钢板板,需经80~100号砂头抛光后,再检查表面质量。经酸洗供应的材料表面不允许有氧化皮和过酸洗现象。 1.1.5不锈钢复合钢板应按牌号、规格和炉批号分类存放,并作明确标志。与碳钢等原材料有严格的隔离措施。1.1.6 不锈钢复合钢板材料上应有清晰的入库标记。该标记和1.1.6条规定的标志应采用无氯、无硫记号笔书写,不得采用油漆等有污染的物料书写,不得在与介质接触的表面打钢印。 1.1.7 焊接材料应按种类、牌号、批次、入库时间分类放置于干燥、通风良好的室内,一般应放在离地约200~500mm 以上的架子上。室内应整洁,不允许放置有害气体和腐蚀性介质。并应建立严格的验收、保管、烘干、发放和回收制度。 1.1.8 钢板吊运时,要防止钢板变形。钢丝绳要加护套,以防损伤材料表面。 1.2 制造环境 1.2.1 不锈钢复合钢板压力容器的制造应有独立、封闭的生产车间或专用场地,应与碳钢制产品严格隔离。不锈钢复合钢板压力容器如附有碳钢零部件,其碳钢零部件的制造场地应与不锈钢复合钢板件分开。 1.2.2 为了防止铁离子和其它有害杂质的污染,不锈钢复合钢板压力容器生产场地必须保持清洁、干燥、地面应铺设橡胶或木质垫板。零部件半成品、成品的堆放需配有木质堆放架。 1.2.3 不锈钢复合钢板压力容器在制造过程中应使用专用滚轮架(如滚轮衬有橡胶等)、吊夹具及其它工艺设备。起吊容器或零部件的吊缆宜采用绳制吊缆或柔性材料(橡胶、塑料等)铠装的金属吊缆。进入生产现场的人员应穿着鞋底不得带有铁钉等尖锐异物的工作鞋。 1.2.4 不锈钢复合钢板材料或零部件在周转和运输过程中,应配备必要的防铁离子污染和磕划的运送工具。 1.2.5 不锈钢复合钢板压力容器的表面处理应有独立且配备必要的环境保护措施的场地。 1.3 加工成型及焊接 1.3.2 划线应在清洁的木板或光洁的平台上进行,加工过程中不能去除的不锈钢复合钢板材料表面严禁用钢针划线或打冲印。 1.3.3 下料时,应将不锈钢复合钢板原材料移至专用场地用等离子切割或机械切割方法下料。用等离子切割方法下料或开孔的板材,如割后尚需焊接,则要去除割口处的氧化物至显露金属光泽。当利用机械切割方法时,下料前应将机床清理干净,为防止板材表面划伤,压脚上应包橡胶等软质材料。严禁在不锈钢复合钢板材料垛上直接切割下料。 1.3.4 板材的剪口和边缘不应有裂缝、压痕、撕裂等现象。 1.3.5 剪好的材料应整齐地堆放在底架上,以便连同底架吊运,板间须垫橡胶、木板、毯子等软质材料,以防损伤表面。 1.3.8 不锈钢复合钢板板卷圆时,应在卷板机的轧辊表面或在不锈钢复合钢板表面上覆盖无铁离子的材料。 1.3.9 进行钻、锪、车削等机械加工时,冷却液一般采用水基乳化液。 1.3.10 不锈钢复合钢板封头采用热成型时,应按热处理规范和冲压工艺的要求,严格控制炉内温度和冲压的起始温度与终了温度,并作好记录。不允许与碳钢封头同炉加热。热成型所用的工具、压模等须清洁干净,不允许有碳钢屑、氧化皮等污物存在。 1.3.11 壳体组装过程中,临时所需的楔铁、垫板等与壳体表面接触的用具应选用与壳体相适应的不锈钢复合钢板材料。 1.3.12 不锈钢复合钢板压力容器严禁强力组装,组装过程中不得使用可能造成铁离子污染的工具。容器的开孔应采用等离子或机械切割的方法。 1.3.13 不锈钢复合钢板压力容器施焊前的焊接工艺评定和首次焊接的钢种,首次采用的焊接材料及焊接方法,以及改变已经评定合格的焊接工艺中任何一项重要因素或补加因素时的施焊前焊接工艺评定均应符合JB4708的规定,焊接规程应符合JB/T4709的规定。 1.3.14 施焊的焊工必须持有劳动部门颁发的相应类别有效焊工合格证。 1.3.15 不合格的焊缝允许返修,但同一部位的返修次数不宜超过两次。对经过两次返修仍不合格的焊缝,如再进行返修,每次须经制造单位技术负责人批准,并将返修次数、部位和返修情况记入产品的质量证明书。有抗晶间腐蚀要求的零部件,焊缝返修后仍应保证原有要求。 1.3.16 制造过程中应避免尖锐、硬性物质擦伤不锈钢复合钢板表面。如进行容器内工作,应采取铺设衬垫等保护措施。 1.3.17 不锈钢复合钢板压力容器的表面如有局部磕碰或划伤等影响耐腐蚀性能的缺陷,必须修复。 1.4 表面处理 1.4.1 不锈钢复合钢板压力容器的所有焊缝修补工作结束后按设计图样的要求进行表面处理。 1.4.2 压力容器表面的焊接飞溅物、熔渣、氧化皮、焊疤、凹坑、油污等杂质均应清除干净,清除过程中不得使用碳钢刷清理不锈钢复合钢板压力容器的表面。 1.4.3 采用机械抛光时,抛光磨料宜选用氧化铝或氧化铬,不得使用铁砂等作磨料。磨料应按不同的粒度分开放置,不得混放。

不锈钢焊接实用工艺..

市瑞昌电力技术 不锈钢焊接工艺规 生产部/质检部

不锈钢焊接工艺标准 一氩弧焊接 1.目的 为规焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0230-50616正接13 2 1.2240-60616正接14 3 1.6-2.4360-9081-28正接1-2.55 4 1.6-2.4380-10081-28正接1-2.06 5. 工序过程

史上最全的不锈钢焊接工艺

史上最全的不锈钢焊接工艺 不锈钢焊接工艺技术要点不锈钢焊管是在焊 管成型机上,由不锈钢板经若干道模具碾压成型并经焊接而成。由于不锈钢的强度较高,且其结构为面心立方晶格,易形成加工硬化,使焊管成型时:一方面模具要承受较大的摩擦力,使模具容易磨损;另一方面,不锈钢板料易与模具表面形成粘结(咬合),使焊管及模具表面形成拉伤。因此,好的不锈钢成型模具必须具备极高的耐磨和抗粘结(咬合)性能。我们对进口焊管模具的分析表明,该类模具的表面处理都是采用超硬金属碳化物或氮化物覆层处理。激光焊接、高频焊接与传统的熔化焊接相比具有焊接速度快、能量密度高、热输入小的特点,因此热影响区窄、晶粒长大程度小、焊接变形小、冷加工成形性能好,容易实现自动化焊接、厚板单道一次焊透,其中最重要的特点是Ⅰ形坡口对接焊不需要填充材料。焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后

形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影

不锈钢板焊接工艺

不锈钢板焊接工艺 1、使用范围 本工艺适用于以各种不锈钢为复材、低碳钢或低合金钢为基材总厚度大于或等于4mm的不锈钢复合板的焊接。 2、焊接材料的选择 2.1焊接材料选用原则 1)复层材料的选用应保证熔敷金属的合金元素的含量不低于复层材料标准规定的下限值。 2)过渡层的焊条宜选择25%Cr-13%Ni型或25%Cr-20%Ni型以补充基层对复层的稀释,对复层含钼的不锈钢复合板,应采用25%-13%Ni-Mo型焊条。 2.2 常用不锈钢复合板焊接材料可按下表选取。 表—1 常用不锈钢复合板过渡层及复层焊接材料的选用

表—2 常用不锈钢复合板基层焊接材料的选用

3、焊前准备 3.1 下料 不锈钢复合钢板的切割以及坡口加工尽量采用机械加工方法,切割面应光滑,采用剪床切割时,复层应朝上。也可以采用等离子切割,切割时复层朝上,严禁将切割的熔渣落在复层上。 3.2 坡口加工及检查 a.坡口形式和尺寸按图纸设计规定,如设计未明确规定的,可参 照图3.2-1选用。 b.坡口选用原则:确保焊接质量填充金属少,熔合比小,便于操 作。 c.坡口加工一般采用机械方法制成。若采用等离子切割、气割等 方法开制坡口,则必须去除复材表面的氧化层 d. 加工完的坡口要进行外观检查,不得有裂纹和分层,否则应进行修补。 3.3焊前清理 坡口及其两侧各20mm范围内应用机械方法及有机溶剂进行表面清理,清除表面的油污、锈迹、金属屑、氧化膜及其他污物,复层距离坡口100mm范围内应涂防飞溅涂料。 3.4 焊件装配

a.装配应以复层为基准,其错边量不得大于复层厚度的二分之一,且不大于2mm,对于复层厚度不同时,按较小的复层厚度取错边量 b.定位焊应焊在基层母材上,且采用与焊接基层金属相同的焊接材料。手弧焊定位焊焊缝参照表3.5-1 表3.4-1手弧焊定位焊焊缝尺寸(mm) δ0为基层厚度 c.在装配过程中,严禁在复层上焊接工卡具,工卡具应焊在基层一侧。 d.复层一侧附件的焊接要符合设计图纸要求,当设计要求复层测附件焊在基层金属上时,应先将复层部分剥开,采用过渡层焊条将不锈钢托架焊在基层壳体上,焊缝表面采用与焊复层相同的焊条进行焊接。 4、焊接 当产品技术条件要求焊接工艺评定时,须在开工前由施工单位根据产品的结构特点以及技术要求制定焊接工艺评定,并取得质量监督部门的认可。 4.1 焊接方法 基层的焊接推荐采用手工电弧焊、埋弧焊、及二氧化碳气体保护焊。复层和过度层的焊接,采用钨极氩弧焊和手工电弧焊,也可采用

2205双相不锈钢的焊接工艺规程(DOC)

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。 1.1 我国双相不锈钢的应用 双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于

316L不锈钢的焊接工艺

316L不锈钢的焊接工艺 1.奥氏体不锈钢的性能和焊接性分析 316L奥氏体不锈钢热导率低、线膨胀系数大,无磁性;抗拉强度≥550N/mm2,屈服强度≥480N/mm2 1.焊接裂纹 (1)316L奥氏体不锈钢的导热系数大约只有低碳钢的一半,而线膨胀系数却大得多,所以焊后在接头中会产生较大的焊接内应力。 (2)316L奥氏体不锈钢的液、固相线的区间较大,结晶时间较长,且奥氏体结晶的枝晶方向性强,所以杂质偏析现象比较严重。 综上所述,316L奥氏体不锈钢焊接时比较容易产生焊接热裂纹,包括焊缝的纵向和横向裂纹、火口裂纹、打底焊的根部裂纹和多层焊的层间裂纹等。 2. 316L奥氏体不锈钢焊接工艺 2.1焊接方法 316L不锈钢的焊接,根据不锈钢的特点,尽可能减少热输入量,故采用手工电弧焊,氩弧焊两种方法。 2.2 焊材选择 316L 奥氏体不锈钢时特殊性能用钢,为满足焊接接头具有相同的性能,应遵循“等成分”原则选择焊接材料,同时为增强接头抗焊接热裂纹和晶间腐蚀能力,使接头中出现少

量铁素体,应选用 H00Cr19Ni2Mo2 氩弧焊用焊丝。其成化学分见表 1。 2.3 焊接工艺过程 2.3.1 焊前准备 为了避免焊接时碳和杂质混入焊缝,在焊前应将焊缝两侧20 mm~30 mm范围内的油污等清理干净。 2.3.2 焊接工艺 (1)奥氏体不锈钢的突出特点是对过热敏感,故采用小电流、快速焊,焊接电流应比焊接低碳钢时低 20 %左右,防止晶间腐蚀、热裂纹及焊接变形的产生。 (2)为了保证电弧稳定燃烧,手工电弧焊焊焊机采用直流反接法;氩弧焊采用直流正接。 (3)氩弧焊打底时,焊缝厚度尽量薄,与根部熔合良好,收弧时要成缓坡型,如有收弧缩孔,应用磨光机磨掉,管道内部必须充满氩气保护,保证底部成形;手弧焊采用短弧焊,收弧要慢,填满弧坑,防止弧坑裂纹。 (4)焊后可采取强制冷却。

常用不锈钢焊接方法

常用不锈钢焊接方法 对不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG).虽然这些焊接方法对不锈钢工业的大多数人而言是熟悉的,但是我们认为这个领域值得深入探讨. 1、手工焊(MMA):手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料. 这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题. 大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和 焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分. 钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚.

2、MIG/MAG焊接:这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间烧接.机器送入的金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法的通用性和特殊性的优点,至今她仍然是世界上最为广泛的焊接方法.它使用于钢、非合金钢、低合金钢和高合金为基的材料.这使得它成为理想的生产和修复的焊接方法.当焊接钢时,MAG可以满足只有0.6mm 厚的薄规格钢板的要求.这里使用的保护气体是活性气体,如二氧化碳或混合气体.唯一的限制是当进行室外焊接时,必须保护工件不受潮,以保持气体的效果. 3、TIG焊接:电弧在难熔的钨电焊丝和工件之间产生.这里使用的保护气体是纯氩气,送入的焊丝不带电.焊丝既可以手送,也可以机械送.也有一些特定用途不需要送入焊丝.被焊接的材料决定了是采用直流电还是交流电.采用直流电时,钨电焊丝设定为负极.因为它有很深的焊透能力,对于不同种类的钢是很合适的,但对焊缝熔池没有任何“清洁作用”. TIG焊接法的主要优点是可以焊接大材料范围广.包括厚度在0.6mm及其以上的工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要的应用领域是焊接薄的和中等厚度的工件,在较厚的截面上作为焊根焊道使用.

不锈钢焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 1适用范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S

3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 见图1。 图1奥氏体不锈钢管道焊接控制流程图 3.3 焊接材料 3.3.1 奥氏体不锈钢管道焊接材料的采购和入库(一级库)由公司物资部负责,按《物资采购控制程序》和《焊接材料保管程序》执行。 3.3.2 奥氏体不锈钢管道焊接材料入二级库的保管、焊剂、烘干、发放、回收由各项目负责,按《焊接材料保管程序》执行

双相不锈钢的焊接工艺规程完整版

双相不锈钢的焊接工艺 规程 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显着提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢 类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、 Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其 发展经历了3代历程。

不锈钢罐焊接工艺

不锈钢罐焊接工艺内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不锈钢罐焊接工艺 简介: 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2.编制依据 2.1.设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3.焊接准备 3.1.焊接材料 焊丝:H... 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. ? 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. ? 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. ? 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. ? 焊接工具 3.4. ? 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 5. 工序过程 5.1. ? 焊工必须按照“考规”规定经相应试件考试合格后,方可上岗位焊接。 5.2. ? 严禁在被焊件表面随意引燃电弧、试验电流或焊接临时支撑物等。

5.3. ? 焊工所用的氩弧焊把、氩气减压流量计,应经常检查,确保在氩弧焊封底时氩气为层流状态。 5.4. ? 接口前应将坡口表面及母材内、外壁的油、漆、垢锈等清理干净,直至发出金属光泽,清理范围为每侧各为10-15mm,对口间隙为2.5~3.5mm。 5.5. ?接口间隙要匀直,禁止强力对口,错口值应小于壁厚的10%,且不大于1mm。 5.6. ? 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 5.7. ? 接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm,厚度3-4mm。 5.8. ? 打底完成后,应认真检查打底焊缝质量,确认合格后再进行氩弧焊盖面焊接。 5.9. ? 引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。 5.10. ? 点焊、氩弧焊、盖面焊,如产生缺陷,必须用电磨工具磨除后,再继续施焊,不得用重复熔化方法消除缺陷。 5.11. ? 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 5.12. ? 盖面完毕应及时清理焊缝表面熔渣、飞溅。 6. ? 质量标准: 6.1. 质量按Q/ZB74-73 焊接通用技术条件和机械结构用不锈钢焊接管 (GB/T12770—2002)标准检验。 ? 6.2. 缺陷种类、原因分析及改进方法

不锈钢管焊接工艺及热处理模板

不锈钢管焊接工艺及热处 理模板 1

不锈钢管焊接工艺及热处理 [我的钢铁] -02-03 15:10:20 不锈钢管热处理 不锈钢管热处理国外普遍采用带保护气体的无氧化连续热处 理炉, 进行生产过程中的中间热处理和最终的成品热处理, 由于能够获得无氧化的光亮表面, 从而取消了传统的酸洗工序。这一热处理工艺的采用, 既改进了钢管的质量, 又克服了酸洗对环境的污染。 根据当前世界发展的趋势, 光亮连续炉基本分为三种类型: ( 1) 辊底式光亮热处理炉。这种炉型适用于大规格、大批量钢管热处理, 小时产量为1.0吨以上。可使用的保护气体为高纯度氢气、分解氨及其它保护气体。能够配备有对流冷却系统, 以便较快地冷却钢管。 ( 2) 网带式光亮热处理炉。这种炉型适合于小直径薄壁精密钢管, 小时产量约为0.3-1.0吨, 处理钢管长度可达40米, 也能够处理成卷的毛细管。 2

( 3) 马弗式光亮热处理炉。钢管装在连续的把架上, 在马弗管 内运行加热, 能以较低的成本处理优质小直径薄壁钢管, 小时产量 约在0.3吨以上。 不锈钢焊管工艺技术——氩弧焊 不锈钢焊管要求熔深焊透, 不含氧化物夹杂, 热影响区尽可能小, 钨极惰性气体保护的氩弧焊具有较好的适应性, 焊接质量高、 焊透性能好, 其产品在化工、核工业和食品等工业中得到广泛应用。 焊接速度不高是氩弧焊的不足之处, 为提高焊接速度, 国外研 究开发了多种方法。其中由单电极单焊炬发展采用多电极多焊炬 的焊接方法在生产中应用。70年代德国首先采用多焊炬沿焊缝方向直线排列, 形成长形热流分布, 明显提高焊速。一般采用三电极 焊炬的氩弧焊, 焊接钢管壁厚S≥2mm, 焊接速度比单焊炬提高3-4倍, 焊接质量也得以改进。氩弧焊与等离子焊组合能够焊接更大壁厚的钢管, 另外, 在氩气中5-10%的氢气, 再采用高频脉冲焊接电源, 也可提高焊接速度。 多焊炬氩弧焊适用于奥氏体和铁素体不锈钢管的焊接。 不锈钢焊管工艺技术——高频焊 3

不锈钢焊接工艺

316L不锈钢板(00Cr17Ni14Mo2) 产品说明 牌号:(00Cr17Ni14Mo2) 材质:316L/2B 不锈钢板 厚度:0.4mm-3.0mm 宽度:1219mm/1000mm 长度:2439mm/可定长 产地:国产太钢、张浦,进口 材质:316L/NO.1不锈钢板 厚度:3.0mm-60mm 宽度:1500/1800/2000mm 长度:6000/8000mm 产地:国产太钢,进口 321/2B 0.5-3.0mm*1220mm/1000m*C 太钢张浦,进口不限 321/NO.1 3.0-20mm*1500/1800mm*6000 太钢,进口比利时芬兰 牌号:0Cr18Ni9 材质:304/NO.1不锈钢板

厚度:3.0mm-50mm 宽度:1500/1800mm 长度:6000mm 产地:国产太钢、进口 材质:304/2B 不锈钢板 厚度:0.4mm-3.0mm 宽度:1219/1000mm 长度:2439/可定长 产地:国产太钢、张浦、宝新,进口 N o 中国GB 日本 JIS 美国 韩国 KS 欧盟 BS EN 印度 IS 澳大 利亚AS 中国台湾 CNS 旧牌号 新牌号(07.10) AST M UNS 奥氏体不锈钢 1 1Cr17Mn6Ni5N 12Cr17Mn6Ni5N SUS201 201 S20100 STS201 1.437 2 10Cr17Mn6Ni 4N 20 201-2 201 2 1Cr18Mn8Ni5N 12Cr18Mn9Ni5N SUS202 202 S20200 STS202 1.43 73 - 202 3 1Cr17Ni7 12Cr17Ni7 SUS301 301 S30100 STS301 1.43 19 10Cr17Ni7 301 301

不锈钢焊接工艺

1?目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2.编制依据 2丄设讣图纸 2.2.《手工钩极氮弧焊技术及实应用》 2.3.《焊工技术考核规程》 3?焊接准备 3.1.焊接材料 焊丝J HlCrl8Ni9Ti l. (1>1?5、2.5. 4>3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊线在使用前应清除油锈及实他污物,露出金属光泽。 3.2.氮气 氮气瓶上应贴有岀厂介格标签,英纯度>99.95%,所用流量6?9升/分钟,气瓶中的氮气不能用尽,瓶内余压不得低于O.SMPa ,以保证充氮纯度0 33焊接工具 3.3.1.采用宜流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3?32 选用的氮气减压流量计应开闭自如,没有漏气现象。切记不可先开流量讣、后开气瓶,造成高压气流宜冲低压,损坏流量讣:关时先关流量讣而后关氮气瓶。 333.输送氮气的胶皮管,不得与输送集它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3A其它工器具 焊工应备有:手锤、砂纸、扁铲、钢幺幺?刷、电糖工具等,以备淸渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表

5.工序过程 5.1.焊工必须按照“考规‘‘规泄经相应试件考试合格后,方可上岗位焊接。 52 严禁在被焊件表而随意引燃电弧、试验电流或焊接临时支撑物等。 5.3.焊工所用的氮弧焊把、氮气减压流应经常检査,确保在氮弧焊封底时氮气为层流状态。 54 接口前应将坡口表而及母材内、外壁的油、漆、垢锈等淸理干净,直至发出金属光泽,淸理范用为每侧齐为10-15mm,对口间隙为2.5?3?5mm. 5.5?接口间隙要匀直?禁止强力对口,错口值应小于壁厚的10%.且不大于1mm. 56 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 5.7.接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm> 厚度 3-4mm.z 5.8.打底完成后,应认貞?检査打底焊缝质量,确认合搭后再进行氮弧焊盖而焊接。 5.9.引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。 5.10.点焊、氯弧焊、盖而焊,如产生缺陷,必须用电磨工具氏等除后,再继续施焊,不得用重复熔化方法消除缺陷. 5.ir 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 5A2.孟面完毕应及时淸理焊缝表而熔渣、飞溅。 6?质量标准: 6.1.质量按Q/ZB74-73焊接通用技术条件和机械结构用不锈钢焊接管(GBZn2770—2002) 标准检验。 6.2.缺陷种类、原因分析及改进方法 氮弧焊焊接产生缺陷的原因及防止方法

相关文档
最新文档