高三数学等比数列概念

合集下载

等比数列及其前n项和(高三一轮复习)

等比数列及其前n项和(高三一轮复习)

数学 N 必备知识 自主学习 关键能力 互动探究
— 18 —
思维点睛►
(1)等比数列的通项公式及前n项和公式共涉及五个量a1,n,q,an,Sn,一般可 以“知三求二”,通过列方程(组)便可迎刃而解.
(2)等比数列的前n项和公式涉及对公比q的分类讨论,分为q=1时与q≠1时的情 况.
数学 N 必备知识 自主学习 关键能力 互动探究
— 15 —
解法二:设等比数列{an}的公比为q,易知q≠1.由题意可得aa12+ -aa25+ =a432=,168,
即a111--qq3=168, a1q1-q3=42,
a1=96, 解得q=12,
所以a6=a1q5=3,故选D.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设等比数列{an}的公比为q, 由题意得2(12a3)=3a1+2a2, 即a1q2=3a1+2a1q. 因为数列{an}的各项均为正数,所以a1>0,且q>0,故A、B正确; 由q2-2q-3=0,解得q=3或q=-1(舍), 所以aa32=q=3,aa46=q2=9,故C错误,D正确,故选ABD.
第六章 数列
第3讲 等比数列及其前n项和
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
— 2—
1.通过生活中的实例,理解等比数列的概念和通项公式的意义;2.探索并掌握等 比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系;3.能在具 体的问题情境中,发现数列的等比关系,并解决相应的问题;4.体会等比数列与指 数函数的关系.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)由(1)可知 an-3n=(-1)n, 所以 an=3n+(-1)n, 所以 Sn=311--33n+-11·-[1--1- 1n] =3n+1-2-1n+1-2.

高三数学 第五模块 第3节等比数列的概念与性质课件 新人教A

高三数学 第五模块 第3节等比数列的概念与性质课件 新人教A

(1)证明:由 a1+S1=1 及 a1=S1 得 a1=12. 又由 an+Sn=n 及 an+1+Sn+1=n+1 得 an+1-an+an+1=1,∴2an+1=an+1. ∴2(an+1-1)=an-1,即 2bn+1=bn. ∴数列{bn}是以 b1=a1-1=-12为首项,12为公比 的等比数列.
(2)∵{anan+1}是公比为3的等比数列, ∴anan+1=3an-1an,即an+1=3an-1, ∴ a1 , a3 , a5 , … , a2n - 1 , … 与 a2 , a4 , a6 , … , a2n,…都是公比为3的等比数列. ∴a2n-1=2·3n-1,a2n=3·3n-1, ∴bn=a2n-1+a2n=5·3n-1.
解:要确定一个等比数列,只需求出它的首项a1和公 比q即可.利用已知条件,可得首项a1和公比q的两个方程, 解之可得数列{an},从而S8可求得.
设数列{an}的首项为a1,公比为q,由已知条件得: a6-a4=a1q3(q2-1)=24.(*) a3·a5=(a1q3)2=64.∴a1q3=±8.
()
A.2
7 B.3
8 C.3
D.3
思路分析:观察题目的结构特点知,本题涉及S3,S6, S9之间的关系,可考虑用等比数列的前n项和的性质求解.
解析:根据等比数列的性质知,若 Sn 是等比数列 的前 n 项和(Sk≠0),则 Sk,S2k-Sk,S3k-S2k(k∈N*)也 成等比数列,于是,S3,S6-S3,S9-S6 成等比数列.
考 纲 要 求
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等比关系,并 能用有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.

2025届高三数学等比数列-一轮复习

2025届高三数学等比数列-一轮复习

2025届高三数学等比数列-一轮复习1.等比数列的概念(1)等比数列:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比常用字母q 表示(显然q ≠0),定义的表达式为a na n -1=q (n ∈N *,n ≥2)或a n+1a n =q (n ∈N *).(2)等比中项:若三个数a ,G ,b 成等比数列,则G 叫做a 与b 的等比中项,且有 .2.等比数列的有关公式(1)通项公式:a n = (n ∈N *);(2)前n 项和公式:S n ={na 1,q =1, ,q ≠1或S n ={na 1,q =1, ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m q n -m (n ,m ∈N *).(2)若数列{a n }为等比数列,且m +n =p +q ,则a m a n =a p a q (m ,n ,p ,q ∈N *).(3)若数列{a n }是等比数列,公比为q ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公比为q m 的等比数列.(4)如果等比数列{a n }的前n 项和为S n ,那么(S 2n -S n )2=S n (S 3n -S 2n ),如果公比q ≠-1或虽q =-1但n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列.不能认为在任何等比数列中,都有S n ,S 2n -S n ,S 3n -S 2n 成等比数列(5)当等比数列{a n }的项数为偶数,公比为q 时,S 偶S 奇=q . 4、等比数列的单调性 当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列;当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列;当q =1时,{a n }是常数列;当q <0时,{a n }是摆动数列.常用结论 1.若数列{a n },{b n }为等比数列,则{λa n }(λ≠0),{|a n |},⎭⎬⎫⎩⎨⎧n a 1,{a n 2},{a n b n },⎭⎬⎫⎩⎨⎧n n a b 仍为等比数列.2.若数列{a n }为公比不为1的等比数列,其前n 项和S n =A ·q n +B (A ≠0,B ≠0,q ≠0,q ≠1),则必有A +B =0;反之,若某一非常数列的前n 项和S n =A ·q n -A (A ≠0,q ≠0,q ≠1),则数列{a n }必为等比数列.3.若非零数列{a n }的前n 项和为S n ,且S n =ka n +b (k ≠0,k ≠1),则数列{a n }必为等比数列.题型一等比数列基本量的运算【例1】设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=().A.31B.32C.63D.64【对点1】在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.【对点2】已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【对点3】若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+......+ln a20=.【对点4】等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=7,4 ,则a8=.S6=634题型二等比数列的性质【例2】(1)记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-120(2)已知正项等比数列{a n}共有2n项,它的所有项的和是奇数项的和的3倍,则公比q=.【对点1】已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=_________. 【对点2】记S n为等比数列{a n}的前n项和,且1Sλ,则=5a=n⋅3-n___________.【对点3】记S n 为等比数列{a n }的前n 项和,若6845,,3a a a 成等差数列,则=+6510a a S ___________. 【对点4】记S n 为等比数列{a n }的前n 项和,且436=S S ,则=69S S ___________.题型三等比数列的判定与证明【例3】已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1) 证明:{a n +b n }是等比数列【对点1】在数列{a n }中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列{a n +n }为等比数列,并求出a n ;【对点2】已知数列{a n }满足a 1=1,a n+1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;。

高三数学等比数列及其前n项和

高三数学等比数列及其前n项和

考点三
例 2
等比数列的性质及应用
(1)在各项不为零的等差数列{an}中,2a2 019-
b2 020=a2 020,则 log2(b2 019·b2 021)的值为(
+2a2
)
A.1 B.2 C.4 D.8
解析:(1)因为在等差数列{an}中,a2 019+a2 021=2a2 020,
an+2k,an+3k,…为等比数列,公比为qk.
(5)在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且
q≠-1).
释疑
(1)任意两个实数不一定都有等比中项,只有同号的两个非零实数才有等比中项.

n
n
(2)an= ·q ,当 q>0 且 q≠1 时,可以看成函数 y=cq ,其是一个不为 0 的常数与指数
(- ) -
na1;当 q≠1 时,{an}的前 n 项和 Sn=
-
=
-
.
考点二
等比数列的判定与证明
例1 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a2,a3的值;
(1)解:因为a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),
第3节
等比数列及其前n项和
课程标准要求
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解

.
4.了解等比数列与指数函数的关系.

高三数学 等差数列、等比数列 (2)

高三数学 等差数列、等比数列 (2)

这样就可以运用解法1和解法2的方法了(下解略).
解法3:由 an+1=4an+3
an+2=4an+1+3

①得
②-①得:an+2-an+1=4(an+1-an).则数列{an+1-an}是 首项为a2 -a1 =(4 a1+3)-a1= 3 a1+3=9,公比 为4的等比数列.
所以, an-an-1=9×4n-2 所以,an=(an-an-1)+ (an-1-an-2)+ …+(a2-a1)+a1 =9×4n-2+ 9×4n-3 +…+ 9×40+2
例4.已知数列an, a1
1 2
, an
3an1
3n1, 求an.
解:两边同除以3n得:
an 3n
an1 3n1
1 3
,即
:
an 3n
an1 3n1
1. 3
an 3n
是以
a1 3
1 为首项,
6
公差为
1 的等差数列 . 3
an 1 (n 1)( 1) 1 1 n.即
3n 6
3 23
an
1 3n 2
n 3n1.
例5.已知数列an, a1 3, an 4an1 5 3n , 求an.
解法1:两边同除以3n得:
an 3n
4 3
an1 3n1
5.
令 an 3n
An ,则得An
4 3
An1 5.(以下用例3的方法解)
又令An
k
4 3
( An1
k ),则An
4 3
An1
an
4an1

3 第3讲 等比数列及其前n项和

3 第3讲 等比数列及其前n项和

第3讲 等比数列及其前n 项和1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 4.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 5.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√ [教材衍化]1.(必修5P54A 组T8改编)在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.(必修5P51例3改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.(必修5P61A 组T1改编)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝⎛⎭⎫-12n -1=-⎝⎛⎭⎫-12n -1.答案:-⎝⎛⎭⎫-12n -1[易错纠偏](1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G=±8.答案:±82.数列{a n }的通项公式是a n =a n (a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n ,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x ,2x +2,3x +3是一个等比数列的前三项,则x 的值为________. 解析:因为x ,2x +2,3x +3是一个等比数列的前三项, 所以(2x +2)2=x (3x +3), 即x 2+5x +4=0, 解得x =-1或x =-4.当x =-1时,数列的前三项为-1,0,0, 不是等比数列,舍去. 答案:-4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,难度为中、低档题.主要命题角度有:(1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.角度一 求首项a 1、公比q 或项数n(1)已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13C.19D .-19(2)设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 【解析】 (1)设等比数列{a n }的公比为q ,由S 3=a 2+10a 1,得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9, 又a 5=a 1q 4=9,所以a 1=19.(2)当q ≠1时,a 1(1-q 3)1-q =3a 1q 2,解得q =1(舍去)或-12.当q =1时,S 3=a 1+a 2+a 3=3a 3也成立.【答案】 (1)C (2)1或-12角度二 求通项或特定项已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0,则a n =________.【解析】 由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.【答案】12n-1角度三 求前n 项和(2020·温州模拟)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.【解析】 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n -1.【答案】 2n -1解决等比数列有关问题的三种常见思想方法(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.(3)整体思想:应用等比数列前n 项和公式时,常把q n 或a 11-q当成整体进行求解.1.设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k =( )A .4B .5C .6D .7解析:选C.设等比数列{a n }的公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{a n }的各项均为正数,所以q =2.而S k =1-2k1-2=63,所以2k -1=63, 解得k =6.2.(2020·绍兴市柯桥区高三期中考试)已知正数数列{a n }的前n 项和S n 满足:S n 和2的等比中项等于a n 和2的等差中项,则a 1=________,S n =________.解析:由题意知a n +22=2S n ,平方可得S n =(a n +2)28,①由a 1=S 1得a 1+22=2a 1,从而可解得a 1=2.又由①式得S n -1=(a n -1+2)28(n ≥2),②①-②可得a n =S n -S n -1=(a n +2)28-(a n -1+2)28(n ≥2),整理得(a n +a n -1)(a n -a n -1-4)=0,因为数列{a n }的各项都是正数, 所以a n -a n -1-4=0,即a n -a n -1=4.故数列{a n }是以2为首项4为公差的等差数列, 所以S n =2n +n (n -1)2×4=2n 2.当n =1时,S 1=a 1=2. 故S n =2n 2. 答案:2 2n 2等比数列的判定与证明(1)已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3a 5=4,则下列说法正确的是( )A .{a n }是单调递减数列B .{S n }是单调递减数列C .{a 2n }是单调递减数列D .{S 2n }是单调递减数列(2)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.①求a 4的值;②证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.【解】 (1)选C.由于{a n }是等比数列,则a 3a 5=a 24=4,又a 2=12,则a 4>0,a 4=2,q 2=16,当q =-66时,{a n }和{S n }不具有单调性,选项A 和B 错误;a 2n =a 2q 2n -2=12×⎝⎛⎭⎫16n -1单调递减,选项C 正确;当q =-66时,{S 2n }不具有单调性,选项D 错误. (2)①当n =2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1, 解得a 4=78.②证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2),得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2).因为 4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n =4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n=2a n +1-a n2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(变问法)在本例(2)条件下,求数列{a n }的通项公式. 解:由本例(2)的②知,a n +1-12a n =⎝⎛⎭⎫12n -1, 即a n +1⎝⎛⎭⎫12n +1-a n⎝⎛⎭⎫12n =4. 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n⎝⎛⎭⎫12n =2+4(n -1)=4n -2,即a n =(2n -1)·⎝⎛⎭⎫12n -1,所以数列{a n }的通项公式为a n =(2n -1)·⎝⎛⎭⎫12n -1.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.(2020·瑞安市龙翔中学高三月考)各项为正的数列{a n }满足a 1=12,a n +1=a 2nλ+a n (n ∈N *). (1)取λ=a n +1,求证:数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列,并求其公比; (2)取λ=2时令b n =1a n +2,记数列{b n }的前n 项和为S n ,数列{b n }的前n 项之积为T n ,求证:对任意正整数n ,2n +1T n +S n 为定值.解:(1)由λ=a n +1,得a n +1=a 2na n +1+a n ,所以a 2n +1-a n +1a n -a 2n =0.两边同除a 2n 可得:⎝ ⎛⎭⎪⎫a n +1a n 2-a n +1a n -1=0, 解得a n +1a n =1±52.因为a n >0,所以a n +1a n =1+52为常数,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是等比数列,公比为1+52.(2)证明:当λ=2时,a n +1=a 2n2+a n ,得2a n +1=a n (a n +2), 所以b n =1a n +2=12·a na n +1.所以T n =b 1·b 2…b n =⎝⎛⎭⎫12·a 1a 2⎝⎛⎭⎫12·a 2a 3…⎝ ⎛⎭⎪⎫12·a n a n +1=⎝⎛⎭⎫12n a 1a n +1=⎝⎛⎭⎫12n +11a n +1, 又b n =12·a n a n +1=a 2n2a n a n +1=2a n +1-2a n 2a n a n +1=1a n -1a n +1,所以S n =b 1+b 2+…+b n =1a 1-1a n +1=2-1a n +1,故2n +1T n +S n =2n +1·⎝⎛⎭⎫12n +11a n +1+2-1a n +1=2为定值.等比数列的性质(高频考点)等比数列的性质是高考的热点,多以选择题、填空题的形式出现,其难度为中等.主要命题角度有:(1)等比数列项的性质的应用; (2)等比数列前n 项和的性质的应用. 角度一 等比数列项的性质的应用(1)在等比数列{a n }中,a 3,a 15是方程x 2-6x +8=0的根,则a 1a 17a 9的值为( )A .2 2B .4C .-22或2 2D .-4或4(2)(2020·温州八校联考)数列{a n }的通项公式为a n =2n -1,则使不等式a 21+a 22+…+a 2n <5×2n+1成立的n 的最大值为( )A .2B .3C .4D .5【解析】 (1)因为a 3,a 15是方程x 2-6x +8=0的根, 所以a 3a 15=8,a 3+a 15=6,易知a 3,a 15均为正,由等比数列的性质知,a 1a 17=a 29=a 3a 15=8, 所以a 9=22,a 1a 17a 9=22,故选A. (2)因为a n =2n -1,a 2n =4n -1, 所以a 21+a 22+…+a 2n =1×(1-4n )1-4=13(4n -1). 因为a 21+a 22+…+a 2n <5×2n +1, 所以13(4n -1)<5×2n +1,因为2n (2n -30)<1,对n 进行赋值,可知n 的最大值为4. 【答案】 (1)A (2)C角度二 等比数列前n 项和的性质的应用等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) A .1 B .2 C .3D .5【解析】 法一:因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)·(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2.同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项, 所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15), 故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3. 法二:在等比数列{a n }中, 得q 4=a 5+a 7a 1+a 3=12, 所以a 9+a 11+a 13+a 15=q 8(a 1+a 3+a 5+a 7)=14(8+4)=3.【答案】 C等比数列常见性质的应用等比数列性质的应用可以分为三类: (1)通项公式的变形; (2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A.因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.3.(2020·杭州学军中学高三月考)已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +ma m=a n ,则a 3=________;{a n }的前n 项和S n =________. 解析:因为a n +ma m =a n ,所以a n +m =a n ·a m ,所以a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8; 令m =1,则有a n +1=a n ·a 1=2a n ,所以数列{a n }是首项为a 1=2,公比q =2的等比数列, 所以S n =2(1-2n )1-2=2n +1-2.答案:8 2n +1-2思想方法系列4 分类讨论思想求解数列问题等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .【解】 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d , 解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1,得S n =n (a 1+a n )2=n (n +2),则c n =⎩⎨⎧2n (n +2),n 为奇数,2n -1,n 为偶数,即c n=⎩⎨⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n )1-4=2n 2n +1+23(4n -1).分类讨论思想在数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.1.(2020·宁波模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2解析:选A.法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.2.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0)∪[1,+∞) C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立; 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).[基础题组练]1.(2020·宁波质检)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:选B.在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.2.(2020·衢州模拟)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12B.1716 C .2D .17解析:选B.设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.3.(2020·瑞安四校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:选C.由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.4.(2020·丽水市高考数学模拟)设等比数列{a n }的前n 项和为S n ,下列结论一定成立的是( )A .a 1+a 3≥2a 2B .a 1+a 3≤2a 2C .a 1S 3>0D .a 1S 3<0解析:选C.选项A ,数列-1,1,-1为等比数列,但a 1+a 3=-2<2a 2=2,故A 错误;选项B ,数列1,-1,1为等比数列,但a 1+a 3=2>2a 2=-2,故B 错误;选项D ,数列1,-1,1为等比数列,但a 1S 3=1>0,故D 错误;对于选项C ,a 1(a 1+a 2+a 3)=a 1(a 1+a 1q +a 1q 2)=a 21(1+q +q 2),因为等比数列的项不为0,故a 21>0,而1+q +q 2=⎝⎛⎭⎫q +122+34>0,故a 21(1+q +q 2)>0,故C 正确.5.(2020·郑州市第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A .(13,+∞)B .[13,+∞)C .(23,+∞)D .[23,+∞)解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n 22(n -1)2=2n2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12(1-14n )1-14=23(1-14n )<23,因此实数t 的取值范围是[23,+∞),选D.6.(2020·江南十校联考)设数列{a n }是各项均为正数的等比数列,T n 是{a n }的前n 项之积,a 2=27,a 3a 6a 9=127,则当T n 最大时,n 的值为( )A .5或6B .6C .5D .4或5解析:选D.数列{a n }是各项均为正数的等比数列,因为a 3a 6a 9=127,所以a 36=127,所以a 6=13.因为a 2=27,所以q 4=a 6a 2=1327=181,所以q =13.所以a n =a 2q n -2=27×⎝⎛⎭⎫13n -2=⎝⎛⎭⎫13n -5.令a n =⎝⎛⎭⎫13n -5=1,解得n =5,则当T n 最大时,n 的值为4或5.7.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设数列{a n }的公比为q ,由a 25=a 10,得(a 1q 4)2=a 1·q 9,即a 1=q .又由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0,解得q =2⎝⎛⎭⎫q =12舍去,所以a n =a 1·q n -1=2n .答案:2n8.已知等比数列{a n }的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为________.解析:由题意得a 1+a 3+…=85,a 2+a 4+…=170, 所以数列{a n }的公比q =2,由数列{a n }的前n 项和公式S n =a 1(1-q n )1-q ,得85+170=1-2n1-2,解得n =8.答案:89.(2020·温州市十校联合体期初)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:设等比数列{a n }的公比为q ,前n 项和为S n ,且S n +1,S n ,S n +2成等差数列, 则2S n =S n +1+S n +2,若q =1,则S n =na 1,等式显然不成立,若q ≠1,则为2·a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q ,故2q n =q n +1+q n +2, 即q 2+q -2=0, 因此q =-2. 答案:-210.(2020·台州市高考模拟)已知数列{a n }的前m (m ≥4)项是公差为2的等差数列,从第m -1项起,a m -1,a m ,a m +1,…成公比为2的等比数列.若a 1=-2,则m =________,{a n }的前6项和S 6=________.解析:由a 1=-2,公差d =2,得a m -1=-2+2(m -2)=2m -6, a m =-2+2(m -1)=2m -4,则a ma m -1=2m -42m -6=2,所以m =4;所以S 6=a 1+a 2+a 3+a 4+a 5+a 6 =-2+0+2+4+8+16=28. 答案:4 2811.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1. (2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.12.(2020·瑞安市龙翔中学高三月考)已知数列{a n }是首项为2的等差数列,其前n 项和S n 满足4S n =a n ·a n +1.数列{b n }是以12为首项的等比数列,且b 1b 2b 3=164.(1)求数列{a n },{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,若对任意n ∈N *不等式1S 1+1S 2+…+1S n ≥14λ-12T n 恒成立,求λ的取值范围.解:(1)设等差数列{a n }的公差为d ,由题意得4a 1=a 1(a 1+d ),解得d =2,所以a n =2n ,由b 1b 2b 3=b 32=164⇒b 2=14, 从而公比q =b 2b 1=12,所以b n =⎝⎛⎭⎫12n.(2)由(1)知1S n =1n (n +1)=1n -1n +1,所以1S 1+1S 2+…+1S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又T n =12⎝⎛⎭⎫1-12n 1-12=1-12n ,所以对任意n ∈N *,1S 1+1S 2+…+1S n ≥14λ-12T n等价于32-1n +1-12n +1≥14λ,因为32-1n +1-12n +1对n ∈N *递增,所以⎝ ⎛⎭⎪⎫32-1n +1-12n +1min =32-12-14=34,所以34≥14λ⇒λ≤3,即λ的取值范围为(-∞,3].[综合题组练]1.(2020·丽水模拟)已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( )A .4B .5C .6D .7解析:选C.因为{a n }是各项均为正数的等比数列且a 2a 4=a 3,所以a 23=a 3,所以a 3=1.又因为q >1,所以a 1<a 2<1,a n >1(n >3),所以T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6,故选C.2.(2020·温州十校联合体期初)已知数列{a n }是等差数列,数列{b n }是等比数列(b n >0).( )A .若b 7≤a 6,则b 4+b 10≥a 3+a 9B .若b 7≤a 6,则b 4+b 10≤a 3+a 9C .若b 6≥a 7,则b 3+b 9≥a 4+a 10D .若b 6≤a 7,则b 3+b 9≤a 4+a 10解析:选C.因为数列{a n }是等差数列,数列{b n }是等比数列(b n >0), 在A 中,因为b 7≤a 6,b 4+b 10≥2b 4b 10=2b 7,a 3+a 9=2a 6,所以b 4+b 10≥a 3+a 9不一定成立,故A 错误; 在B 中,因为b 7≤a 6,b 4+b 10≥2b 4b 10=2b 7,a 3+a 9=2a 6,所以b 4+b 10≤a 3+a 9不一定成立,故B 错误; 在C 中,因为b 6≥a 7,所以b 3+b 9≥2b 3·b 9=2b 6,a 4+a 10=2a 7,所以b 3+b 9≥a 4+a 10,故C 正确;在D 中,因为b 6≤a 7,所以b 3+b 9≥2b 3·b 9=2b 6,a 4+a 10=2a 7,所以b 3+b 9≤a 4+a 10不一定成立,故D 错误.3.已知直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *,数列{a n }满足:a 1=1,a n +1=14|A n B n |2,则数列{a n }的通项公式为________.解析:圆C n 的圆心到直线l n 的距离d n =|2n |2=n ,半径r n =2a n +n ,故a n +1=14|A n B n |2=r 2n -d 2n =2a n ,故数列{a n }是以1为首项,2为公比的等比数列,故a n =2n -1(n ∈N *).答案:a n =2n -1(n ∈N *)4.设数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m ,n 都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为________.解析:因为a m +n =a m ·a n ,令m =1得a n +1=a 1·a n ,即a n +1a n =a 1=13,所以{a n }为等比数列,所以a n =13n ,所以S n =13⎝⎛⎭⎫1-13n 1-13=12⎝⎛⎭⎫1-13n <12,所以a ≥12.故a 的最小值为12. 答案:125.(2020·温州瑞安七中高考模拟)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,…(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.解:(1)因为对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列,于是a n =1+(n -1)×4=4n -3. (2)证明:(必要性):若数列{a n }是公比为q 的等比数列,对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n =q ,C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q ,即B (n )A (n )=C (n )B (n )=q ,所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列;(充分性):若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ),于是C (n )-B (n )=q [B (n )-A (n )],即a n +2-a 2= q (a n +1-a 1),亦即a n +2-qa n +1=a 2-qa 1. 由n =1时,B (1)=qA (1), 即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.6.(2020·杭州市七校高三联考)已知等比数列{a n }的公比为q (0<q <1),且a 2+a 5=98,a 3a4=18. (1)求数列{a n }的通项公式;(2)若b n =a n ·(log 2a n ),求{b n }的前n 项和T n ;(3)设该等比数列{a n }的前n 项和为S n ,正整数m ,n 满足S n -m S n +1-m <12,求出所有符合条件的m ,n 的值.解:(1)由等比数列的性质可知a 3a 4=a 2a 5=18,a 2+a 5=98,所以a 2,a 5是方程x 2-98x +18=0的两根,由题意可知a 2>a 5, 解得a 2=1,a 5=18,由等比数列的性质可知a 5=a 2·q 3,解得q =12,a n =a 2·⎝⎛⎭⎫12n -2=⎝⎛⎭⎫12n -2,所以数列{a n }的通项公式为a n =⎝⎛⎭⎫12n -2.(2)由(1)可知b n =a n ·(log 2a n )=2-n 2n -2,{b n }的前n 项和T n =b 1+b 2+b 3+…+b n=2+0+⎝⎛⎭⎫-12+⎝⎛⎭⎫-222+⎝⎛⎭⎫-323+…+2-n 2n -2, 12T n =1+0+⎝⎛⎭⎫-122+⎝⎛⎭⎫-223+⎝⎛⎭⎫-324+…+2-n 2n -1, 两式相减可得12T n =1-⎝ ⎛⎭⎪⎫12+14+18+…+12n -2-2-n 2n -1=1-12-12n -11-12-2-n 2n -1 =1-⎝ ⎛⎭⎪⎫1-12n -2-2-n 2n -1=12n -2-2-n 2n -1 =n2n -1, 所以T n =n 2n -2. (3)因为S n =4⎝⎛⎭⎫1-12n , 由S n -mS n +1-m <12⇒2<2n (4-m )<6, 2n (4-m )为偶数,因此只能取2n (4-m )=4,所以有⎩⎪⎨⎪⎧2n =24-m =2或⎩⎪⎨⎪⎧2n =44-m =1⇒⎩⎪⎨⎪⎧n =1m =2或⎩⎪⎨⎪⎧n =2m =3.。

高三数学知识点之数列

高三数学知识点之数列

高三数学知识点之数列数列是数学中常见的概念,也是高三数学中的重点内容之一。

在本文中,我将介绍数列的定义、分类和常见性质,帮助读者更好地理解和应用数列知识。

一、数列的定义数列是由一系列按照一定规律排列的数字组成的序列。

通常用${a_1}$, ${a_2}$, ${a_3}$, ... 表示数列的元素,其中 ${a_1}$ 表示第一个元素,${a_2}$ 表示第二个元素,依此类推。

数列可以有无限个元素,也可以只有有限个元素。

二、数列的分类1.等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之差为常数 $d$,则有以下关系:${a_2}$ - ${a_1}$ = ${a_3}$ - ${a_2}$ = $d$例如,2, 5, 8, 11, ... 就是一个公差为3的等差数列。

2.等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之比为常数 $q$,则有以下关系:${a_2}$ / ${a_1}$ = ${a_3}$ / ${a_2}$ = $q$例如,1, 2, 4, 8, ... 就是一个公比为2的等比数列。

3.递推数列递推数列是指数列中的每一项都可以通过前一项计算得到的数列。

设数列为 ${a_1}$, ${a_2}$, ${a_3}$, ...,且满足以下递推关系:${a_{n+1}}$ = $f({a_n})$其中 $f(x)$ 表示一个确定的函数。

递推数列可以是等差数列或等比数列,也可以是其他类型的数列。

三、数列的常见性质1.通项公式对于某些特定的数列,可以通过确定的方法得到数列的通项公式,即通过序号 $n$ 直接计算第 $n$ 项 ${a_n}$ 的公式。

通项公式的推导可以通过观察数列的规律、利用递推关系或解递推方程等方法得到。

2.前 n 项和前 n 项和是指数列前 n 项的和,通常用 $S_n$ 表示。

等比数列及其前n项和讲义-高三数学一轮复习

等比数列及其前n项和讲义-高三数学一轮复习

等比数列及其前n项和一.学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.体会等比数列与指数函数的关系.二.知识整合1.等比数列的有关概念等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q≠0)表示,符号表示为a n+1a n=q(n∈N∗)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时提醒:由a n+1=qa n,q≠0,并不能立即断定{a n}为等比数列,还要验证a1≠0.2.等比数列的有关公式通项公式a n=;推广:a n=a m⋅q n−m(m,n∈N∗)前n项和公式S n={ ,q=1,q≠1提醒:在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情况而导致解题失误.知识拓展:(1)当q≠0,q≠1时,S n=k−k⋅q n(k≠0)是{a n}成等比数列的充要条件,此时k=a11−q.(2)等比数列的单调性当{a 1>0,q >1 或{a 1<0,0<q <1时,等比数列{a n } 是递增数列. 当{a 1>0,0<q <1 或{a 1<0,q >1时,等比数列{a n } 是递减数列. 当q =1 时,等比数列{a n } 是常数列.当q =−1 时,等比数列{a n } 是摆动数列.三.典型例题考点一 等比数列基本量的运算例1(1) 已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( )A. 14B. 12C. 6D. 3(2) 已知等比数列{a n } 的前n 项和为S n ,a 1=1 ,a 5=8a 2 ,若S n =31 ,则n = .方法感悟:等比数列基本量运算的解题策略(1)方程思想:等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1 ,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1 和q ,问题便可迎刃而解.(2)分类讨论思想:等比数列{a n } 的前n 项和公式涉及对公比q 的分类讨论,当q =1 时,{a n } 的前n 项和S n =na 1 ;当q ≠1 时,{a n } 的前n 项和S n =a 1(1−q n )1−q =a 1−a n q 1−q .考点二 等比数列的判定与证明例2已知数列{a n } 的首项a 1=12 ,且满足a n+1=a n3−2a n (n ∈N ∗) .(1) 证明:{1a n −1} 是等比数列,并求数列{a n } 的通项公式;(2) 记b n =n (1a n −1) ,求{b n } 的前n 项和S n .变式:已知各项都为正数的数列{a n } 满足a n+1+a n =3⋅2n ,a 1=1 .(1) 若b n =a n −2n ,求证:{b n } 是等比数列;(2) 求数列{a n } 的通项公式.方法感悟:判定等比数列的四种常用方法定义法 若a n+1a n =q (q 为非零常数,n ∈N ∗ )或a n a n−1=q (q为非零常数,且n ≥2 ,n ∈N ∗ ),则{a n } 是等比数列等比中项法 在数列{a n } 中,若a n ≠0 且a n+12=a n ⋅a n+2(n ∈N ∗) ,则{a n } 是等比数列通项公式法 若数列{a n } 的通项公式可以写成a n =c ⋅q n (c ,q均是不为0的常数,n ∈N ∗ )的形式,则{a n } 是等比数列前n 项和公式法 若数列{a n } 的前n 项和S n =k ⋅q n −k (k 为常数,且k ≠0 ,q ≠0 ,q ≠1 ),则{a n } 是等比数列五.达标练习1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =-3,ac =9B .b =3,ac =9C .b =-3,ac =-9D .b =3,ac =-92.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6= ( )A .14B .12C .6D .33.记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -14.在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和.若a 6=64,则S 7的值为( )A .126B .256C .255D .2545. 已知正项等比数列{a n}的首项为1,且4a5,a3,2a4成等差数列,则{a n}的前6项和为( )A. 31B. 3132C. 6332D. 636. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10= 215−25,则k=( )A. 2B. 3C. 4D. 57. 已知等比数列{a n},其前n项和为S n.若a2=4,S3=14,则a3=.8. 已知等比数列{a n}的公比为−1,前n项和为S n,若{S n−1}也是等比数列,则a1=.9.设等比数列{a n}满足a1+a2=4,a3−a1=8. 记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,则m=.10.已知数列{a n}的前n项和为S n,且满足2S n=−a n+n(n∈N∗). (1)证明:数列{a n−12}为等比数列;(2)求数列{a n−1}的前n项和T n.。

浙江2020版高考数学第七章数列与数学归纳法7.3等比数列及其前n项和课件

浙江2020版高考数学第七章数列与数学归纳法7.3等比数列及其前n项和课件

1
2
3
4
5
6
题组三 易错自纠
a1-a2 4.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则 的值 b2 1 -2 为____.
解析 ∵1,a1,a2,4成等差数列,
∴3(a2-a1)=4-1,∴a2-a1=1.
又∵1,b1,b2,b3,4成等比数列,设其公比为q,
2 则 b2 = 1 × 4 = 4 ,且 b = 1 × q >0,∴b2=2, 2 2
高频小考点
GAOPINXIAOKAODIAN
等差数列与等比数列
关于等差(比)数列的基本运算在高考试题中频繁出现,其实质就是解方程 或方程组,需要认真计算,灵活处理已知条件.
例1 A.34
a1=1, q= 2,
所以a5=a1q4=4,故选B.
2.(2018· 全国Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式; 解 设{an}的公比为q,由题设得an=qn-1.
由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1(n∈N*).
解析 由等比数列的性质及题意知a1a9=a3a7=2a3a6,
5 a 1 - 2 1 a7 所以 q=a =2,由 S5= =-62,可得 a1=-2. 6 1-2
S3 8 (2)已知等比数列{an}的前 n 项和为 Sn,且S =9,则 6 an-an-1 n∈N).
an+1
1 -2 =_____( n≥2,且
1
2
3
4
5
6
6.一种专门占据内存的计算机病毒开机时占据内存 1 MB,然后每3秒自身复 39 秒,该病毒占据内存8 制一次,复制后所占内存是原来的2倍,那么开机____

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。

掌握数列的相关知识点是高三学生成功应对数学考试的关键。

本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。

一、等差数列等差数列是高中数学中最常见的数列类型之一。

等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。

1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。

二、等比数列等比数列是另一种常见的数列类型。

等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。

1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。

对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。

2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。

有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。

3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。

如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。

四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。

第03讲 等比数列及其前n项和 (精讲)(解析版)-2023年高考数学一轮复习

第03讲 等比数列及其前n项和 (精讲)(解析版)-2023年高考数学一轮复习

第03讲 等比数列及其前n 项和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 题型一:等比数列基本量的运算 题型二:等比数列的判断与证明 题型三:等比数列的性质及其综合应用角度1:等比数列的性质角度2:等比数列与等差数列的综合问题第四部分:高考真题感悟1.等比数列的概念 (1)等比数列的定义一般地,如果一个数列从2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0q ≠)表示.数学语言表达:1(2)nn a q n a -=≥,q 为常数,0q ≠. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔2G ab =. 2.等比数列的有关公式(1)若等比数列{}n a 的首项为1a ,公比是q ,则其通项公式为11n n a a q -=;可推广为n m n m a a q -=.(2)等比数列的前n 项和公式:当1q =时,1n S na =;当1q ≠时,11(1)11n n n a a q a q S q q--==--.3.等比数列的性质设数列{}n a 是等比数列,n S 是其前n 项和.(1)若m n p q +=+,则m n p q a a a a =,其中,,,m n p q N *∈.特别地,若2m n p +=,则2m n p a a a =,其中,,m n p N *∈.(2)相隔等距离的项组成的数列仍是等比数列,即ka ,k ma +,2k ma +,…仍是等比数列,公比为mq(,k m N *∈).(3)若数列{}n a ,{}n b 是两个项数相同的等比数列,则数列{}n ba ,{}n n pa qb ⋅和{}nnpa qb (其中b ,p ,q 是非零常数)也是等比数列.1.(2022·宁夏·平罗中学高一期中(理))已知2、x 、8成等比数列,则x 的值为( ) A .4 B .4- C .4± D .5【答案】C解:因为2、x 、8成等比数列, 所以228x =⨯,解得4x =±; 故选:C2.(2022·辽宁·辽师大附中高二阶段练习)已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A .420只 B .520只C . 20554-只D . 21443-只【答案】B第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n nn a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205 故选:B .3.(2022·北京·昌平一中高二期中)2与8的等比中项是( ) A .4 B .5 C .4± D .5±【答案】C设a 为2与8的等比中项,则22816a =⨯=,解得:4a =±. 故选:C.4.(2022·湖北·蕲春县实验高级中学高二期中)已知2是2m 与n 的等差中项,1是m 与2n 的等比中项,则12m n+=( ) A .2 B .4 C .6 D .8【答案】D由题可知24m n +=,21mn =,所以1228m n m n mn++==. 故选:D .5.(2022·全国·高二单元测试)在下列的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x y +的值为( ) 2 4 1 2 x yB .3C .4D .5【答案】A 由题意知表格为 2 4 6 12 3 12132故3222x y +=+=. 故选:A题型一:等比数列基本量的运算例题1.(2022·辽宁·沈阳市第八十三中学高二阶段练习)若等比数列{}n a 满足123a a +=,4581a a +=,则数列{}n a 的公比为( )A .﹣2B .2C .﹣3D .3【答案】D设等比数列{an }的公比为q ,由a 4+a 5=(a 1+a 3)q 3,得3q 3=81,解得q =3, 故选:D .例题2.(2022·江西·上饶市第一中学模拟预测(文))在正项等比数列{}n a 中,1236a a a a =,且416a =,则10a =( ) A .1024 B .960 C .768 D .512【答案】A解:依题意设公比为q ,且10a >、0q >,由1236a a a a =,则33511a q a q =,即221a q =,所以1a q =,因为416a =,所以34116a q q ==,所以2q,所以2n n a =,所以101021024a ==;故选:A例题3.(2022·辽宁·鞍山市华育高级中学高二期中)在等比数列{}n a 中,241a a +=,352a a +=,则公比q =( )A .12 B .2 C .1 D .2-【答案】B设等比数列{}n a 的公比为q ,由()2424351,2+=+=+=a a a a a a q ,解得2q .故选:B.例题4.(2022·全国·模拟预测)已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=. (1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.【答案】(1)3nn a =或9n a =;(2)答案见解析.(1)因为{}n a 为等比数列,所以213229a a a a ==,又0n a ≠,所以29a =.设{}n a 的公比为()0q q >,因为12312323aa a ++=, 所以12329993q q++=,化简得24309q q q-+=,解得3q =或1q =. 当3q =时,2933n nn a -=⨯=.当1q =时,9n a =.(2)当3q =时,()1113312n n n a q S q+--==-. 由1n n S na +≥,得23332n n n +-≥⋅,化简得()9233nn -⨯≥.易知,当5n ≥时,不等式显然不成立,检验可知,满足不等式的正整数n 的所有取值为1,2,3,4.当1q =时,9n S n =,由1n n S na +≥,得()919n n +≥,此时n 的取值为一切正整数. 例题5.(2022·北京二中高二学业考试)已知数列{}n a 是等比数列,142,16a a ==, (1)求数列{}n a 的通项公式及其前n 项和n S ;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式及其前n 项和n T .【答案】(1)2n n a =,122n n S +=-.(2)1228n b n =-,2622n T n n =-.(1)设数列{}n a 的公比为q ,则41411682a qa -===,得2q ,所以111222n n nn a a q --==⨯=.11(1)2(12)22112n n n n a q S q +--===---.(2)设等差数列{}n b 的公差为d , 33328b a ===,555232b a ===,则5332812532b b d --===-, 所以3(3)812(3)1228n b b n d n n =+-=+-=-,2(161228)6222n n n T n n -+-==-. 方法总结解决等比数列基本量运算的思想方法(1)方程思想:等比数列的基本量为首项1a 和公比q ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等比数列中包含1a ,q ,n ,n a ,n S 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用1a ,q 表示,寻求两者间的联系,整体代换即可求解.(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要对q 分1q =和1q ≠两种情况进行讨论.题型二:等比数列的判断与证明例题1.(2022·辽宁·抚顺一中高二阶段练习)已知数列{}n a 的前n 项和为n S ,且342n n S a =-. (1)求{}n a 的通项公式;【答案】(1)212n n a -=(1)当1n =时,1113423S a a =-=,解得12a =. 当2n ≥时,()113334242n n n n n a S S a a --=-=---, 整理得14n n a a -=,所以{}n a 是以2为首项,4为公比的等比数列,故121242n n n a --=⨯=.例题2.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式; 【答案】(1)13-=n n a(1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a .例题3.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N .(1)求{}n a 的通项公式;【答案】(1)3n n a =(1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去),令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3nn a =.证明{}n a 是等比数列 定义法1n na q a +=(n N *∈) (或者1(2)nn a q n a -=≥)等差中项法211(2)n n n a a a n -+=⋅≥判断{}n a 是等比数列{}n a 的通项关于n 的指数函数1n n a cq -=(0c ≠,0q ≠){}n a 的前n 项和 n n S kq k =-(0c ≠,0q ≠,1q ≠)题型三:等比数列的性质及其综合应用角度1:等比数列的性质例题1.(2022·宁夏·平罗中学高一期中(文))已知{}n a 是等比数列,若0n a >,且243546225a a a a a a ++=,则35a a +=( )A .10B .25C .5D .15【答案】C因为{}n a 是等比数列,243546225a a a a a a ++=,所以223355225a a a a ++=,即()23525a a +=,因为0n a >, 所以355a a +=. 故选:C例题2.(2022·江西·九江一中高二阶段练习(理))在正项等比数列{}n a 中,48128a a a =,则22214log log a a +=( ) A .2 B .1C .12D .14【答案】A由4812388a a a a ==,可得82a =则()222142214282228log log log log log log 2222a a a a a a ===+==故选:A例题3.(2022·辽宁沈阳·三模)在等比数列{}n a 中,28,a a 为方程240x x π-+=的两根,则357a a a 的值为( ) A .ππB .π-C .π±D .3π【答案】C解:在等比数列{}n a 中,因为28,a a 为方程240x x π-+=的两根,所以2258a a a π==,所以5a π=± 所以33575a a a a π==±故选:C.例题4.(2022·河南·高二阶段练习(文))在等比数列{}n a 中,2313a a =,则28a a =______.【答案】9设等比数列{}n a 的公比为q ,由2313a a =得:2211()3a q a =,则有4513a a q ==, 所以2285()9a a a ==.故答案为:9例题5.(2022·全国·高三专题练习)在正项等比数列{}n a 中,若484a a =,则22210log log a a +=______. 【答案】2()()2221022102482log log log log log 42a a a a a a +====.故答案为:2例题6.(2022·全国·高二单元测试)等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______ 【答案】52435462a a a a a a ++()222335535225a a a a a a =++=+=,又等比数列{}n a 中,0n a >, 355a a ∴+=,故答案为:5.角度2:等比数列与等差数列的综合问题例题1.(2022·浙江·杭师大附中模拟预测)数列{}n a 的前n 项和为n S ,数列{}n b 满足()N n n b na n *=∈,且数列{}n b 的前n 项和为(1)2n n S n -+.(1)求12,a a ,并求数列{}n a 的通项公式; 【答案】(1)12a =,24a =,2n n a =(2)证明见解析 (1)由题意得12323(1)2n n a a a na n S n ++++=-+,①当1n =时,12a =;当2n =时,1221222444a a S a a a +=+=++⇒=; 当2n ≥时,1231123(1)(2)2(1)n n a a a n a n S n --++++-=-+-,②①-②得,1(1)(2)2(2)222(2)n n n n n n n na n S n S S n a S a n -=---+=+-+⇒=-≥,当1n =时,12a =,也适合上式,所以()22N n n S a n *=-∈,所以1122n n S a --=-,两式相减得12(2)n n a a n -=≥,所以数列{}n a 是以2为首项,2为公比的等比数列,所以2n n a =.例题2.(2022·江西·南城县第二中学高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式; 【答案】(1)13n na =(1)当1n =时,111221a S a =-=,解得:113a =;当2n ≥时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. 例题3.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列{}n a 的前n 项和,12a =,且()()*121n n S S n +=+∈N .(1)求数列{}n a 的通项公式; 【答案】(1)2n n a =(1)解:因为()121n n S S +=+①,*n ∈N , 当2n ≥时,()121n n S S -=+②,由①②可得()()112121n n n n S S S S +--=+-+, 即12(2)n n a a n +=≥.1n =时,122a a S +==112222S a +=+,又12a =,所以24a =, 所以()*12n n a a n +=∈N ,所以12n na a +=, 所以数列{}n a 是等比数列,且首项为2,公比为2. 所以2n n a =.例题4.(2022·四川·树德中学高一竞赛)已知数列{}n a 的前n 项和为n S ,且满足11a =,()*11n n S a n N +=-∈.(1)求数列{}n a 的通项公式; 【答案】(1)12n na(1)解:由题意,数列{}n a 的前n 项和为n S ,且满足11a =,11n n S a +=-, 当2n ≥时,可得11n n S a -=-,两式相减得1n n n a a a +=-,即12n n a a +=,即12(2,)n na n n N a ++=≥∈, 当1n =时,1211S a a =-=,可得22a =,可得212a a =, 所以数列{}n a 表示首项为11a =,公比为2q的等比数列,所以数列{}n a 的通项公式为1112n n n a a q --==.例题5.(2022·福建省福州格致中学模拟预测)在①()12n n n n a T T n ++=,②23n n n S a +=这两个条件中任选一个补充在下面问题中,并解答下列题目.设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且___________. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中是否存在连续三项构成等比数列,若存在,请举例说明,若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)()1n a n n =+(2)不存在,理由见解析 (1)选①:()12nn n n a T T n++=, 即()12nn n a a n++=.∴12n na a n n+=+ 即()()()1211n n a a n n n n +=+++,∴数列()1n a n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是常数列,∴()11211n a a n n =⨯+=,故()1n a n n =+选②:因为()32n n S n a =+,所以2n ≥时,()1131n n S n a --=+, 则()()1321n n n a n a n a -=+-+,即()()111n n n a n a --=+,即111n n a n a n -+=-, 所以()114311221n n n a a n n n n +=⋅⋅⋅⋅⋅⋅=+--, 当1n =时,12a =也满足,所以()1n a n n =+.(2)假设在数列中存在连续三项n a ,1n a +,2n a +成等比数列,那么有212n n n a a a ++=成立, 即()()()()()212123n n n n n n ⎡⎤++=+++⎣⎦成立. 即()()()123n n n n ++=+成立,即20=成立,此等式显然不成立,故原命题不成立,即不存在连续三项n a ,1n a +,2n a +成等比数列例题6.(2022·全国·高二单元测试)在①102nn a a ++=,②1661n n a a +=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.问题:设n S 是数列{}n a 的前n 项和,且14a =,______,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值;若不存在,说明理由.【答案】选①:312n n a -⎛⎫=- ⎪⎝⎭,存在,最大值4;选②:12566n a n =-+,存在,最大值50;选③:217242n n n a -+=,不存在,理由见解析.选①:因为102nn a a ++=,即112n n a a +=-,14a =, 所以数列{}n a 是首项为4、公比为12-的等比数列,1311422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为14S =; 当n 为偶数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+,且81814323n n S ⎛⎫=-<< ⎪⎝⎭,综上,n S 存在最大值,且最大值为4.选②:因为1661n n a a +=-,即116n n a a +-=-,14a =,所以{}n a 是首项为4、公差为16-的等差数列,()112541666n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭,125066n -+≥,解得25n ≤,240a >,250a =, 故n S 存在最大值,且最大值为25S 或24S ,25252414255026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,n S 的最大值为50. 选③:因为18n n a a n +=+-,所以18n n a a n +-=-, 所以217a a -=-,326a a -=-,…,19n n a a n --=-, 则()()()()()2111221791171622n n n n n n n n n a a a a a a a a ----+---+-=-+-+⋅⋅⋅+-==,因为14a =,所以217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.1.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( ) A .若20222021S S >,则数列{}n a 单调递增 B .若20222021T T >,则数列{}n a 单调递增 C .若数列{}n S 单调递增,则20222021a a ≥ D .若数列{}n T 单调递增,则20222021a a ≥ 【答案】DA :由20222021S S >,得20220a >,即202110a q>,则1a 、q 取值同号, 若100a q <<,,则{}n a 不是递增数列,故A 错误;B :由20222021T T >,得20221a >,即202111a q >,则1a 、q 取值同号,若100a q <<,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a =,公比12q =,则11()122(1)1212nn nS -==--, 所以数列{}n S 为递增数列,但20222021a a <,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ->,所以1n a >, 即1q ≥,所以20222021a a ≥,故D 正确. 故选:D2.(2022·上海·高考真题)已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围. 【答案】(1)4;(2)[]0,1.(1)解:2123S a a =+=,则12a =,所以,等比数列{}n a 的公比为2112a q a ==, ()1114112n n n a q S q-⎡⎤⎛⎫∴==-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦,因此,()111lim lim lim 44412n nn n n n a q S q →∞→∞→∞-⎡⎤⎛⎫==-⋅=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦.(2)解:由已知可得()()12222122n n n n a a S n a a n -+==+≥,则2211n a a -+≥, 即()22231a n d +-≥,可得()231n d -≥-. 当1n =时,可得1d ≤;当2n ≥时,则231n -≥,所以,132d n≥-, 因为数列()1232n n ⎧⎫≥⎨⎬-⎩⎭为单调递增数列,而11032n -≤<-,故0d ≥. 综上所述,01d ≤≤.3.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933()3()444n n n a -∴=-⋅=-⋅;4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式; 【答案】(1)11()3n n a -=,3n nn b =; (1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.。

2020届高三理数一轮讲义:6.3-等比数列及其前n项和(含答案)

2020届高三理数一轮讲义:6.3-等比数列及其前n项和(含答案)

[微点提醒] 1
1.若数列{an}为等比数列,则数列{c·an}(c≠0),{|an|},{a2n}, an 也是等比数列. 2.由 an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证 a1≠0.
3.在运用等比数列的前 n 项和公式时,必须注意对 q=1 与 q≠1 分类讨论,防止
② 得 1-q=3,即 q=-2,代入①式可得 a1=1,

所以 a4=a1q3=1×(-2)3=-8.
(2)设数列{an}首项为 a1,公比为 q(q≠1),

S3=a1(11--qq3)=74, S6=a1(11--qq6)=643,解得
a1=14, q=2,
所以 a8=a1q7=14×27=32.
由 Sn=1+λan,Sn+1=1+λan+1, 得 an+1=λan+1-λan, 即 an+1(λ-1)=λan, 由 a1≠0,λ≠0 得 an≠0,所以aan+n1=λ-λ 1.
因此{an}是首项为1-1 λ,公比为λ-λ 1的等比数列,
λ n-1 于是 an= 1 λ-1 .
1-λ
λn (2)解 由(1)得 Sn=1- λ-1 .
1-a (4)数列{an}为等比数列,则 S4,S8-S4,S12-S8 成等比数列.( ) 解析 (1)在等比数列中,q≠0. (2)若 a=0,b=0,c=0 满足 b2=ac,但 a,b,c 不成等比数列. (3)当 a=1 时,Sn=na. (4)若 a1=1,q=-1,则 S4=0,S8-S4=0,S12-S8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×
率为( )
3
A. 2f
3
B. 22f
12
C. 25f

人教版数学高三等比数列及其前n项和专题

人教版数学高三等比数列及其前n项和专题

辅导讲义学员姓名:年级:高三课时数:辅导科目:数学学科教师:讲义审核:授课主题等比数列及其前n项和教学目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.教学重难点1.等比数列的判定与证明2.求等比数列的通项公式及前n项和授课日期及时段2020年X月X日教学内容一、等比数列 1.等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(0)q q ≠,那么这个数列叫做等比数列,这个常数叫做等比数列的公比.注意:(1)等比数列的每一项都不可能为0;(2)公比是每一项与其前一项的比,前后次序不能颠倒,且公比是一个与n 无关的常数. 2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时2G ab =. 3.等比数列的通项公式及其变形首项为1a ,公比为q 的等比数列的通项公式是111(,0)n n a a q a q -=≠. 等比数列通项公式的变形:n mn m a a q -=.4.等比数列与指数函数的关系,,n S 的图象是函数是一个关于n 的指数型函数与一个常数的和,且指数型函数的1;i n i a a +-=②若m +成等差数列,则,,m n p a a a 成等比数列.(3)数列{}(0)n a ≠λλ仍是公比为q 的等比数列; 数列1{}n a 是公比为1q的等比数列; 数列{}||n a 是公比为||q 的等比数列;若数列{}n b 是公比为q'的等比数列,则数列{}n n a b 是公比为qq'的等比数列. (4)23,,,,k k m k m k m a a a a +++成等比数列,公比为m q .(5)连续相邻k 项的和(或积)构成公比为(k q 或2)k q 的等比数列.(6)当1q =时,n m S n S m =;当1q ≠±时,11nn m m S q S q-=-. (7)m nn m m n n m S S q S S q S +=+=+.(8)若项数为2n ,则S q S =偶奇,若项数为21n +,则1S a q S -=奇偶. (9)当1q ≠-时,连续m 项的和(如232,,,m m m m m S S S S S --)仍组成等比数列(公比为m q ,2m ≥).注意:这里连续m 项的和均非零.考向一 等比数列的判定与证明典例1 设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log||n a .其中一定为等比数列的是 A .①③ B .②④ C .②③D .①②【答案】D【解析】设11n n a a q -=,①112=2n n a a q-,所以数列{}2n a 是等比数列;②222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④122122121log ||log ||log ||log ||n n n n a a q a a q ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D.本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.求解时,设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.1.已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+. (1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.考向二 等比数列的基本运算典例2 各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则3445++a a a a 的值为A .5+12B .512- C .152- D .5+12或152- 【答案】B【解析】设{}n a 的公比为q (0,1q q >≠),根据题意可知321a a a =+,得210q q --=,解得512q +=(负值舍去),而34451512a a a a q +-==+,故选B .该题考查的是数列的有关问题,涉及的知识点有:三个数成等差数列的条件,等比数列的性质等,注意题中的隐含条件.2.数列}{n a 中,112,2n n a a a +==,n S 为}{n a 的前n 项和,若62n S =,则n =________.考向三 求解等比数列的通项及前n 项和典例3 若等比数列{}n a 的前n 项和为n S ,且42S S =5,则84S S 等于 A .5 B .16 C .17D .25【答案】C【解析】当公比1q =时,4225S S =≠,故公比不为1, 当公比1q ≠时,()()4124221111511a q S q q S a q q --==+=--,∴24q =,∴()()81484411111711a q S q q S a qq--==+=--,故选C. 本题重点考查了等比数列的前n 项和,注意对公比q 的分类讨论,这是一个易错点,同时注意首项与公比均不为零.解决本题时,对公比q 进行分类讨论,利用前n 项和公式及条件,求出24q =,从而得到结果.3.已知等比数列{}n a 是递增数列,且15241742a a a a +=,=. (1)求数列{}n a 的通项公式;(2)若()*=n n b na n ∈N ,求数列{}n b 的前n 项和n S .考向四 等比数列的性质的应用典例4 已知等比数列{}n a 的前n 项和为n S ,若1020S =,20=60S ,则30S =_______. 【答案】140【解析】方法1:由1020S =,20=60S ,易得公比1q ≠±,根据等比数列前n 项和的性质,可得020101011S q S q 2-=-,即010*********q q q 2-==+-,解得102q =, 又3030101011S q S q -=-,所以33012=72012S -=-,30140S =. 方法2:根据等比数列前n 项和的性质,可得10201010S S q S =+,即10602020q =+,解得102q =, 所以1030102020260140S S q S =+=+⨯=.方法3:根据等比数列前n 项和的性质,可知10S ,2010S S -,3020S S -成等比数列,则22010103020()()S S S S S -=-,即230(6020)20(60)S -=-,解得30140S =.4.等比数列{}n a 的各项均为正数,且544a a =,则212822log log log a a a +++=A .7B .8C .9D .10考向五 数列的新定义问题典例5 若数列{}n A 满足21n n A A +=,则称数列{}n A 为“平方递推数列”.已知数列{}n a 中,19a =,点1(,)n n a a +在函数2()2f x x x =+的图象上,其中n 为正整数.(1)证明:数列{+1}n a 是“平方递推数列”,且数列{lg(+1)}n a 为等比数列; (2)设(1)中“平方递推数列”的前n 项之积为n T ,求lg n T ;(3)在(2)的条件下,记lg lg(+1)nn n T b a =,设数列{}n b 的前n 项和为n S ,求使4032n S >成立的n 的最小值.【答案】(1)见解析;(2)21n -;(3)2017.【解析】(1)由题意得212n n n a a a +=+,即211(1)n n a a ++=+,则{}1n a +是“平方递推数列”. 对211(1)n n a a ++=+两边取对数得1lg(1)2lg(1)n n a a ++=+,所以数列{lg(+1)}n a 是以1lg(+1)1a =为首项,2为公比的等比数列. (2)由(1)知1111lg(1)lg(+1)22n n n a a --++=⋅=,则12121(12)lg lg[(1)(1)(1)]lg(1)lg(1)lg(1)2 1.12n n n n n T a a a a a a ⨯-=+++=++++++==--(3)由(2)知11lg 2112()lg(+1)22nn n n n n T b a ---===-,111122221212n n n S n n --=-=-+-, 又4032n S >,所以112240322n n --+>,即120172n n +>,又1012n <<,所以min 2017n =,故使4032n S >成立的n 的最小值为2017.5.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p 、q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q −p ,例如f (12)=4−3=1,则数列{f (3n )}的前2019项和为______1.【答案】(1)见解析;(2)()221141322n n n ---. 【解析】(1)∵n n b a n =+,∴111n n b a n ++=++. 又∵1431n n a a n +=+-,∴()1143111n n n n n n a n n b a n b a n a n +++-++++==++()44n n a n a n+==+. 又∵111112b a =+=+=,∴数列{}n b 是首项为2,公比为4的等比数列.参考答案()212142(1444)(123)14n n n a n --+=++++-++++=--21122n n -. 【名师点睛】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养. )利用等比数列的定义可以证明;2,2n n -+⋅则()21213221222122n n n S n n --=⨯+⨯++-+⋅+⨯,② ②﹣①得:()()1022111111222222221222n n n n n n S n n n ------=-+++++⋅=+-⋅=-+⋅. 【名师点睛】本题考查了等比数列的性质,考查了等比数列的通项公式,考利用错位相减法求数列的前n 项和. (1)先利用等比数列的性质,可分别求出15,a a 的值,从而可求出数列{}n a 的通项公式; (2)利用错位相减求和法可求出数列{}n b 的前n 项和n S . 4.【答案】B【解析】根据题意,等比数列{}n a 的各项均为正数,且544a a =,则有182736454a a a a a a a a ====, 所以42122282123456782log log log log ()log 4a a a a a a a a a a a +++==8=.故选B .【名师点睛】本题考查等比数列的性质以及对数的运算,属于基础题. 5.【答案】31010−1【解析】由题意可知,当n 为偶数时,(3)0n f =,当n 为奇数时,12(3)23n n f -=⨯, 则232019352019(3)(3)(3)(3)(3)(3)(3)(3)f f f f f f f f ++++=++++1010110090110091010132323232(333)23113-=⨯+⨯++⨯=⨯+++=⨯=--.故答案为101031-.【名师点睛】本题主要考查了数列的求和问题,其中解答中根据题意,得到数列的计算规律,合理利用等比数列的求和公式计算是解答的关键,着重考查了推理能与计算能力,属于中档试题.1.(2019年高考全国III 卷文数)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .22.(2018北京卷文科)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2018北京卷文科)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 A .32f B .322f C .1252fD .1272f4.(2017江苏)等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =__________.5.(2019年高考全国I 卷文数)记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 6.(2018新课标全国I 文科)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.7.(2018新课标全国Ⅲ文科)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .8.(2019年高考全国II 卷文数)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.9.“杨辉三角”是中国古代重要的数学成就,在南宋数学家杨辉所著的《详解九章算法》一书中出现,它比西方的“帕斯卡三角形”早了300多年,如图是杨辉三角数阵,记n a 为图中第n 行各个数之和,n S 为{}n a 的前n 项和,则10S =A .1024B .1023当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 5.【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误. 6.【解析】(1)由条件可得a n +1=2(1)n n a n+.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=,所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列的通项公式,借助于的通项公式求得数列的通项公式,从而求得最后的结果.7.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解.21n+-【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列,516a==。

专题6.3等比数列及其前n项和(2021年高考数学一轮复习专题)

专题6.3等比数列及其前n项和(2021年高考数学一轮复习专题)

专题 等比数列及其前n 项和一、题型全归纳题型一 等比数列基本量的运算【题型要点】1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n =q (q ≠0,n ∈N *).(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab . “a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.解决等比数列有关问题的2种常用思想4.等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行. (2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a 1,n ,q ,a n ,S n 的“知三求二”问题.例1】记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .【答案】58.【解析】通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q =⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯21--121--114=58.优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=321-⎪⎭⎫⎝⎛=-18,所以S 4=S 3+a 4=34+⎪⎭⎫ ⎝⎛81-=58.优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯421--11=58.【例2】(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63【解析】:通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1, 所以S 5=31,故选B.题型二 等比数列的判定与证明【题型要点】等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. (4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列. 【易错提醒】:(1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.【例1】已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解析】 (1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4.将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.【例2】设数列{a n }的前n 项和为S n ,满足:S n +a n =n -1n (n +1),n =1,2,…,n .(1)求证:数列⎭⎬⎫⎩⎨⎧+-11n S n 是等比数列;(2)求S n . 【解析】 (1)证明:由题意,n =1时,S 1+a 1=0,即a 1=0,n ≥2时,S n +S n -S n -1=2S n -S n -1=n -1n (n +1)=2n +1-1n,所以S n -1n +1=12⎭⎬⎫⎩⎨⎧-n S n 11-,S 1-12=-12,所以数列⎭⎬⎫⎩⎨⎧+-11n S n 是以-12为首项,12为公比的等比数列. (2)由(1)知,S n -1n +1=121-⎪⎭⎫⎝⎛n ⎪⎭⎫ ⎝⎛21-=n ⎪⎭⎫ ⎝⎛21-,所以S n =1n +1-n⎪⎭⎫⎝⎛21. 【例3】已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列 C .数列⎭⎬⎫⎩⎨⎧n a 1是等比数列 D .数列{lg a 2n }是等比数列 【解析】.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n=a n a n +1=1q ,所以数列⎭⎬⎫⎩⎨⎧n a 1是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误. 【例4】已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由. 【解析】:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, 所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. 所以a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).题型三 等比数列性质的应用【题型要点】1.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎭⎬⎫⎩⎨⎧n a 1,{a 2n },{a n ·b n },⎭⎬⎫⎩⎨⎧n n b a 仍是等比数列.(2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂. (4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n (k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.类型一 等比数列项的性质的应用【例1】已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18【解析】:法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1),所以a 24=4(a 4-1),所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C. 法二:因为a 3a 5=4(a 4-1),所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.【例2】(2020·洛阳市第一次联考)等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .-2 C. 2D .-2或2【解析】设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.类型二 等差数列前n 项和性质的应用【例3】等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. 【解析】法一:设数列{a n }的前n 项和为S n .因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,①a 1(1-q 2n )1-q=60,②②÷①,得1+q n =54,所以q n =14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎪⎭⎫⎝⎛341-1=63.法二:设数列{a n }的前n 项和为S n ,因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n ,因为S 2n =S n +q n S n ,所以q n =S 2n -S n S n =14,所以S 3n =S 2n +q 2n S n =60+241⎪⎭⎫⎝⎛×48=63.【例4】(2020·池州高三上学期期末)已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项 a 2+a 4+…+a 100为( ) A .15 B .30 C .45D .60【解析】设S =a 1+a 3+…+a 99,则a 2+a 4+…+a 100=(a 1+a 3+…+a 99)q =2S ,又因为S 100=a 1+a 2+a 3+…+a 100=90,所以3S =90,S =30,所以a 2+a 4+…+a 100=2S =60.【例5】已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .【解析】由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.【总结提升】1.掌握运用等比数列性质解题的两个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件. (2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列. ②若公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 2.牢记与等比数列前n 项和S n 相关的几个结论 (1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q .(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m(q 为公比).题型四 数列与数学文化及实际应用类型一.等差数列与数学文化【例1】(2020·广东潮州二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( ) A .6斤 B .7斤 C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【题后升华】以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.类型二.等比数列与数学文化【例2】(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( ) A.253 B .503 C.507 D .1007【解析】5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【题后升华】以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.类型三.递推数列与数学文化【例3】(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n=⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( ) A .7 B .10 C .12D .22【解析】因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.【题后升华】以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.类型四.周期数列与数学文化【例4】(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( ) A .672 B .673 C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列, 且一个周期中的三项之和为1+1+0=2.因为2 019=673×3, 所以数列{a n }的前2 019项的和为673×2=1 346.故选C.【题后反思】以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.类型五.数列在实际问题中的应用【例5】私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n 2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n+1.65=4.65,当且仅当0.15n =15n ,即n =10时,年平均费用S nn 取得最小值.所以这辆汽车报废的最佳年限是10年.【题后反思】数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.二、高效训练突破 一、选择题1.(2020·湖南衡阳一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( ) A .{6} B .{-8,8} C .{-8}D .{8}【解析】:因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A .16 B .8 C .4D .2【解析】:设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又 S 4=a 1(1-q 4)1-q =15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4【解析】:因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.4.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2【解析】:设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q =2(舍负),故选D. 4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( ) A .6里 B .12里 C .24里D .96里【解析】:由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( ) A .13 B .12 C .11D .10【解析】:设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n ,即7292=3n ,所以n =12.6.(2020·青岛模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( ) A .3 B .9 C .10D .13【解析】设等比数列{a n }的公比为q ,因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,所以6a 4=a 4(q 2-q ).由题意得a 4>0,q >0.所以q 2-q -6=0,解得q =3,所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10.7.(2020届福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】: 解法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A.解法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.8.(2020·新乡调研)已知各项均不为0的等差数列{a n }满足a 3-a 272+a 11=0,数列{b n }为等比数列,且b 7=a 7,则b 1·b 13=( )A .25B .16C .8D .4【解析】由a 3-a 272+a 11=0,得2a 7-a 272=0,a 7=4,所以b 7=4,b 1·b 13=b 27=16. 9.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】:法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.10.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( ) A .2n -1 B .2n -1 C .2n -1D .2n +1【解析】:当n =1时,S 1=2a 1-1=a 1,所以a 1=1,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.11.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( )A.13B.17C.23D .37【解析】:法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A. 法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.12.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1)B.18×(910-1)C.126×(279-1) D .126×(2710-1)【解析】:因为a n +1-a n =b n +1b n =3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n=1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.二、填空题1.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .【解析】:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .【解析】:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎭⎬⎫⎩⎨⎧n a n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.3.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.【解析】:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎪⎭⎫ ⎝⎛-λ2n a .由于数列{a n-1}是等比数列,所以2λ=1, 得λ=2.4.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________. 【解析】:因为{a n }为等比数列,所以a 3·a n -2=a 1·a n =64.又a 1+a n =34, 所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32. 由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1q n -1=2×4n -1=32,解得n =3.5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m =a n ,则数列{a n }的前n 项和S n =________.【解析】:因为a n +m a m =a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n )1-2=2n +1-2.6.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________.【解析】因为S 10∶S 5=1∶2,所以设S 5=2a ,S 10=a (a ≠0),因为S 5,S 10-S 5,S 15-S 10成等比数列,即2a ,-a ,S 15-a 成等比数列,所以(-a )2=2a (S 15-a ), 解得S 15=3a2,所以S 15∶S 5=3∶4.三 解答题1.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.【解析】:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·121-⎪⎭⎫ ⎝⎛n =321-⎪⎭⎫ ⎝⎛n .(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝⎛⎭⎫1-12n 1-12=8⎪⎭⎫⎝⎛n 21-1<8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8).又S n <m 恒成立,m ∈Z ,所以m 的最小值为8. 2.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.【解析】:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q=13,q >0,解得a 1=1,q =3,所以a n=3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列,因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, 所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎭⎬⎫⎩⎨⎧+21n S 是等比数列.3.(2020届长春市高三质量监测)已知数列{a n }中,a 1=2,a n +1=2a n +2n +1,设b n =a n 2n .(1)求证:数列{b n }是等差数列;(2)求数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和S n .【解析】:(1)证明:当n ≥2时,b n -b n -1=a n 2n -a n -12n -1=a n -2a n -12n =1,又b 1=1,所以{b n }是以1为首项,1为公差的等差数列.(2)由(1)可知,b n =n ,所以1b n b n +1=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.4.(2020届南昌市第一次模拟)已知等比数列{a n }的前n 项和为S n ,且满足S 4=2a 4-1,S 3=2a 3-1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n (n ∈N *),求数列{b n }的前n 项和T n .【解析】:(1)设等比数列{a n }的公比为q ,由S 4-S 3=a 4,得2a 4-2a 3=a 4,所以a 4a 3=2,所以q =2.又因为S 3=2a 3-1,所以a 1+2a 1+4a 1=8a 1-1,所以a 1=1,所以a n =2n -1. (2)由(1)知a 1=1,q =2,则S n =1-2n 1-2=2n-1,所以b n =2n-1,则T n =b 1+b 2+…+b n =2+22+…+2n -n =2(1-2n )1-2-n =2n +1-2-n .。

高三数学等比数列知识点

高三数学等比数列知识点

高三数学等比数列知识点数学在高中阶段是一个重要的学科,其中等比数列也是其中的一个重要知识点。

等比数列是数学中常见的数列类型之一,它的每一项与前一项的比值都相等。

在高三数学中,学生需要掌握等比数列的基本概念、性质和应用。

本文将分为以下几个部分介绍高三数学等比数列的相关知识。

一、等比数列的基本概念等比数列是指一个数列中的每一项与其前一项的比值相等。

具体而言,对于一个等比数列a₁, a₂, a₃, ...,相邻的两项之间满足如下关系:a₂ / a₁ = a₃ / a₂ = a₄ / a₃ = ...这个比值称为等比数列的公比,通常用字母q表示。

此外,等比数列的第一项a₁和公比q也是等比数列的两个重要要素。

二、等比数列的性质1. 等比数列的通项公式等比数列的通项公式可以通过观察数列的规律得到。

对于一个等比数列a₁, a₂, a₃, ...,其中a₁为首项,q为公比,数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。

这个公式可以方便地计算数列中任意一项的值。

2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和值。

对于一个等比数列a₁, a₂, a₃, ...,其前n项和Sₙ的计算公式为:Sₙ = a₁ * (1 - q^n) / (1 - q)这个公式是通过数列的首项、公比和项数来计算前n项和的值。

3. 等比数列的性质等比数列具有一些重要的性质,包括:(1)等比数列中,任意两项的比值都是相等的。

(2)等比数列当公比q大于1时,数列会呈现出递增的规律;当公比q小于1且大于0时,数列会呈现出递减的规律。

(3)等比数列中,如果首项a₁大于0且公比q大于1,数列会趋向无穷大;如果首项a₁大于0且公比q小于1且大于0,数列会趋向0。

(4)等比数列中,相邻两项之间的比值等于公比的平方。

三、等比数列的应用1. 等比数列在实际生活中的应用等比数列在现实生活中有许多应用。

例如,财务领域中的利息计算、人口增长的模型、物理领域的衰减和增长模型等都可以用等比数列来进行建模和计算。

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

高三一轮复习等比数列课件

高三一轮复习等比数列课件
分段等比数列求和
对于一些分段等比数列,需要分段进行求和,并注意分段点处的连 续性。
04 等比数列在实际生活中的 应用
等比数列在金融中的应用
复利计算
等比数列可以用于计算复利,帮 助投资者了解投资收益的增长情
况。
保险计算
保险公司在计算保险费用和赔付 时,常常使用等比数列来计算未
来价值和赔偿金额。
股票分析
电路分析
在电路分析中,电压、电流和电阻的变化规律可以用等比数列来表示 ,帮助工程师理解和设计电路。
等比数列在计算机科学中的应用
数据压缩
在数据压缩算法中,等比数列常常被用于表示数 据中的重复模式,从而实现数据的有效压缩。
加密算法
一些加密算法中,等比数列被用于生成密钥或者 加密和解密数据,保障信息安全。
比较大小
通过等比数列求和公式, 可以比较两个等比数列的 大小关系,从而解决一些 比较大小的问题。
特殊等比数列的求和公式
等差等比混合数列求和
对于一些特殊的等差等比混合数列,如斐波那契数列,需要采用 特殊的方法进行求和。
特殊公比的等比数列求和
当等比数列的公比为特殊值时,如公比为1或-1,需要采用特殊的 方法进行求和。
等比数列的表示
通常用英文字母q表示等比数列的 公比,用a_1表示第一项,用n表 示项数。
等比数列的性质
等比数列的通项公式
a_n=a_1*q^(n-1),其中a_1是第一 项,q是公比,n是项数。
等比数列的求和公式
当q≠1时,等比数列的前n项和 S_n=(a_1*(1-q^n))/(1-q);当q=1时 ,S_n=na_1。
股票价格的增长和下跌往往呈现 出等比数列的特征,投资者可以 通过等比数列分析股票的走势和

高三数学一轮复习 等比数列与数列求和

高三数学一轮复习 等比数列与数列求和

6.3 等比数列 6.4数列求和【学习目标】1、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式2、熟练掌握等差等比数列的前n 项和公式,能应用公式求数列的前n 项和3、掌握非等差等比数列求和的几种方法【重点难点】重点:等比数列的定义和性质,数列求和的方法难点:等比数列的定义和性质,数列求和的方法. 【导学流程】 一、基础感知 1、等比数列基本公式 (1)定义:1(N ,)n na q n q a *+=∈为非零常数 (2)通项公式:11n n a a q -=⨯(3)等比中项:2,,a A b A ab ⇔=成等比数列(4)前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩2、等比数列基本性质(1)n m n m a a q -=⨯(2)m n k l m n k l a a a a +=+⇔⋅=⋅(3)232,,n n n n n S S S S S --成等比数列(4)n n S A Aq =-3、数列求和:(公式法、分组求和、错位相减、裂项相消、并项求和、倒序相加)(1)、公式求和①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=②等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n (2)、分组求和:适用于等差、等比数列以加减的形式构成的新数列的前n 项和(3).错位相减:适用于等差、等比数列以乘、除的形式构成的新数列的前n 项和 若,其中是等差数列,是公比为等比数列, 令,则两式错位相减并整理即得 (4).裂项相消法:适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和(1)(2); (3) (4)(5)、并项求和当数列通项中出现n )1(-或1)1(+-n 时,常常需要对n 取值的奇偶性进行分类讨论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 a1
1 a2Biblioteka 1 a31 a41 a5
211 48
,
求a3
例 4。已知
an
3( 1 )n1, 2
且 bn a3n 2 a3n 1 a3n
(n N ), 求证 : bn 是
等比数列 .
作业:《优化》 P81 强化训练 ,T1~10.
(4).三数成等比数列,它们的积为64, 其算术平均数为14 ,求这个数列。
3
例 2。(1)首项为 1 ,从第 11项起,各项都比 1大的 32
等比数列的公比 q的取值范围是()
( A) q 1; ( B ) 2 q 9 32 (C )q 2;(D )0 q 1.
(2)在等比数列 an 中,每依次相邻两项的
问题1。观察、填空:
(1). 1 、 1、2、 、8、 16、32、 、128、 2
(2)课本 109 页。
问题2。以上二小例有何规律?
结论:从第二项起,每一项与它前一 项的比 都等于同一常数,这样的数列称为等比数列。
数学表达式:an1 an
q(q
0的常数,n N )
等比数列概念
通项公式的推导:
a2 q a1
a3 q a2
a4 q a3
a n1 q an2
a n q(以上各式相乘 ) a n 1
a 2 a3 a 4 a n1 a n q q q q (n 1个 q相乘 )
a1 a2 a3
a n 2 a n 1
即 a n a1 q n1
等比数列通项公式:
an a1 q n1
an amqnm (n m, n、m N )
例题选讲: 例1。(1)在等比数列中,a1 a2 3, a3 a4 24,求 : q和a1。
(2)在等比数列an中,若apq M ,
apq N ,求ap的值。
(3).在等比数列an中, a1 a2 324,
a3 a4 36,则a5 a6 ?
组成的数列是:()
乘积
( A)等差数列;( B )等比数列;
(C )常数列;( D )以上结论都不对。
(3)在等比数列an 中,公比为q,
若am x an ,求 : x ?
例3。(1)在等比数列an 中,
若a1 a2 a3 7, a1a2a3 8,求an.
(2)在等比数列an 中,
已知a a a a a 211 7
外链代发/
低沉古怪的轰响,绿宝石色的大地开始抖动摇晃起来,一种怪怪的惨窜骷髅味在加速的空气中跳跃。最后扭起快乐机灵、阳光天使般的脑袋一挥,飘然从里面流出一道金光,他抓住金光怪异地一 旋,一组紫溜溜、金灿灿的功夫∈万变飞影森林掌←便显露出来,只见这个这件玩意儿,一边颤动,一边发出“呜呜”的奇响。……悠然间蘑菇王子全速地颤起神奇的星光肚脐,只见他天使般的 黑色神童眉中,突然弹出五十团转舞着∈追云赶天鞭←的酱缸状的飞沫,随着蘑菇王子的颤动,酱缸状的飞沫像病床一样在拇指神秘地搞出飘飘光烟……紧接着蘑菇王子又用自己挺拔威风的淡蓝 色雪峰牛仔裤秀出紫葡萄色闪电般跳跃的铁锹,只见他潇洒飘逸的、像勇士一样的海蓝色星光牛仔服中,变态地跳出五十组甩舞着∈追云赶天鞭←的仙翅枕头叉状的鸭掌,随着蘑菇王子的摇动, 仙翅枕头叉状的鸭掌像熊胆一样,朝着妃赫瓜中士飘浮的嘴唇怪踢过去!紧跟着蘑菇王子也转耍着功夫像细竹般的怪影一样朝妃赫瓜中士怪踢过去随着两条怪异光影的瞬间碰撞,半空顿时出现一 道淡绿色的闪光,地面变成了雪白色、景物变成了深蓝色、天空变成了灰蓝色、四周发出了奇特的巨响……蘑菇王子淡红色的古树般的嘴唇受到震颤,但精神感觉很爽!再看妃赫瓜中士老态的脖 子,此时正惨碎成手镯样的亮黑色飞光,全速射向远方,妃赫瓜中士猛咆着发疯般地跳出界外,疾速将老态的脖子复原,但元气和体力已经大伤神怪蘑菇王子:“你的业务怎么越来越差,还是先 回去修炼几千年再出来混吧……”妃赫瓜中士:“这次让你看看我的真功夫。”蘑菇王子:“你的假功夫都不怎么样,真功夫也好不到哪去!你的创意实在太垃圾了!”妃赫瓜中士:“等你体验 一下我的『蓝银缸圣耳塞爪』就知道谁是真拉极了……”妃赫瓜中士忽然跳动的手掌连续膨胀疯耍起来……凸凹的活似樱桃形态的脚透出深灰色的阵阵幽雾……平常的暗黑色脸盆耳朵跃出水蓝色 的隐约幽音。接着扭动纯白色灯泡模样的脑袋一吼,露出一副古怪的神色,接着晃动敦实的屁股,像墨灰色的六眼荒原蝶般的一扭,斑点的纯灰色瓦刀形态的鼻子立刻伸长了九十倍,紧缩的身材 也突然膨胀了一百倍!紧接着淡紫色肥肠般的身材闪眼间流出暗黄色的豹鬼残隐味……不大的的紫红色熊猫一样的皮鞭雪晓围腰透出残嗥坟茔声和咻咻声……圆圆的雪白色怪石似的猪精星怪盔忽 亮忽暗穿出妖精魂哼般的晃动!最后转起暗黑色脸盆耳朵一吼,变态地从里面喷出一道金辉,他抓住金辉残暴地一摆,一套黑森森、黄澄澄的兵器『紫鸟蚌精病床钩』便显露出来,只见这个这件 宝器儿,一边蠕动,一边
相关文档
最新文档