蛋白纯化的基本思路

合集下载

蛋白质纯化知识详解

蛋白质纯化知识详解

蛋白质纯化知识详解一、蛋白纯化原则蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。

每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。

蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。

一般蛋白纯化采用的方法为树脂法。

粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速、颗粒大、粒径分布宽,并可以迅速将蛋白与污染物分开,必要时可加入相应的保护剂(例如蛋白酶抑制剂),防止目的蛋白被降解。

精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些分子量大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。

选择性指树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。

仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。

二、纯化程序分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。

1、前处理分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态,不丢失生物活性。

为此,动物材料应先剔除结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免受单宁等物质的污染,油料种子最好先用低沸点的有机溶剂如乙醚等脱脂。

然后根据不同的情况,选择适当的方法,将组织和细胞破碎。

动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。

植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。

细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。

蛋白质纯化方法及原理

蛋白质纯化方法及原理

蛋白质纯化方法及原理蛋白质纯化是蛋白质分子的细胞内研究的重要组成部分,是研究蛋白质分子的生物学性质的必要手段。

这项技术可以从蛋白质混合物中分离和纯化活性蛋白质。

蛋白质纯化实质上是一种分离技术,其目的是从混合物中分离和纯化蛋白质,以便进行进一步的研究。

蛋白质纯化的原理是利用蛋白质分子之间存在的不同物理和化学性质差异,利用特定的技术手段,将其从混合物中分离出来,以达到纯化的目的。

一般是利用沉淀法、离子交换法、分子筛法、膜分离法、凝胶分离法、组合分离法等等。

沉淀法是蛋白质纯化中最常用的方法,它是根据蛋白质分子的不同物理性质,采取适当的条件,使某种蛋白质在液体中沉淀出来,从而达到分离的目的。

常用的沉淀试剂有硝酸盐、硫酸盐、醋酸盐、铵盐等,它们的作用是改变溶液的 pH 值,从而达到沉淀的目的。

离子交换法是指利用蛋白质分子的电荷差异,将蛋白质从混合物中分离出来的方法。

它是利用某种离子交换材料的交换性,将蛋白质从混合物中分离出来,以达到纯化的目的。

常用的离子交换材料有硅胶、聚乙烯醇、聚丙烯酰胺凝胶、羟基磷灰石等。

分子筛法就是利用不同大小的分子穿过分子筛的不同粒径孔道的能力不同,将不同大小的分子从混合物中分离出来的方法。

膜分离法就是利用膜的通透性,将不同类型的分子从混合物中分离出来的方法。

凝胶分离法则是利用凝胶的特性,将蛋白质从混合物中分离出来的方法。

组合分离法是将上述几种分离方法结合在一起,综合利用它们的优势,以达到纯化蛋白质的目的。

蛋白质纯化是指利用不同的分离技术手段,将蛋白质从混合物中分离出来,以达到纯化的目的。

它不仅可以提高蛋白质的纯度,而且还可以提高蛋白质的活性,为蛋白质分子的研究提供了可靠的依据。

简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法蛋白质是有机体重要的组成部分,由氨基酸编码,执行了多种生物功能,例如促进新陈代谢,生物合成,免疫等。

为了获得高纯度的蛋白质,必须将其从其他成分中分离和纯化。

这就是蛋白质纯化。

蛋白质纯化的基本方法包括:一、分子大小法蛋白质主要通过分子过滤器来分离和纯化。

该过程基于分子间的亲和性原理,通过过滤器膜的通透性以及不同蛋白质的大小差异将蛋白质从溶液中分离出来。

二、萃取技术萃取技术是基于蛋白质的共沉淀特性,通过不同的有机溶剂来区分和分离蛋白质,将沉淀的蛋白组分收集后,再进行精细回收。

三、离子交换技术离子交换技术也是基于蛋白质的离子属性,采用各类加压装置,以及特殊离子交换模块以及合成模块,来实现将收集物分离筛选后回收。

四、双模立体技术双模立体技术是采用两种不同的液体体系,如水基和有机溶剂基,在不同的状态或浓度下对蛋白质进行再离析技术,从而实现蛋白质的有效分离纯化。

五、凝胶精分技术凝胶精分技术是改良和发展起来的一种新型蛋白质分离纯化技术,主要基于交叉链结构,可以基本上实现同一类分子配体分子完整地分离纯化。

六、共晶引擎技术共晶引擎技术可基于共晶相邻能量差异,通过电荷,配体结合等不同形式来改变分子的邻近能量,从而有效的将蛋白质分离出来。

以上就是蛋白质分离纯化的基本方法,可以从不同的角度神明蛋白质的性质,以达到有效的提纯的目的。

蛋白质的分离纯化对解析有机体内蛋白质的结构和功能,也极为重要。

目前,已经有很多高级的技术和模块来实现蛋白质分离纯化,例如蛋白质分子调控,杂交等。

通过有效利用上述方法,可以有效精细和完整得提纯高纯度的蛋白质。

常用的蛋白质纯化方法和原理

常用的蛋白质纯化方法和原理

常用的蛋白质纯化方法和原理蛋白质的纯化是生物化学研究中非常重要的一步,纯化蛋白质可以用于结构解析、功能研究、动态过程研究等各种生物学实验。

常用的蛋白质纯化方法有盐析法、凝胶过滤法、离子交换色谱法、亲和色谱法、逆渗透法和层析法等。

下面将对这些方法的原理和步骤进行详细阐述。

1. 盐析法盐析法是根据蛋白质在溶液中的溶解性随盐浓度的变化而变化的原理进行蛋白质的纯化。

该方法是利用蛋白质在高盐浓度下与水结合能力降低,使其从溶液中沉淀出来。

应用盐析法时,需要先调节溶液的盐浓度使蛋白质溶解,然后逐渐加入盐使其过饱和,蛋白质便会析出。

最后通过离心将蛋白质的沉淀物分离,得到纯化的蛋白质。

2. 凝胶过滤法凝胶过滤法是利用凝胶的pores 来分离蛋白质的一种方法。

凝胶通常是聚丙烯酰胺(也称作Polyacrylamide)或琼脂糖。

研究者将蛋白质样品加入到过滤膜上,较小的蛋白质能够通过pores,较大的分子则被排出。

通过选择不同大小的凝胶孔径,可以根据蛋白质的大小来选择合适数目的过滤膜。

凝胶过滤法需要进行缓冲液体积的连续换流,将蛋白质与其他杂质分离开来。

3. 离子交换色谱法离子交换色谱法是利用蛋白质与离子交换基质之间静电吸引力的不同而分离的方法。

离子交换基质通常是富含正离子或负离子的高分子材料。

在离子交换色谱法中,样品溶液在特定的pH 下流经离子交换基质,带有不同电荷的蛋白质能够与基质发生反应,吸附在基质上。

为了获得纯化蛋白质,需要通过梯度洗脱,逐渐改变缓冲液pH 或离子浓度,使吸附在离子交换基质上的蛋白质逐渐释放出来。

4. 亲和色谱法亲和色谱法是利用蛋白质与特定的配体相互作用特异性进行分离的方法。

配体可以是天然物质,如金属离子、辅酶或抗体,也可以是人工合成的结构。

在亲和色谱法中,样品溶液经过含有配体的固定相,与配体发生特异性相互作用,蛋白质与其它组分分离。

然后可以通过改变某些条件(如pH、温度或离子浓度)来洗脱纯化的蛋白质。

蛋白质的纯化的方法及原理

蛋白质的纯化的方法及原理

蛋白质的纯化的方法及原理蛋白质的纯化是从其来源中去除其他有机物和无机物,使其成为纯净的蛋白质样品的过程。

蛋白质纯化的方法可以根据需要选择,其中常用的方法包括盐析、凝胶过滤、电泳、金属柱层析、亲和层析、离子交换层析、逆相高效液相色谱等。

下面将详细介绍这些方法及其原理。

一、盐析盐析是利用不同浓度的盐溶液对蛋白质溶液进行逐渐稀释,从而使蛋白质发生沉淀的过程。

纯化蛋白质的关键是利用蛋白质与溶剂中离子之间的相互作用来控制蛋白质的溶解和沉淀过程。

在盐析中,通过选择离子强度和种类可以调整蛋白质溶液中所需溶剂化离子的浓度,达到沉淀和纯化蛋白质的目的。

二、凝胶过滤凝胶过滤是一种分子筛分离方法,利用不同孔径的凝胶进行分离。

凝胶的孔径能够排除较大分子,如核酸和细胞碎片,而较小分子,如蛋白质则能通过孔隙,实现纯化。

该方法简单易行,不需要任何特殊设备,适用于中小分子量的蛋白质纯化。

三、电泳电泳是利用蛋白质在电场中的移动性差异进行分离和纯化的方法。

常用的电泳方法有平板电泳、SDS-PAGE(聚丙烯酰胺凝胶电泳)和Western blotting (免疫印迹法)等。

电泳能够根据蛋白质的电荷、分子大小和不同的电场力,在凝胶中分离蛋白质,使其形成带状。

通过切割所需蛋白质的带状区域,可以实现对目标蛋白质的纯化。

四、金属柱层析金属柱层析是利用金属离子与蛋白质之间的亲和性进行分离的方法。

金属柱通常被配制成金属离子亲和基质,并固定在柱子上。

目标蛋白质通过与金属离子发生亲和作用而被保留在柱中,其他杂质则从柱中流出。

通过调节洗脱缓冲液的离子浓度和pH值,可实现对目标蛋白质的纯化。

五、亲和层析亲和层析是利用配体与其特异性结合的蛋白质进行分离和纯化的方法。

通常将配体固定在柱子上,待蛋白质样品通过柱子时,目标蛋白质与配体结合,其他杂质则流失。

通过改变洗脱缓冲液的条件,如离子浓度、pH值和络合剂的添加,可以实现目标蛋白质的纯化。

六、离子交换层析离子交换层析是一种利用蛋白质与离子交换基质之间的相互作用进行分离和纯化的方法。

蛋白纯化相关原理及方法

蛋白纯化相关原理及方法

蛋白纯化相关原理及方法蛋白纯化是一种分离和提纯蛋白质的方法,可以用于研究蛋白质的结构和功能,以及生产纯净的蛋白质制剂。

蛋白纯化的原理是根据蛋白质的特性,利用不同的物理、化学或生物学方法将目标蛋白质与其他成分分离开来。

本文将介绍蛋白纯化的常用方法和原理。

蛋白纯化的方法多种多样,常用的包括离子交换层析、凝胶过滤层析、亲和层析、逆流电泳、凝胶电泳等。

离子交换层析是一种基于蛋白质与离子交换树脂之间相互作用的方法。

树脂通常具有正或负电荷,当蛋白质溶液通过含有相反电荷的树脂时,蛋白质会与树脂发生静电相互作用,从而实现分离纯化。

凝胶过滤层析是一种基于蛋白质的分子大小差异的方法。

通过选择合适的孔径大小的凝胶过滤材料,可以将大分子蛋白质从小分子物质分离出来。

亲和层析是一种基于蛋白质与亲和基质之间特异相互作用的方法。

亲和基质可以是特定的抗体、金属离子、亲和标签等,与目标蛋白质发生高度特异性结合,从而实现其分离纯化。

逆流电泳是利用电场驱动蛋白质从一端向另一端移动的方法,根据蛋白质的电荷大小和形状来分离纯化。

凝胶电泳是一种基于蛋白质的电荷和分子大小差异的方法。

通过在凝胶中施加电场,蛋白质会被分离成多个带电荷的条带,从而实现分离纯化。

蛋白纯化的原理是根据蛋白质的特性选择合适的纯化方法。

蛋白质的特性包括分子大小、电荷、结构、亲和性等。

根据这些特性,可以选择合适的纯化方法进行分离纯化。

例如,对于大分子蛋白质,可以选择凝胶过滤层析;对于带有特定标签的蛋白质,可以选择亲和层析;对于具有特定电荷的蛋白质,可以选择离子交换层析。

此外,还可以根据蛋白质的稳定性、溶解度、含量等因素进行选择。

蛋白纯化的过程通常包括样品制备、纯化步骤和纯化评价。

样品制备是指将待纯化的蛋白质从生物样品中提取出来,并进行初步的处理,如细胞破碎、去除杂质等。

纯化步骤是指根据不同的纯化方法,对样品进行多次处理和分离,逐步提高目标蛋白质的纯度。

每一步骤都需要进行适当的优化和调节,以达到最佳的纯化效果。

蛋白纯化相关原理及方法

蛋白纯化相关原理及方法

蛋白纯化相关原理及方法蛋白纯化是生物科学研究中常用的一项技术,它可以分离纯化出目标蛋白质,从而方便后续的研究和应用。

本文将介绍蛋白纯化的原理和方法。

一、蛋白纯化的原理蛋白纯化的原理是基于不同蛋白质的特性差异,通过采用不同的分离技术,将目标蛋白质从复杂的混合物中分离出来,并且使其达到纯度较高的状态。

蛋白质的特性差异主要包括以下几个方面:1. 分子质量:蛋白质的分子质量不同,可以通过分子大小的差异进行分离。

常用的方法包括凝胶过滤层析和超速离心。

2. 电荷性质:蛋白质具有不同的电荷性质,可以通过离子交换层析、电泳等方法进行分离。

离子交换层析是利用蛋白质与固定在固相上的离子交换基团之间的相互作用进行分离。

3. 亲和性:蛋白质与其他分子之间可能存在特异的结合,可以通过亲和层析进行分离。

亲和层析是利用蛋白质与特定配体之间的结合进行分离。

4. 疏水性:蛋白质的疏水性不同,可以通过逆向相层析等方法进行分离。

逆向相层析是利用溶剂的极性进行分离,疏水性较高的蛋白质会更早洗脱。

二、蛋白纯化的方法1. 直接纯化法:直接从生物样品中纯化目标蛋白质,可以通过分离离心、沉淀和过滤等简单的操作步骤进行。

这种方法适用于目标蛋白质含量较高的样品。

2. 柱层析法:柱层析是一种常用的蛋白纯化方法,可以根据目标蛋白质的特性选择不同的层析柱进行分离。

常用的柱层析方法包括凝胶过滤层析、离子交换层析、亲和层析等。

3. 电泳法:电泳是利用蛋白质的电荷性质进行分离的方法,常用的电泳方法包括聚丙烯酰胺凝胶电泳(PAGE)和等电聚焦电泳(IEF)等。

4. 超滤法:超滤是利用膜的孔径大小对蛋白质进行分离的方法,常用的超滤方法包括凝胶过滤和离心浓缩等。

5. 亲和纯化法:亲和纯化是利用蛋白质与特定配体之间的结合进行分离的方法,常用的亲和纯化方法包括亲和层析、亲和吸附、亲和沉淀等。

6. 水相两相法:水相两相法是利用两相体系的差异进行蛋白质的分离,常用的方法包括聚乙二醇硫酸铵法和聚乙二醇聚丙烯酰胺法等。

蛋白纯化方法

蛋白纯化方法

蛋白纯化方法蛋白质是生物体内重要的功能分子,对于研究蛋白质的结构和功能具有重要意义。

蛋白纯化是从混合物中分离出目标蛋白质并去除杂质的过程,是蛋白质研究中不可或缺的步骤。

本文将介绍常见的蛋白纯化方法,帮助读者了解蛋白纯化的原理和操作步骤。

1. 溶液制备。

在进行蛋白纯化之前,首先需要准备好合适的溶液。

常用的溶液包括缓冲液、洗脱液、吸附液等。

缓冲液用于维持溶液的pH值,洗脱液用于洗脱目标蛋白质,吸附液用于吸附目标蛋白质。

在制备溶液时,需要注意溶液的配制浓度、pH值以及消毒方式,确保溶液的质量符合实验要求。

2. 亲和层析。

亲和层析是一种常用的蛋白纯化方法,利用靶蛋白与特定配体之间的特异性相互作用来实现目标蛋白的分离纯化。

常见的亲和层析包括金属螯合层析、免疫亲和层析等。

在进行亲和层析时,需要选择合适的配体,并对层析柱进行填充和平衡,然后将样品加入层析柱进行分离。

3. 凝胶过滤层析。

凝胶过滤层析是一种根据蛋白质大小分离的方法,利用凝胶的孔隙大小来实现不同大小蛋白质的分离。

在进行凝胶过滤层析时,需要选择合适的凝胶柱和流动相,并进行层析柱的平衡和样品的加载,然后根据蛋白质的大小进行分离纯化。

4. 离子交换层析。

离子交换层析是根据蛋白质的电荷性质进行分离的方法,利用离子交换树脂与蛋白质之间的静电作用来实现分离纯化。

在进行离子交换层析时,需要选择合适的离子交换树脂和流动相,并进行层析柱的平衡和样品的加载,然后根据蛋白质的电荷性质进行分离纯化。

5. 透析。

透析是一种常用的蛋白质浓缩和去除盐类等小分子杂质的方法,利用半透膜对溶液中的小分子进行分离。

在进行透析时,需要选择合适的透析袋和透析缓冲液,并进行透析过程的控制和监测,确保目标蛋白质的浓缩和纯化。

6. 结晶。

结晶是一种常用的蛋白质纯化方法,利用蛋白质在溶液中的饱和度来实现蛋白质的分离纯化。

在进行结晶时,需要选择合适的结晶条件和结晶试剂,并进行结晶过程的控制和监测,最终得到纯净的蛋白质结晶体。

分离纯化的基本步骤

分离纯化的基本步骤

蛋白质分离纯化的基本步骤蛋白质分离纯化分为四个步骤:(一)材料的预处理及细胞破碎(二)蛋白质的抽提(三)蛋白质粗制品的获得(四)样品的进一步分离纯化。

蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。

(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。

所以要采用适当的方法将组织和细胞破碎。

常用的破碎组织细胞的方法有:1.机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。

常用设备有,高速组织捣碎机、匀浆器、研钵等。

2.渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。

3.反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。

这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。

4.超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。

5.酶法如用溶菌酶破坏微生物细胞等。

(二)蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。

抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。

如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。

在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。

(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。

比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。

常用的有下列几种方法:1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。

2.盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。

被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。

3.有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。

能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理
蛋白质纯化是生物分子的一项重要技术,它是分子生物学的核心技术之一,也是蛋白质结构及功能的研究的基础。

它可以从生物样本中分离出蛋白质,研究其结构、性质、功能及相关特性。

根据蛋白质纯化的原理和方法,可以分为物理法、化学法和生物学法等。

1.物理法
物理法是纯化蛋白的最简单方法之一,通常通过使用力场或温度去把一定浓度的蛋白质从溶质中萃取出来。

物理法不耗费能量也不会改变蛋白质的化学结构,不改变蛋白质的结构和功能,但有时可能会引发蛋白质的活性降低,因为櫛发性和相互之间复合物的结合可能会受到改变。

例如分子筛膜技术、沉淀离心技术等。

2.化学法
化学法是一种可以改变蛋白质结构的方法,一般是通过有机溶剂或水溶性固定相,以水或有机溶剂和化学试剂实现蛋白质的分离和纯化。

化学法可以破坏蛋白质的活性,从而改变其化学结构和功能,或者通过改变蛋白质的电性或物理状态来实现蛋白质的分离和纯化。

例如偏光技术、电泳技术、蛋白质酶剪切技术等。

3.生物学法
生物学法是一种比较复杂的蛋白质分离方法,是利用特定生物因子。

蛋白纯化技术路线

蛋白纯化技术路线

蛋白纯化技术路线
1.寻找来源:确定需要纯化的蛋白质所在的生物样品,可以是细胞提取物、细菌发酵液、动物组织等。

2.预处理:对样品进行预处理来去除非目标蛋白质和杂质,使目标蛋白更容易纯化。

常见的预处理方法包括超声破碎、离心、滤过等。

3.亲和层析:使用亲和层析柱选择性地结合目标蛋白质。

亲和层析柱可以根据目标蛋白质的性质选择,例如亲和剂可以是金属离子、抗体、某种结构域等。

目标蛋白质被结合到柱子上后,其他非目标蛋白质可以通过洗脱步骤洗脱下来。

4.尺寸排阻层析:利用蛋白质的分子量差异进行分离。

此步骤常用于去除亲和层析步骤中残留的杂质和非目标蛋白质。

5.离子交换层析:利用蛋白质在不同离子浓度条件下的电荷差异来实现分离。

在正负电荷基质之间的交换,可以根据蛋白质的电荷特性进行选择性结合和洗脱。

6.亲水性层析:利用蛋白质的亲水性差异进行分离。

亲水性层析可以通过调整盐浓度和pH值来选择性结合和洗脱目标蛋白质。

7.透析:用于去除层析步骤中使用的缓冲剂、杂质与目标蛋白之间的物质交换。

8.浓缩:用于将目标蛋白溶液浓缩至适当的浓度,以便于后续的研究操作。

9.纯化效果验证:使用蛋白质分析方法(如SDSPAGE、Westernblot等)来验证纯化的效果和目标蛋白质的纯度。

蛋白质纯化方案

蛋白质纯化方案

蛋白质纯化方案
蛋白质纯化是一种常用的方法,用于从混合物中分离纯净的目标蛋
白质。

本文将介绍一种常见的蛋白质纯化方案,该方案包括以下几个
步骤:细胞裂解、固体沉淀、亲和层析和凝胶过滤。

1.细胞裂解
细胞裂解是蛋白质纯化的第一步,其目的是将目标蛋白质从细胞中
释放出来。

常用的方法有机械破碎、超声波破碎和化学解冻等。

选择
合适的细胞裂解方法要根据样品的特性和目标蛋白质的性质进行确定。

2.固体沉淀
在细胞裂解后,得到的混合物中包含大量的杂质,如细胞碎片、DNA和RNA等。

固体沉淀是将这些杂质与目标蛋白质分离的一种常
见方法。

通过离心,沉淀的杂质可以被分离出来,而上清液中含有较
高浓度的目标蛋白质。

3.亲和层析
亲和层析是一种高效的纯化方法,通过利用某些物质与目标蛋白质
之间的特异性相互作用来分离纯化目标蛋白质。

常用的亲和剂包括金
属离子、抗体、亲和基质和亲和标签等。

利用亲和剂与目标蛋白质结
合的特异性,可以将目标蛋白质从混合物中高效纯化出来。

4.凝胶过滤
凝胶过滤是一种基于分子大小的纯化方法。

通过使用一种具有特定孔径的凝胶材料,可以将目标蛋白质与其他较大分子分离开来。

这种方法常用于去除低分子量杂质和浓缩目标蛋白质。

总结:
蛋白质纯化方案是一个复杂的过程,需要根据样品特性和目标蛋白质的性质选择合适的方法。

细胞裂解、固体沉淀、亲和层析和凝胶过滤是常见的蛋白质纯化步骤。

正确选择和优化这些步骤可以高效地从混合物中纯化出目标蛋白质。

蛋白分离纯化的设计思路

蛋白分离纯化的设计思路

蛋白分离纯化的设计思路
蛋白分离纯化的设计思路包括:
1. 选择适当的蛋白分离技术:根据目标蛋白的特性、目标纯度及产量等因素选择合适的蛋白质分离技术。

常见的蛋白分离技术包括离子交换、凝胶过滤、透析、亲和层析、钠硫酸聚丙烯酰胺凝胶电泳、毛细管电泳等。

2. 优化分离条件:根据目标蛋白的理化性质,优化分离条件,包括温度、pH值、离子浓度、缓冲剂等。

3. 策略组合:针对不同的蛋白分离纯化问题,组合使用不同的蛋白质分离技术,有效提高分离纯化效率和产量。

4. 预处理技术:对于复杂的蛋白质样品,可以采用预处理技术来消除样品的干扰物,如加入表面活性剂、混凝剂等。

5. 良好的监测方法:选择合适的监测方法进行监测和验证分离纯化效果,如分子质量测定、UV吸收光谱、融点测定、生物活性测定等。

6. 最终纯化:确定最终纯化的目标纯度、产量和效率,优化分离流程并确定最合适的分离纯化策略,避免出现再污染和蛋白失活的情况。

蛋白质纯化指南第二版 (2)

蛋白质纯化指南第二版 (2)

蛋白质纯化指南第二版引言蛋白质纯化是生物化学和分子生物学研究中的重要步骤。

通过纯化蛋白质,我们可以更好地理解蛋白质的结构和功能,为进一步研究蛋白质的生物学作用奠定基础。

本指南的目的是为初学者提供蛋白质纯化的基本原理和方法,帮助他们在实验中取得成功。

蛋白质纯化的原理蛋白质纯化的原理基于蛋白质的特性和性质差异。

蛋白质可以通过以下几种常用方法进行纯化:1.亲和纯化:利用蛋白质特异性与亲和基质的结合来纯化目标蛋白质。

例如,通过利用蛋白质与亲和柱上特定抗体的结合来纯化特异性蛋白质。

2.色谱纯化:基于蛋白质的相互作用和分子量来实现纯化。

常用的色谱纯化方法包括凝胶过滤、离子交换、逆流层析和凝胶电泳等。

3.离子交换纯化:通过蛋白质与离子交换基质的相互作用来实现纯化。

离子交换纯化通常基于蛋白质与离子交换树脂上的带电物质之间的相互作用。

4.凝胶过滤纯化:根据蛋白质的分子量进行分离和纯化。

较大分子量的蛋白质会被凝胶过滤基质滞留,而较小分子量的蛋白质会通过基质。

5.逆流层析纯化:根据蛋白质与逆流基质之间的亲和性差异进行纯化。

逆流层析是一种连续操作的纯化方法,将混合物逆流通过与目标分子具有相互作用的基质,实现分离纯化。

6.凝胶电泳纯化:在凝胶电泳中,蛋白质根据分子量的不同进行分离,可以通过切片和溶出来获得单独的蛋白质。

蛋白质纯化的步骤实施蛋白质纯化通常包括以下步骤:1.采集样品:从细胞或组织中采集含有目标蛋白质的样品。

2.细胞破碎:将样品中的细胞破碎,释放出蛋白质。

3.澄清:通过离心等方法去除细胞残渣和碎片,得到澄清的细胞提取物。

4.初步纯化:通过亲和纯化、色谱纯化或其他方法进行初步纯化,获得富集目标蛋白质的样品。

5.细节调整:对初步纯化的样品进行进一步处理,如调整pH值或添加辅助试剂,以优化蛋白质的特性。

6.最终纯化:通过各种纯化方法进行最终纯化,以获得高纯度的目标蛋白质。

7.分析和鉴定:对纯化的蛋白质进行分析和鉴定,确定纯化效果和蛋白质的特性。

蛋白质分离纯化的基本步骤

蛋白质分离纯化的基本步骤
分离技术选择:选择适当的蛋白质分离技术根据目标蛋白质的特性。常用的分离技术包括凝胶电泳(如聚丙烯酰胺凝胶电泳、SDS-PAGE)、柱层析(如亲和层析、离子交换层析、凝胶过滤层析等)、电泳聚焦、高效液相色谱等。
分离纯化:根据目标蛋白质的特性和分离技术的选择,进行分离和纯化。例如,利用分子大小、电荷、亲和性等特性进行分离,重复操作以提高纯度。
蛋白质的分离纯化是在混合蛋白质溶液中将目标蛋白质从其他杂质中分离出来,并获得高纯度的目标蛋白质样品的过程。以下是蛋白质分离纯化的基本步骤:
细胞破碎:从生物样品(例如细胞或组织)中提取蛋白质。可以使用细胞破碎方法,如超声波破碎、高压破碎等,破坏细胞膜和细胞结构,释放蛋白质。质等固体颗粒和大分子物质,获得相对清晰的蛋白质上清液。
纯化监测:对分离得到的蛋白质样品进行检测和监测,常用方法包括紫外吸收光谱、荧光染色、Western blot等,以确定纯度和目标蛋白质的存在。
储存和保存:将纯化的蛋白质样品适当储存,使用低温、避光和减少冻融循环等方式,保持其稳定性和活性。
需要根据实际情况和目标蛋白质的特性选择适当的方法和步骤进行蛋白质的分离纯化。此外,为了确保实验的成功和结果的准确性,应遵循相关的实验室操作规程和安全措施。

请举四种蛋白质类制品分离纯化方法,并说明一下其原理

请举四种蛋白质类制品分离纯化方法,并说明一下其原理

请举四种蛋白质类制品分离纯化方法,并说明一下其原理
以下是四种蛋白质类制品分离纯化方法及其原理的举例:
1. 盐析法:盐析法是利用蛋白质在不同盐浓度下溶解度的差异进行分离纯化。

具体来说,在蛋白质溶液中添加适量中性盐,使得蛋白质的溶解度降低并析出,从而达到分离纯化的目的。

这种方法的原理是蛋白质与盐离子形成复合物,且复合物的溶解度较低,因此在盐浓度较高时,蛋白质会沉淀出来。

2. 等电点沉淀法:等电点沉淀法是利用蛋白质在不同 pH 值下的等电点进行分离纯化。

具体来说,将蛋白质溶液调节至其等电点 pH 值,使得蛋白质失去电荷,形成稳定的沉淀,从而达到分离纯化的目的。

这种方法的原理是蛋白质在不同 pH 值下带电荷的数量不同,因此在等电点时,蛋白质会沉淀出来。

3. 低温有机溶剂沉淀法:低温有机溶剂沉淀法是利用蛋白质在低温下溶解度的差异进行分离纯化。

具体来说,将蛋白质溶液引入与水可混溶的有机溶剂中,使得蛋白质的溶解度降低并析出,从而达到分离纯化的目的。

这种方法的原理是蛋白质在水中的溶解度受温度和溶剂性质的影响,而在有机溶剂中,蛋白质的溶解度较低,因此可以分离纯化。

4. 亲和色谱法:亲和色谱法是利用蛋白质与配体之间的特异性结合进行分离纯化。

具体来说,利用具有特异性结合能力的载体,将待分离的蛋白质与载体结合,然后通过改变洗脱液 pH 值或离子强度等方法,将结合在载体上的蛋白质洗脱出来。

这种方法的原理是蛋白
质与配体之间的相互作用可以影响蛋白质的溶解度、电离性质等,从而进行分离纯化。

蛋白质分离纯化的方式及基本原理

蛋白质分离纯化的方式及基本原理

蛋白质分离纯化的方式及基本原理
蛋白质分离纯化是指将蛋白质从混合物中分离出来,并将其纯度提高到足够高的水平,使其具备生物学或生化功能的过程。

蛋白质分离纯化的基本原理是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

蛋白质分离纯化的基本步骤包括取样、提取、分离和纯化。

首先是取样,这是蛋白质分离纯化的第一步,其目的是从可用样品中取出一部分样品以进行分离纯化。

接下来是提取,这是蛋白质分离纯化的第二步,主要是将蛋白质从样品中提取出来,以便进行后续处理。

第三步是分离,这是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的有效分离。

最后是纯化,这是将分离的蛋白质的纯度提高到足够的水平,使其具备生物学或生化功能的过程。

蛋白质分离纯化的基本原理是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

它是一个复杂的过程,涉及到各种技术,如沉淀、溶解、离子交换、硅胶等。

分离的基本原理是利用蛋白质的分子特性,如电荷、大小、结构等,在不同的溶剂环境中,蛋白质的分子结构、分子质量和电荷状态会发生变化,从而使蛋白质的分离和纯化变得可能。

蛋白质分离纯化是一个复杂的过程,涉及到多种技术,其基本原理
是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

蛋白质分离纯化可以帮助我们更好地理解蛋白质的功能和结构,为后续的生物学研究和药物开发提供重要的信息。

试述蛋白质分离纯化的原理与方法

试述蛋白质分离纯化的原理与方法

试述蛋白质分离纯化的原理与方法蛋白质是生物体中最重要的分子之一,它们在维持生命活动中扮演着关键的角色。

蛋白质分离纯化的目的是将目标蛋白质从混合物中提取出来,并去除其他不需要的杂质。

本文将介绍蛋白质分离纯化的原理和常用方法。

蛋白质分离纯化的原理主要基于蛋白质间的差异性。

根据不同的性质,如分子质量、电荷、疏水性等,可以采用不同的方法进行分离纯化。

以下是常用的蛋白质分离纯化方法:1.等电聚焦(isoelectric focusing):该方法基于蛋白质在不同pH条件下的电荷差异进行分离。

通过在一个pH梯度中施加电场,蛋白质会在电场的作用下聚集在其等电点(pI)附近,从而实现分离纯化。

2.非变性凝胶电泳(non-denaturing gel electrophoresis):该方法是一种较为粗略的分离纯化方法,通过基于蛋白质的分子质量进行分离。

常见的非变性凝胶电泳方法包括聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,PAGE)和琼脂糖凝胶电泳(agarose gel electrophoresis)。

3.变性凝胶电泳(denaturing gel electrophoresis):与非变性凝胶电泳相比,变性凝胶电泳在分离蛋白质时去除了二级结构和三级结构的影响,使蛋白质只以其分子质量差异进行分离。

SDS-PAGE是最常用的变性凝胶电泳方法之一,它利用SDS (十二烷基硫酸钠)将蛋白质变性,并在凝胶中形成等电点电泳进而进行分离。

4.柱层析(chromatography):柱层析是一种基于蛋白质在固定相上的亲和力、大小、电荷等性质差异进行分离的方法。

常见的柱层析方法包括凝胶层析、离子交换层析、亲和层析和凝胶过滤层析等。

5.亲和纯化(affinity purification):该方法利用目标蛋白与特定亲和剂之间的特异性相互作用进行分离。

通过将亲和剂固定在固定相上,然后将混合物经过固定相,目标蛋白会与亲和剂结合,其他杂质则被洗脱。

蛋白纯化工艺设计思路

蛋白纯化工艺设计思路

蛋白纯化工艺设计思路
在进行蛋白纯化时,设计合理的工艺流程是非常重要的。

一个优秀的蛋白纯化
工艺应当能够高效地提取目标蛋白并确保其纯度和活性。

本文将探讨蛋白纯化工艺设计的一些关键思路和步骤。

1. 目标蛋白初步分析
在开始设计蛋白纯化工艺之前,首先需要对目标蛋白进行初步的分析,包括目
标蛋白来源、理化性质、目标纯度要求等。

这些信息将有助于确定合适的纯化方法和工艺条件。

2. 确定合适的分离方法
根据目标蛋白的性质,选择合适的分离方法是关键。

常用的蛋白分离方法包括
凝胶过滤、离子交换、亲和层析等。

需要综合考虑分离方法的选择性、分离效率和易操作性。

3. 优化纯化工艺流程
在确定了分离方法后,需要对纯化工艺流程进行优化。

这包括初步的样品处理、上样、洗脱和纯化步骤的顺序和条件优化,以提高纯化效率和产率。

4. 确保纯化效果和稳定性
在整个纯化工艺中,需要注意保持目标蛋白的活性和稳定性。

在操作过程中应
避免蛋白的不必要暴露和损伤,同时控制温度、pH值和盐浓度等因素以维持蛋白
的结构和功能。

5. 后处理步骤
完成蛋白纯化后,通常还需要进行一些后处理步骤,如浓缩、净化、滤除等,
以获得最终的目标蛋白产品。

在后处理过程中,需要特别注意维持蛋白产品的质量和稳定性。

结语
蛋白纯化工艺设计是一个复杂而关键的过程,需要综合考虑蛋白的性质和工艺
条件,并不断优化和改进工艺流程,以确保获得高纯度和高活性的目标蛋白。

只有通过科学合理的设计和严格的操作,才能最终获得满足需求的优质蛋白产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的提取和纯化-- 选择分离材料及预处理蛋白质的提取和纯化-- 选择分离材料及预处理以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。

蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。

一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。

在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。

蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。

微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。

对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:( 1 )得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。

植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。

对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。

另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。

细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3 体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。

此法适用于动物内脏组织、植物肉质种子等。

2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。

3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100 毫克菌体/毫升浓度,在1KG 至10KG 频率下处理10-15 分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。

对超声波敏感和核酸应慎用。

4、反复冻融法:将细胞在-20 度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF )也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

蛋白质的分离纯化一,蛋白质(包括酶)的提取大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。

(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5 倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。

提取的温度要视有效成份性质而定。

一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。

但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温( 5 度以下)操作。

为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。

下面着重讨论提取液的pH 值和盐浓度的选择。

1、pH 值蛋白质,酶是具有等电点的两性电解质,提取液的pH 值应选择在偏离等电点两侧的pH 范围内。

用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。

2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。

同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl 等中性盐,一般以0.15 摩尔。

升浓度为宜。

缓冲液常采用0.02-0.05M 磷酸盐和碳酸盐等渗盐溶液。

(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。

但必须在低温下操作。

丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40 度为6.6%)不会引起酶的变性失活。

另外,丁醇提取法的pH 及温度选择范围较广,也适用于动植物及微生物材料。

二、蛋白质的分离纯化通常在做纯化前对自己的目标物质特性了解越多对纯化将会越有利,如果不太了解,也可以通过电泳知道目标物质和杂质的情况,找到一种简单的鉴定方法,此外在纯化前必须先建立可靠的活性测定的方法。

如果是未知的蛋白,那么通常可以有几种简单的摸索:1. 凝胶过滤色谱。

这个方法很常用,但是效率不高,对低浓度的样品没有富集作用,上样量小。

2. 离子交换色谱。

此法很常用,但是样品必须没有高浓度的盐。

3. 疏水色谱。

此法较好,它分离效率高,上样量大,特别适合分离盐析沉淀的样品。

4. 亲和色谱。

是最有效的手段,关键了解目标物质的特性以便选择合适的亲和色谱填料。

蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4 和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。

盐析时若溶液pH 在蛋白质等电点则效果更好。

由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

影响盐析的因素有:( 1 )温度:除对温度敏感的蛋白质在低温( 4 度)操作外,一般可在室温中进行。

一般温度低蛋白质溶介度降低。

但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25 度)比0 度时溶解度低,更容易盐析。

(2)pH 值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。

(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。

因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在 2.5-3.0% 。

蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。

其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M ,即767 克/升;0度时饱和溶解度为 3.9M ,即676 克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。

硫酸铵溶液的pH 常在 4.5-5.5 之间,当用其他pH 值进行盐析时,需用硫酸或氨水调节。

蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。

此外也可用葡萄糖凝胶G-25 或G-50 过柱的办法除盐,所用的时间就比较短。

2、等电点沉淀法蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH 达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。

3、低温有机溶剂沉淀法用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。

(二)根据蛋白质分子大小的差别的分离方法1、透析与超滤透析法是利用半透膜将分子大小不同的蛋白质分开。

超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。

2、凝胶过滤法也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。

柱中最常用的填充材料是葡萄糖凝胶(Sephadex gel)和琼脂糖凝胶(agarose gel)。

(三)根据蛋白质带电性质进行分离蛋白质在不同pH 环境中带电性质和电荷数量不同,可将其分开。

1、电泳法各种蛋白质在同一pH 条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。

值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH 梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH 位置就停止,此法可用于分析和制备各种蛋白质。

2、离子交换层析法离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM- 纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE 等,当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH 或离子强度办法将吸附的蛋白质洗脱下来。

(四)根据配体特异性的分离方法-亲和色谱法亲和层析法( affinity chromatography )是分离蛋白质的一种极为有效的方法,理即可它经常只需经过一步处使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。

这种方法是根据某些蛋白质与另一种称为配体(Ligand )的分子能特异而非共价地结合。

其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离( Separation ),提纯( Purification )和鉴定( Characterization )是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。

蛋白质的浓缩、干燥及保存一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。

相关文档
最新文档