最全公式总结2 高中代数

合集下载

数学公式大全(数学)

数学公式大全(数学)

数学公式大全(数学)数学公式大全数学是一门关于数量、结构、空间以及变化的学科,它是科学和工程中必不可少的基础。

数学公式是数学思想的精华所在,它们可以用来解决各种数学问题,并在实际应用中发挥重要作用。

本文将为您提供一份数学公式大全,涵盖了数学的各个领域。

一、代数和方程1. 一次方程式:ax + b = 0其中,a和b是已知常数,x是未知数。

2. 二次方程式:ax^2 + bx + c = 0其中,a、b、c是已知常数,x是未知数。

3. 四则运算:- 加法:a + b = c- 减法:a - b = c- 乘法:a × b = c- 除法:a ÷ b = c4. 幂运算:a^n表示将a自乘n次,其中a是底数,n是指数。

5. 开平方:√a表示寻找b,使得b^2 = a,其中a是要开方的数。

6. 排列和组合:- 排列:P(n, k) = n! / (n-k)!- 组合:C(n, k) = n! / (k!(n-k)!)其中,n为元素个数,k为要选择的元素个数,"!"表示阶乘运算。

二、几何和三角学1. 直角三角形:- 勾股定理:a^2 + b^2 = c^2- 正弦定理:sin(A) / a = sin(B) / b = sin(C) / c- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C)2. 圆:- 圆的面积:A = πr^2- 圆的周长:C = 2πr其中,r为圆的半径,π是一个数学常数,近似值为3.14159。

3. 三角函数:- 正弦函数:sin(x)- 余弦函数:cos(x)- 正切函数:tan(x)其中,x为角度。

4. 三角恒等式:- 和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)- 二倍角公式:sin(2A) = 2sin(A)cos(A)三、微积分1. 导数:f'(x)表示函数f(x)对x的变化率。

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论1.2.3.四种命题的相互关系:4.充要条件:(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.5.函数的单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6. 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.7.奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.8.函数()y f x =的图象的对称性:函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.9.两个函数图象的对称性:(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(1.11. 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-], 而函数)([1b kx fy +=-]是])([1b x f ky -=的反函数.12.几个常见的函数方程:(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.13.根式的性质:(1)n a =.(2)当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.14.有理指数幂的运算性质:(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.15.指数式与对数式的互化式:log b a N b a N =⇔=(0,1,0)a a N >≠>.16.对数的换底公式 :log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).17.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈.18.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.19.等比数列的通项公式:1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.20.常见三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.21.同角三角函数的基本关系式:22sin cos 1θθ+=, tan θ=θθcos sin , tan 1cot θθ⋅=.22.正弦、余弦的诱导公式:212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩23.和角与差角公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=).24.二倍角公式:sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.25. 三倍角公式:3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.26.三角函数的周期公式:函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R (A , ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A ,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.27.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.28. 简单的三角方程的通解:sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.29.最简单的三角不等式及其解集:sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.30.组合数公式:m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).31.组合数的两个性质:(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .32.组合恒等式:(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=.33.复数的相等:,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)34.复数z a bi =+的模(或绝对值):||z =||a bi +35.复数的四则运算法则:(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d +-+÷+=++≠++.36.实系数一元二次方程的解:实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,2x =②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.。

高三数学代数知识点归纳

高三数学代数知识点归纳

高三数学代数知识点归纳代数是数学中重要的分支之一,它涉及我们在解决问题时使用的符号和变量。

在高三数学学习中,代数是一个核心的知识点,很多数学题都需要运用代数知识来进行解答。

本文将对高三数学代数知识点进行归纳和总结,以帮助同学们更好地复习和应对考试。

一、一次函数和二次函数1. 一次函数:一次函数的一般形式为y = kx + b,其中k和b为实数,k为斜率,b为截距。

一次函数的图像为一条直线,斜率代表了函数图像的倾斜程度,截距代表了直线与y轴的交点位置。

2. 二次函数:二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

二次函数的图像为抛物线,开口方向和开口程度由a的正负决定。

二次函数的顶点坐标为(-b/2a,f(-b/2a)),对称轴为直线x = -b/2a。

二、等差数列和等比数列1. 等差数列:等差数列是指数列中相邻两项之差恒定的数列。

设首项为a1,公差为d,则等差数列的通项公式为an = a1 + (n-1)d。

等差数列的前n项和公式为Sn = (a1 + an) × n/2。

2. 等比数列:等比数列是指数列中相邻两项之比恒定的数列。

设首项为a1,公比为q,则等比数列的通项公式为an = a1 × q^(n-1)。

等比数列的前n项和公式为Sn = a1 × (q^n - 1)/(q - 1)。

三、指数函数和对数函数1. 指数函数:指数函数的一般形式为y = a^x,其中a为底数,x为指数。

指数函数的图像随底数a的不同而变化,当a>1时,函数图像呈现增长趋势;当0<a<1时,函数图像呈现衰减趋势。

指数函数的特点是过点(0, 1),且在x轴上无穷趋近于0。

2. 对数函数:对数函数是指以某个正数为底,使指数等于自变量的函数。

对数函数通常表示为y = loga(x),其中a为底数,x为函数的返回值。

对数函数的图像随底数a的不同而变化,底数a越大,函数图像变化越陡峭。

高一数学重要知识总结代数运算中的常见公式及应用

高一数学重要知识总结代数运算中的常见公式及应用

高一数学重要知识总结代数运算中的常见公式及应用代数运算中常见的公式及应用代数运算是数学中重要的一部分,它涉及到数字和符号的组合与操作。

在高一数学学习中,我们不可避免地需要运用代数运算来解决各种问题。

本文将对高一数学代数运算中常见的公式及其应用进行总结,帮助同学们更好地理解和应用代数知识。

一、基本符号和运算在代数运算中,我们首先需要了解一些基本符号和运算。

例如,加法、减法、乘法、除法、指数和根号等。

这些基本运算符号是我们进行代数运算的基础,掌握了它们才能顺利进行更复杂的计算。

1. 加法和减法加法是指将两个数相加,用符号“+”表示。

例如,a + b 表示将 a 和b 两个数相加的结果。

减法是指将一个数减去另一个数,用符号“-”表示。

例如,a - b 表示将 b 从 a 中减去的结果。

加法和减法的应用非常广泛,例如在解方程、计算周长和面积等问题中都会用到。

2. 乘法和除法乘法是将两个数相乘,用符号“×”表示。

例如,a × b 表示将 a 和 b 两个数相乘的结果。

除法是将一个数除以另一个数,用符号“÷”表示。

例如,a ÷ b 表示将 a 除以 b 的结果。

乘法和除法在代数运算中也十分重要,例如在求解方程组、计算比例和百分数等问题中都会用到。

3. 指数和根号指数是指一个数被乘以自身若干次,用符号“^”表示。

例如,a^b 表示将 a 乘以自身 b 次。

根号是指一个数的一个或几个平方根,用符号“√”表示。

例如,√a 表示 a 的平方根。

指数和根号经常出现在方程求解、计算平均速度和成本折旧等问题中。

二、代数公式及应用除了基本的运算符号,代数运算中还有许多常见的公式。

这些公式是根据代数的性质和规律总结出来的,具有较广的适用性。

下面将介绍一些常见的代数公式及其应用。

1. 二次方公式二次方公式是一种关于二次方的方程,通常具有以下形式:ax^2 + bx + c = 0。

二次方公式的求解应用非常广泛,例如在抛物线的研究、物体的自由落体运动和工程中的求解等问题中都会用到。

高中数学公式及知识点总结大全

高中数学公式及知识点总结大全

高中数学公式及知识点总结大全数学是一门基础学科,对于高中学生来说,掌握好数学公式和知识点至关重要。

以下是高中数学公式及知识点的全面总结,希望对学生们有所帮助。

一、代数1.1 一元一次方程(ax+b=0)- 方程求根公式:x=-b/a- 解方程步骤:去括号、合并同类项、移项、化简、求解1.2 二元一次方程组(ax+by=c,dx+ey=f)- 解方程步骤:消元法、代入法、等系数法、加减消法、图解法1.3 一元二次方程(ax^2+bx+c=0)- 二次根公式:x=(-b±√(b^2-4ac))/(2a)- 判别式:Δ=b^2-4ac,当Δ>0时有两个不相等实根,当Δ=0时有两个相等实根,当Δ<0时无实根1.4 二次函数- 标准式:y=ax^2+bx+c- 最值判定:当a>0时,函数的最小值为f(x)=-Δ/(4a),当a<0时,函数的最大值为f(x)=-Δ/(4a)1.5 不等式- 一元一次不等式:大于(<)、小于(>)、大于等于(≤)、小于等于(≥)- 一元二次不等式:大于、小于、大于等于、小于等于二、平面几何2.1 三角形- 三角形内角和定理:三角形内角和为180度- 三角形外角定理:三角形的外角等于相对内角的补角- 等边三角形:三条边相等,每个内角为60度2.2 圆- 弧度制:一周对应的弧度为2π- 弧长公式:L=θr- 扇形面积公式:S=θr^2/2- 圆的面积公式:S=πr^22.3 直线与坐标- 斜率公式:m=(y2-y1)/(x2-x1)- 点斜式:y-y1=m(x-x1)- 两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)三、立体几何3.1 体积与表面积- 立方体:体积V=a^3,表面积S=6a^2- 圆柱体:体积V=πr^2h,侧面积S=2πrh,表面积S=2πrh+2πr^2 - 球体:体积V=4/3πr^3,表面积S=4πr^2- 锥体:体积V=1/3πr^2h,侧面积S=πrl,底面积S=πr^2,表面积S=πr(r+l)3.2 三视图与投影- 正交投影:俯视图、正视图、左视图、右视图、前视图、后视图- 等轴投影:正等轴投影、侧等轴投影、俯等轴投影四、概率与统计4.1 概率- 事件概率:P(A)=n(A)/n(S)- 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)- 乘法公式:P(A∩B)=P(A)P(B|A)4.2 统计- 平均数:算术平均数、几何平均数、调和平均数- 中位数:数据中间的数值- 众数:出现频率最高的数值五、函数与导数5.1 常见函数- 幂函数:y=x^n- 指数函数:y=a^x,其中a>0且a≠1- 对数函数:y=loga(x),其中a>0且a≠1- 三角函数:正弦函数、余弦函数、正切函数5.2 导数- 导数定义:f'(x)=lim(h→0)(f(x+h)-f(x))/h- 导数的性质:和法则、差法则、积法则、商法则、链式法则以上是高中数学公式及知识点的全面总结,包括代数、平面几何、立体几何、概率与统计、函数与导数等内容。

代数部分常用公式

代数部分常用公式

代数部分常用公式1、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③(a +b )(a 2-ab +b 2)=a 3+b 3.④(a -b )(a 2+ab +b 2)=a 3-b 3;注:a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab . 2、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n .③(a m )n=a mn .④(ab )n =a n b n .⑤n nn ba b a =)(.⑥a -n =1n a ,特别:()-n=()n .⑦a 0=1(a ≠0)科学记数法:n a 10⨯(1≤a <10,n 是整数) 3、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0)注:=丨a 丨4、分式: nnn ba b a =)( cb ac b c a ±=± bc cdab b d c a ±=± 注:由增根求参数的值:①将原方程化为整式方程 ②将增根带入化简后的整式方程,求出参数的值。

5、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x =24b b ac-±-b 2-4ac 叫根的判别式.⇔>∆0方程有两个不相等的实数根; ⇔=∆0方程有两个相等的实数根; ⇔<∆0方程没有实数根;注意:当△≥0且a ≠0时,一元二次方程有实数根.②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0. ④一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab -,1x 2x =ac; ⑤常用等式:2122122212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=-6、二次函数的图象:函数)0(2≠++=a c bx ax y 的图象是对称轴平行于y 轴的抛物线; ①开口方向:当a>0时,抛物线开口向上,当a<0时,开口向下; ②对称轴:直线abx 2-=; ③顶点坐标()44,22ab ac a b --; ④增减性:当a>0时,如果abx 2-≤,则y 随x 的增大而减小,如果abx 2->,则y 随x 的增大而增大;当a<0时,如果abx 2-≤,则y 随x 的增大而增大,如果abx 2->,则y 随x 的增大而减小;注: 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =- 7、概率与统计 (1)平均数的两个公式① n 个数1x 、2x ……, n x 的平均数为:nx x x x n+++=-......21;② 如果在n 个数中,1x 出现1f 次、2x 出现2f 次……, k x 出现k f 次,并且1f +2f ……+k f =n ,则nf x f x f x x kk +++=- (2211)(2)频率分布直方图频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

代数公式的知识点总结

代数公式的知识点总结

代数公式的知识点总结一、整式的加减。

1. 单项式。

- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:3x,-2y,5,a等都是单项式。

- 系数:单项式中的数字因数叫做这个单项式的系数。

例如在单项式3x中,系数是3;在单项式-(2)/(3)y中,系数是-(2)/(3)。

- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如单项式x^2y的次数是2 + 1=3。

2. 多项式。

- 定义:几个单项式的和叫做多项式。

例如2x+3y,x^2-2x + 1等都是多项式。

- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如在多项式x^2-2x+3中,x^2、-2x、3都是它的项,3是常数项。

- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。

例如多项式x^3-x^2+2的次数是3。

3. 整式。

- 单项式和多项式统称为整式。

4. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如3x^2y与-5x^2y是同类项,2与-7是同类项。

- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如3x^2y - 5x^2y=(3 - 5)x^2y=-2x^2y。

二、一元一次方程。

1. 方程。

- 定义:含有未知数的等式叫做方程。

例如2x+3 = 7,x - y=5等都是方程。

2. 一元一次方程。

- 定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

一般形式是ax + b = 0(a≠0),例如3x+5 = 0就是一元一次方程。

- 解方程的步骤:- 去分母(若方程中有分母时):根据等式的性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。

例如对于方程(x+1)/(2)+(x - 1)/(3)=1,先找出2和3的最小公倍数6,然后方程两边同时乘以6得到3(x + 1)+2(x - 1)=6。

高中数学公式大全完整版

高中数学公式大全完整版

高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。

高中数学所有常用公式结论

高中数学所有常用公式结论

高中数学所有常用公式结论高中数学中常用的公式和结论是指在课程中经常出现的公式和结论。

这些公式和结论在高中数学的学习和应用中起着重要的作用。

下面是一些高中数学中常用的公式和结论的例子:1.二项式定理:$(a+b)^n=C^n_0a^nb^0+C^n_1a^{n-1}b^1+C^n_2a^{n-2}b^2+...+C^n_na^0b^n$2.三角函数的和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3.三角函数的倍角公式:$\sin 2A = 2 \sin A \cos A$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2\sin^2 A$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$4.三角函数的半角公式:$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$\tan \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$5.三角函数的和化积公式:$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$6. 余弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$c^2 = a^2 + b^2 - 2ab \cos C$7. 正弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$8.直角三角形中的勾股定理:在直角三角形ABC中,AB是斜边,AC和BC是两条直角边,则有$AB^2=AC^2+BC^2$9.关于数列和数列的常用公式:*等差数列的通项公式:$a_n=a_1+(n-1)d$*等差数列的前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$*等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$*等比数列的前n项和公式(当$q \neq 1$):$S_n =\frac{a_1(q^n-1)}{q-1}$以上只是一些高中数学中常用的公式和结论的例子,还有很多其他的公式和结论没有一一列举。

代数公式总结

代数公式总结

代数公式总结代数是数学中一个基本的分支,主要研究数与数之间的关系、数量运算的一种方法和表示方式。

在代数中,公式是一种表达式,它使用符号来表示数学关系。

代数公式可以帮助我们简化计算、解决问题,并在各个领域中找到更深入的理解。

在本文中,我将总结代数中常见的公式,并简要介绍它们的应用。

公式一:一次方程一次方程是形如ax + b = 0的方程,其中a和b是已知数,x是未知数。

它是代数中最简单的方程之一,可以用来解决物理、经济学、工程学等实际问题。

解一次方程的步骤是通过移项和化简来求解未知数x。

公式二:二次方程二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c是已知数,x是未知数。

二次方程的解法有很多种,比如因式分解、配方法以及求根公式等。

二次方程在物理、几何学、电子工程等领域中有广泛的应用,比如用于描述物体的运动、建筑物的结构等。

公式三:勾股定理勾股定理是三角学中的基本公式,它描述了直角三角形中边长之间的关系。

公式的表达形式为a^2 + b^2 = c^2,其中a和b是直角三角形的两条直角边,c是斜边。

勾股定理在几何学和物理学中有广泛的应用,可以用来计算物体之间的距离、角度,也可以用来解决建筑设计中的问题。

公式四:因式分解公式因式分解是将一个多项式表示为几个因子的乘积的过程。

因式分解公式有很多种,比如公式(a+b)^2 = a^2 + 2ab + b^2,(a+b)(a-b) = a^2 - b^2等。

因式分解在代数中是一个重要的概念,它可以帮助我们简化计算、解决方程、研究多项式的性质等。

公式五:二次根式公式二次根式公式是指形如√a的表达式,其中a是一个实数。

二次根式公式在几何学和物理学中非常常见,比如用来计算圆的面积、描述物体的形状等。

二次根式的运算有一些特殊的规则,比如乘法公式√a * √b = √(ab),化简公式√(a^2) = |a|等。

总的来说,代数公式是代数中很重要的一部分,它们帮助我们理解数学关系、解决实际问题,也是其他数学分支的基础。

数学函数公式大全

数学函数公式大全

数学函数公式大全一、代数函数1. 线性函数:y = ax + b,其中a和b是常数,x是自变量。

2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,x是自变量。

3. 三次函数:y = ax^3 + bx^2 + cx + d,其中a、b、c和d是常数,x是自变量。

4. 指数函数:y = a^x,其中a是常数,x是自变量。

5. 对数函数:y = log_a(x),其中a是常数,x是自变量。

二、三角函数1. 正弦函数:y = sin(x),其中x是自变量。

2. 余弦函数:y = cos(x),其中x是自变量。

3. 正切函数:y = tan(x),其中x是自变量。

4. 余切函数:y = cot(x),其中x是自变量。

5. 正割函数:y = sec(x),其中x是自变量。

6. 余割函数:y = csc(x),其中x是自变量。

三、反三角函数1. 反正弦函数:y = arcsin(x),其中x是自变量。

2. 反余弦函数:y = arccos(x),其中x是自变量。

3. 反正切函数:y = arctan(x),其中x是自变量。

4. 反余切函数:y = arccot(x),其中x是自变量。

5. 反正割函数:y = arcsec(x),其中x是自变量。

6. 反余割函数:y = arccsc(x),其中x是自变量。

四、双曲函数1. 双曲正弦函数:y = sinh(x),其中x是自变量。

2. 双曲余弦函数:y = cosh(x),其中x是自变量。

3. 双曲正切函数:y = tanh(x),其中x是自变量。

4. 双曲余切函数:y = coth(x),其中x是自变量。

5. 双曲正割函数:y = sech(x),其中x是自变量。

6. 双曲余割函数:y = csch(x),其中x是自变量。

数学函数公式大全五、积分函数1. 不定积分:∫f(x)dx,其中f(x)是函数,x是自变量。

2. 定积分:∫a^bf(x)dx,其中f(x)是函数,a和b是积分区间。

数学公式大全

数学公式大全

数学公式大全1.代数运算法则- 交换律:a + b = b + a, ab = ba- 结合律:(a + b) + c = a + (b + c), (ab)c = a(bc)- 分配律:a(b + c) = ab + ac- 幂运算:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^n =a^n * b^n2.一次方程- 一次方程的一般形式:ax + b = 0, 其中a和b为常数,x为未知数-一次方程解的唯一性:如果a不等于零,则方程有唯一的解x=-b/a3.二次方程- 二次方程的一般形式:ax^2 + bx + c = 0, 其中a、b和c为常数,a不等于零,x为未知数- 二次方程的求解公式:x = (-b ± √(b^2 - 4ac)) / 2a4.三角函数- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边- 余切函数的定义:cotθ = 邻边/对边- 正割函数的定义:secθ = 斜边/邻边- 余割函数的定义:cscθ = 斜边/对边5.三角恒等式- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 三角和差公式:sin(A ± B) = sinAcosB ± cosAsinB, cos(A ± B) = cosAcosB ∓ sinAsinB- 两角和差公式:cos(A - B) = cosAcosB + sinAsinB, cos(A + B) = cosAcosB - sinAsinB6.指数与对数函数- 指数函数的性质:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^m = a^m * b^m- 对数函数的性质:log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m), log_a(1) = 0, log_a(a) = 17.概率-加法原理:对于两个互斥事件A和B,P(A∪B)=P(A)+P(B)-乘法原理:对于两个相互独立的事件A和B,P(A∩B)=P(A)*P(B)-条件概率:P(A,B)=P(A∩B)/P(B)-全概率公式:P(A)=P(A,B)*P(B)+P(A,C)*P(C)+...-贝叶斯定理:P(B,A)=P(A,B)*P(B)/P(A)8.微积分-连续与导数:f(x)在[x,x+h]范围内连续,则f(x)在x处可导- 导数的定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h-链式法则:(f(g(x)))'=f'(g(x))*g'(x)9.矩阵-矩阵乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则AB是一个m行p列的矩阵-矩阵转置:矩阵A的转置记作A^T,其中A^T的第i行第j列的元素是A的第j行第i列的元素-行列式:行列式代表了方阵的一些性质,如行列式为零表示矩阵不可逆。

高中数学所有公式汇总总结

高中数学所有公式汇总总结

高中数学所有公式汇总总结高中数学是学生学习的一门重要学科,其中涵盖了许多基本概念、定理和公式。

掌握并熟练运用这些公式是高中数学学习的关键。

在本文中,我们将对高中数学中的所有公式进行汇总总结,帮助学生更好地复习和掌握这些知识。

一、代数1. 二次函数的一般式:y=ax^2+bx+c2. 一元二次方程的解法:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}3. 平方差公式:(a+b)^2=a^2+2ab+b^24. 定比分点公式:\frac{m}{n}=\frac{x_2-x}{x-x_1}5. 三角函数的基本关系:\sin^2\theta+\cos^2\theta=16. 余切的定义:\cot\theta=\frac{1}{\tan\theta}7. 对数运算规律:\log_ab=\frac{\log_cb}{\log_ca}8. 等比数列通项公式:a_n=a_1\cdot q^{n-1}9. 二项式定理:(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k10. 质因数分解:n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}二、几何1. 三角形的面积公式:S=\frac{1}{2}bh2. 圆的面积公式:S=\pi r^23. 圆锥的体积公式:V=\frac{1}{3}\pi r^2h4. 锥台的体积公式:V=\frac{1}{3}\pi(R^2+r^2+Rr)h5. 二面角余角关系:\alpha+\beta=180^\circ6. 直角三角形三边关系:a^2+b^2=c^27. 多边形内角和公式:S=(n-2)\cdot180^\circ8. 圆心角与弦的关系:\theta=\frac{1}{2}m\alpha9. 角平分线定理:\frac{a}{b}=\frac{c}{d}10. 高度定理:h=\frac{2S}{a}三、概率1. 概率加法:P(A\cup B)=P(A)+P(B)-P(A\cap B)2. 条件概率公式:P(A|B)=\frac{P(A\cap B)}{P(B)}3. 互斥事件概率:P(A\cap B)=04. 独立事件概率:P(A\cap B)=P(A)\cdot P(B)5. 全概率公式:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i)6. 二项分布概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}7. 正态分布概率密度函数:f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}8. 期望的线性性质:E(aX+b)=aE(X)+b9. 二项分布的期望和方差:E(X)=np,Var(X)=np(1-p)10. 正态分布的期望和方差:E(X)=\mu,Var(X)=\sigma^2四、微积分1. 极限定义:\lim_{x\to a}f(x)=L2. 导数定义:f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}3. 导数基本法则:(Cf(x))'=Cf'(x)4. 高阶导数:f^{(n)}(x)5. 极大极小值判定法则:f'(x_0)=0\Rightarrow f(x_0)6. 不定积分线性性质:\int(kf(x)+g(x))dx=k\int f(x)dx+\int g(x)dx7. 分部积分法:\int u dv=uv-\int v du8. 定积分定义:\int_{a}^{b}f(x)dx=F(b)-F(a)9. 牛顿-莱布尼茨公式:\int_{a}^{b}f(x)dx=F(b)-F(a)10. 参数方程的曲线面积:S=\int_{\alpha}^{\beta}f(\theta)g'(\theta)d\theta五、线性代数1. 行列式定义:D=\begin{vmatrix}a & b\\c & d\end{vmatrix}=ad-bc2. 矩阵乘法:C=AB3. 矩阵转置:A^T4. 逆矩阵定义:AA^{-1}=A^{-1}A=I5. 矩阵行列式性质:|A^T|=|A|6. 向量叉乘定义:A\times B=|A|\cdot|B|\sin\theta n7. 点到直线距离公式:d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}8. 埃尔米特矩阵:A=A^*9. 特征值与特征向量:Ax=\lambda x10. 正交矩阵性质:A^TA=AA^T=I以上便是高中数学中所有公式的汇总总结,希朋对您有所帮助。

数学公式大全 全套

数学公式大全 全套

数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。

掌握数学公式是理解和应用数学的关键。

本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。

一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。

高中数学代数公式大全

高中数学代数公式大全

1.集合,函数A BA =B Al B = {x\x e J 4,且 X e 硏= 虫或;YU E} A u = [x\x eU,且兀 $/}card'AY B) = card {A) + card (^) - card (Al H) m ____a n = (a > 0,& N,且 « > 1) 上 1a & =—c » a^=N, log a ^=^^ logQd log/MM) = log A M+logq Nlog& =«log fl M@ E 应)基本型:幺‘⑷二心0/(力=log 亿b(a >0, a#l, ^ > 0) log”(M 二 bo/⑴二a i,(a>0, "1) 同底型:盘化和=&貳oJXX)二 gW (J 、°,a h 1) 山乩/W = i 。

%sW o 35 = sW >o(^ >o, QH 1) 换元型:儿或/(l%力二°2 •数列 等差数列如_禺=勺a n = © + 仏 _ 1)4a, A 9 &成等差=2/=久十A代数部分-p== (a > 0, m,n G N,且 ”>1) ios 4f) = log a M-log QN logo N =\M log"承十刃二上十/=>a 秋十= a k -ba s(2)等比数列a, G, D 成等比 nG? =ab / +M =力 +1 今a”a” = ag 4=1 1-<?I"(纟=1)(3)求和公式 站如1)E.1 2X w 十 1)(2“ 十 1)6 « 另宀 bl 四+1厂[2 J23.不等式a > <aa >b 9 b >c a > ca >b a +u:>b 十 ua^b> c =>a 〉c_ ba >b, c > d da 4-c > b+da > by c >() =>ac > bea >b 9c < 0 => tzG <hca 〉b 〉0,c >d > O^ac <bd a>b>Q=d" > 扩 M > 1)a >b > Z,堆》1)(a _ 坊2 > 0a 9b E R =>/ 4■扩 > 2aba A-b {—a 9 h e R =? --------- > 4ab 2a, b9 c e /?4 =>dt3 +Z)3 +c3>3abca, b, c? 6 => > \jabc3kHH 兰k 士引兰01+ 014.复数a + bl = G+必口a = sb = d* + 勿I = J/ +从[a十加)十(<;十於)=(a十<;)十0十圧为(a十如)_ (c十必)二(a _ c)十0 _坯(a + 如)(E +£»={ac - bd) + ©c + a(t)l a + i)i _ ac Vbd be-ad .di c2 + 护 * c2 +62 ?匕+就討+0护-愀)+・・・+編附a J t-bi = r(cos6,+z sin^)(cossiii&J・q(cosf2 + j sin =勺-G[COS(^I+◎) +,血(A + E)][r (cos召十sin…r/cos 8} +i sin.0o)=r (cos^^+z sm旳叭—J -------------------------r2(cos &2 sin=—[cos@i — 0 J 十i sin〔0] — * J ]r2«(-( 2kn + 3. 2/bz■十0]叭=Vr^cos ----------- - ---- 十g sm ---- --- 1上=0, 1, ??一1ki^Hkilkal习kal= kJhl-hKkii^l^kil+kal|z|2 =讦=zf2]±习二习±Z25.排列组合与二项定律4T =怡("_ 1)(“ _ 2)…(« _称十1) 止-刃!(?? _ 加)I呼_環_呛_1广・化_陀+1)m\c;_ J%二當+曽】C 用=Q«-«匕诃 =c3十4护屯十…十十・・•十即知=4严歹。

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论1.2.3.四种命题的相互关系:4.充要条件:(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.5.函数的单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6. 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.7.奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.8.函数()y f x =的图象的对称性:函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.9.两个函数图象的对称性:(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(1.11. 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-], 而函数)([1b kx fy +=-]是])([1b x f ky -=的反函数.12.几个常见的函数方程:(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.13.根式的性质:(1)n a =.(2)当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.14.有理指数幂的运算性质:(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.15.指数式与对数式的互化式:log b a N b a N =⇔=(0,1,0)a a N >≠>.16.对数的换底公式 :log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).17.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈.18.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.19.等比数列的通项公式:1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.20.常见三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.21.同角三角函数的基本关系式:22sin cos 1θθ+=, tan θ=θθcos sin , tan 1cot θθ⋅=.22.正弦、余弦的诱导公式:212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩23.和角与差角公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=).24.二倍角公式:sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.25. 三倍角公式:3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.26.三角函数的周期公式:函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R (A , ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A ,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.27.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.28. 简单的三角方程的通解:sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.29.最简单的三角不等式及其解集:sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.30.组合数公式:m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).31.组合数的两个性质:(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .32.组合恒等式:(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=.33.复数的相等:,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)34.复数z a bi =+的模(或绝对值):||z =||a bi +35.复数的四则运算法则:(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d +-+÷+=++≠++.36.实系数一元二次方程的解:实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,2x =②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.。

高中数学公式全集(代数部分)

高中数学公式全集(代数部分)

高中数学公式全集(代数部分)【函数】【集合】指定的某一对象的全体叫集合。

集合的元素具有确定性、无序性和不重复性。

【集合的分类】【集合的表示方法】名称定义图示性质子集真子集交集并集补集【不等式】不等式用不等号把两个解析式连结起来的式子叫做不等式不等式的性质含绝对值不等式的性质几个重要的不等式一元一次不等式的解法形式解集R一元二次R不等式的解法绝对值不等式的解法无理不等式的解法【数列】【三角函数】角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单位制关系弧长公式扇形面积公式角度制弧度制角的终边位置角的集合在x轴正半轴上在x轴负半轴上在x轴上在y轴上在第一象限内在第二象限内在第三象限内在第四象限内特殊角的函数/角sina 0 1 0 -1 0cosa 1 0 -1 0 1tana 0 1不存不存三角函数值在在cota不存在10 不存在不存在三 角函 数 的 性质函数定义域值域奇偶性 周期性 单 调 性y=sinxR 奇函数y=cosxR 偶函数y=tanxR奇函数y=cotxR奇函数角/函数正弦 余弦 正切 余切 -a -sina cosa -tana -cota 900a cosa sina cota tana 900+a cosa -sina -cota -tana 1800-a sina -cosa -tana -cota 1800+a -sina -cosa tana cota 2700-a -cosa -sina cota tana 2700+a -cosa sina -cota -tana 3600-a -sina cosa -tana -cotasina cosa tana cota同角 公式倒数关系商数关系平方关系和 差 角 公 式倍 角 公 式万 能公 式半 角 公 式积 化 和 差 公 式和 差 化 积 公 式【复数】复数的定义引入虚数单位i ,规定i 2=1,i 可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=cotx
R
奇函数
☆高中代数 三角函数(二)
诱导公式
角/函数
正弦
余弦
正切
余切
-a
-sina
cosa
-tana
-cota
900a
cosa
sina
cota
tana
900+a
cosa
-sina
-cota
-tana
1800-a
sina
-cosa
-tana
-cota
1800+a
-sina
-cosa
tana
cota
在x轴上
在y轴上
在第一象限内
特殊角的三角函数值
函数/角
0
sina
0
1
0
-1
0
cosa
1
0
-1
0
1
tana
0
1
不存在
0
不存在
0
cota
不存在
1
0
不存在
0
不存在
三角函数的性质
函数
定义域
值域
奇偶性
周期性
单 调 性
y=sinx
R
奇函数
y=cosx
R
偶函数
y=tanx
R
奇函数
复数的定义
引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。形如:a+bi(a,b为实数) a---实部 b----虚部
复数的表示形式
代数形式
三角形式
复数的运算
代数式
三角式
☆高中代数 排列、组合、二项式定理
分 类 计 数 原 理
分 步 计 数 原理
做一件事,完成它有n类不同的办法。第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有mn种方法,则完成这件事共有:N=m1+m2+…+mn种方法。
绝对值不等式的解法
无理不等式的解法
☆高中代数 三角函数(一)

一条射线绕着它的端点旋转所产生的图形叫做角。旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。
角的单位制
关 系
弧 长 公 式
扇 形 面 积 公 式
角度制
弧度制
角的终边
位 置
角 的 集 合
在x轴正半轴上
在x轴负半轴上
高中代数==>函数(一)
【集合】
指定的某一对象的全体叫集合。集合的元素具有确定性、无序性和不重复性。
【集合的分类】
【集合的表示方法】
名 称
定 义
图 示
性 质
子 集
真子集
交集
并集
补集
☆高中代数==>函数(二)
函数的性质
定 义
判定方法
函数的奇偶性
函如果对一函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数
函数名称
解析式
定义域
值 域
奇偶性
单 调 性
正比例函数
R
R
奇函数
反比例函数
奇函数
一次函数
R
R
二次函数
R
高中代数 不等式(一)
不等式
用不等号把两个解析式连结起来的式子叫做不等式
不等式的性质
含绝对值不等式的性质
几个重要的不等式
☆高中代数 不等式(二)
一元一次不等式的解法
形 式
解 集
R
一元二次不等式的解法
R
从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。
排 列 数
组 合 数
从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Pnm
从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm
做一件事,完成它需要分成n个步骤。第一步中有m1种方法,第二步中有m2种方法……,第n步中有mn种方法,则完成这件事共有:N=m1•m2•…•mn种方法。
注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。
排 列
组 合
从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。
选 排 列 数
全 排 列 数
二 项 式 定 理
二项展开式的性质
(1)项数:n+1项
(2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。而每项中a与b的指数之和均等于n。
(3)二项式系数:
各奇数项的二项式数之和等于各偶数项的二项式的系数之和
2700-a
-cosa
-sina
cota
tana
2700+a
-cosa
sina
-cota
-tana
3600-a
-sina
cosa
-tana
-cota
sina
cosa
tana
cota
同角公式
倒数关系
商数关系
平方关系
和差角公式
倍角公式
万能公式
半角公式
积化和差公式
和差化积公式
☆高中代数==>数列
名称
定 义
设P(n)是关于自然n的一个命题,如果(1)当n取第一个值n0(例如:n=1或n=2)时,命题成立(2)假设n=k时,命题成立,由此推出n=k+1时成立。那么P(n)对于一切自然数n都成立。
(1)第一步是递推的基础,第二步的推理根据,两步缺一不可
(2)第二步的证明过程中必须使用归纳假设。
☆高中代数 复数
函数的单调性
对于给定的区间上的函数f(x):
函数的周期性
对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。不为零的常数T叫做这个函数的周期。
(1)利用定义
(2)利用已知函数的周期的有关定理。
高中代数 函数(三)
通 项 公 式
前n项的和公式
其它
数列
按照一定次序排成一列的数叫做数列,记为{an}
如果一个数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式就叫这个数列的通项公式
等差数列
等比数列
数列前n项和与通项的关系:
无穷等比数列所有项的和:
数学归纳法
适 用 范 围
证 明 步 骤
注 意 事 项
只适用于证明与自然数n有关的数学命题
相关文档
最新文档