高中物理选修-电磁波知识点总结

合集下载

高中物理知识重点总结-电磁学部分

高中物理知识重点总结-电磁学部分

高中物理知识重点总结-电磁学部分高中物理学问重点总结-电磁学部分1、基本概念:电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦沟通电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、基本规律:电量平分原理(电荷守恒)库伦定律(留意条件、比较-两个近距离的带电球体间的电场力)电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)电场力做功的特点及与电势能变化的关系电容的定义式及平行板电容器的打算式部分电路欧姆定律(适用条件)电阻定律串并联电路的基本特点(总电阻;电流、电压、电功率及其安排关系)焦耳定律、电功(电功率)三个表达式的适用范围闭合电路欧姆定律基本电路的动态分析(串反并同)电场线(磁感线)的特点等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点常见电场(磁场)的电场线(磁感线)外形(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)电动机的三个功率(输入功率、损耗功率、输出功率)电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;留意点、线、面、斜率、截距的物理意义)安培定则、左手定则、楞次定律(三条表述)、右手定则电磁感应想象的判定条件感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线通电自感现象和断电自感现象正弦沟通电的产生原理电阻、感抗、容抗对交变电流的作用变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)3、常见仪器:示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

高中波学知识点总结

高中波学知识点总结

高中波学知识点总结一、波的基本概念1. 波的定义:波是一种能够在介质中传播的能量、动量和信息的形式。

波的传播是指波源发出的波在介质中传递能量和动量的过程。

2. 波的分类:根据波的传播方式和振动方向,波分为机械波和电磁波两种。

3. 机械波:是波源振动引起媒质分子振动,媒质分子振动引起更远处分子振动,以此类推形成波动传播的一种现象。

机械波需靠介质进行传播,而电磁波可以在真空中传播。

4. 电磁波:是由电场和磁场相互作用而形成的一种波动现象,它是一种横波,能够在真空中传播。

5. 波的性质:包括振幅、波长、频率和波速等。

6. 波的振动方向和传播方向:沿波的传播方向,垂直于波的振动方向。

二、机械波1. 机械波的传播方式:横波(振动方向与波的传播方向垂直)、纵波(振动方向与波的传播方向平行)。

2. 波的传播过程:波源振动引起媒质分子振动,振动的能量传递到周围的介质分子,形成波动传播。

3. 波的传播速度:波速=频率×波长。

4. 波的干涉和衍射现象:波的干涉是指两个波相遇并叠加形成新波的现象,波的衍射是指波在遇到障碍物或孔径时产生弯曲和扩散的现象。

5. 波的折射:波在不同介质中传播时,发生波速和波长的改变。

6. 声波:是由压缩和密度变化引起的波动,是一种机械波。

声波的传播速度受媒质的影响。

7. 理想弹性绳上的波:弹簧振子的周期性振动引起弹性绳上的波动,波的速度与绳的线密度和张力有关。

三、电磁波1. 电磁波的特点:由电场和磁场相互作用而产生的横波,能在真空中传播,速度等于光速。

2. 光波:是一种特殊的电磁波,能够引起人眼的视觉感觉。

3. 光的干涉和衍射现象:光的干涉是指两束光波相遇并叠加形成新波的现象,光的衍射是指光在遇到障碍物或狭缝时产生弯曲和扩散的现象。

4. 光的折射:光在不同介质中传播时发生波速和波长的改变。

5. 波粒二象性:光既具有波动性,又具有颗粒性。

四、波的性质和应用1. 波的干涉:波的干涉是波动现象中的一种重要现象,包括光的干涉和声音的干涉。

物理中的电磁波应用知识点

物理中的电磁波应用知识点

物理中的电磁波应用知识点电磁波是物理学中重要的概念之一,它们在我们的日常生活和科学研究中有着广泛的应用。

本文将介绍一些常见的电磁波应用知识点,从无线通信到医学影像学,帮助读者了解电磁波在不同领域的重要性和应用。

1. 无线通信无线通信是电磁波应用的一个重要领域。

无线电波、微波和红外线等电磁波的应用,使得我们可以通过手机、电视、卫星通信等方式实现远距离的通信。

无线通信技术的发展使得信息传递更加快速方便,为人们的日常生活和工作带来了巨大的便利。

2. 无线能量传输电磁波还可以用于无线能量传输。

无线充电技术是其中的一个应用示例,通过电磁波的辐射和接收可以实现对电子设备的充电。

这种技术在现代生活中变得越来越常见,我们可以通过将手机或其他设备放在充电器上而无需使用电缆进行充电。

3. 雷达系统雷达是一种利用电磁波进行远程探测和监测的技术。

雷达系统利用电磁波的特性,通过发射器发送电磁波并接收它们的反射信号来探测目标的位置和速度。

雷达系统被广泛应用于气象预报、军事侦察、航空导航等领域。

4. 医学影像学电磁波在医学影像学中的应用是一项重要的技术。

X射线、CT扫描和MRI等技术利用了电磁波的穿透能力和与物质相互作用的特性。

这些技术可以帮助医生对内部结构和器官进行诊断,从而更好地了解疾病的情况并制定治疗方案。

5. 激光技术激光是一种高度聚焦的电磁波源,它在很多领域中发挥着重要作用。

激光被广泛应用于工业加工、医疗美容、科学研究和通信等领域。

由于激光的高度单色性和定向性,它可以实现高精度的切割、焊接和测量,并在眼科手术和皮肤治疗中起到重要作用。

总结:电磁波在物理学中是一个重要的概念,在科学研究和日常应用中都具有广泛的用途。

无线通信、无线能量传输、雷达系统、医学影像学和激光技术等领域都是电磁波应用的典型示例。

理解和掌握这些应用知识点可以帮助我们更好地理解电磁波的特性和应用,为我们的生活和工作提供更多便利和可能性。

高中物理:第14章电磁波相对论简介

高中物理:第14章电磁波相对论简介

第14章电磁波相对论简介版块一知识点1变化的磁场产生电场、变化的电场产生磁场'电磁波的产生、发射、接收及其传播Ⅰ1.麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场。

2.电磁场:变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场。

3.电磁波:电磁场(电磁能量)由近及远地向周围传播形成电磁波。

(1)电磁波是横波,在空间传播不需要介质。

(2)v=λf对电磁波同样适用。

(3)电磁波能产生反射、折射、干涉和衍射等现象。

4.发射电磁波的条件(1)要有足够高的振荡频率;(2)电路必须开放,使振荡电路的电场和磁场分散到尽可能大的空间。

5.调制:有调幅和调频两种方法。

6.电磁波的传播(1)三种传播方式:天波、地波、空间波。

(2)电磁波的波速:真空中电磁波的波速与光速相同,c=3.0×108 m/s。

7.电磁波的接收(1)当接收电路的固有频率跟接收到的无线电波的频率相等时,激起的振荡电流最强,这就是电谐振现象。

(2)使接收电路产生电谐振的过程叫作调谐,能够调谐的接收电路叫作调谐电路。

(3)从经过调制的高频振荡中“检”出调制信号的过程叫作检波,检波是调制的逆过程,也叫作解调。

8.电磁波的应用电视和雷达。

知识点2电磁波谱Ⅰ1.定义按电磁波的波长从长到短分布是无线电波、红外线、可见光、紫外线、X射线和γ射线,形成电磁波谱。

最强医用治疗知识点3狭义相对论的基本假设质速关系、质能关系' 相对论质能关系式Ⅰ1.狭义相对论的两个基本假设(1)狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的。

(2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的,光速与光源、观测者间的相对运动没有关系。

2.相对论的质速关系(1)物体的质量随物体速度的增加而增大,物体以速度v 运动时的质量m 与静止时的质量m 0之间有如下关系: m =m 01-⎝ ⎛⎭⎪⎫v c 2。

(2)物体运动时的质量m 总要大于静止时的质量m 0。

人教版高中物理选修3-4第十四章 电磁波基础知识梳理

人教版高中物理选修3-4第十四章 电磁波基础知识梳理

第十四章电磁波14.1 电磁波的发现一、电磁场和电磁波1.麦克斯韦电磁理论的两个基本假设(1)变化的磁场能够在周围空间产生电场。

(2)变化的电场能够在周围空间产生磁场注意:变化的磁场产生的电场,叫感应电场或涡流电场,它的电场线是闭合的;静电荷周围产生的电场叫静电场,它的电场线由正电荷起到负电荷止,是不闭合的。

二、电磁波的产生机理1.电磁场变化的电场和变化的磁场交替产生,形成不可分割的统一体,称为电磁场。

2.电磁波(1)电磁波的产生:变化的电场和磁场交替产生而形成的电磁场是由近及远地传播的,这种变化的电磁场在空间的传播称为电磁波。

(2)电磁波的特点:①电磁波在空间传播不需要介质;在真空中,电磁波的传播速度与光速相同:即 v真空= c = 3.0×108m/s 光是一种电磁波②电磁波是横波,在空间传播时任一位置上(或任一时刻)E、B、v三矢量相互垂直且E和B随时间做正弦规律变化。

③电磁波具有波的共性,能产生干涉、衍射等现象,电磁波与物质相互作用时,能发生反射、吸收、折射等现象,电磁波也是传播能量的一种形式。

④相邻两个波峰(或波谷)之间的距离等于电磁波的波长,一个周期的时间,电磁波传播一个波长的距离。

⑤电磁波的频率为电磁振荡的频率,由波源决定,与介质无关。

(3)电磁波的波速、波长与频率的关系:v=λf,λ=vf。

注意:①同一种电磁波在不同介质中传播时,频率不变(频率由波源决定),波速、波长发生改变,在介质中的速度为v=cn(n为介质对电磁波的折射率),在介质中的速度都比在真空中的速度小.②不同电磁波在同一种介质中传播时,传播速度不同,频率越高波速越小,频率越低波速越大.三、赫兹的电火花一发现了电磁波1.赫兹实验赫兹观察到:当感应圈的两个金属球间有火花跳过时,导线环两个小球间也跳过火花。

据此实验,赫兹在人类历史上首先捕捉到了电磁波。

2.赫兹的其他成果赫兹观察到了电磁波的反射、折射、干涉、偏振和衍射等现象,测量证明了电磁波在真空中具有与光相同的速度c,证实了麦克斯韦关于光的电理论。

高中物理复习电磁学部分

高中物理复习电磁学部分

高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。

本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。

一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。

同性电荷相斥,异性电荷相吸。

电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。

2. 静电场和静电力静电场是指电荷静止时产生的电场。

静电力是指电荷之间由于电场作用而产生的力。

根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。

3. 电场线电场线是描述电场分布形态的一种图示方法。

电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。

电场线不会相交,且垂直于导体表面。

二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。

磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。

2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。

3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。

感应电流具有闭合电路的特点。

三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。

电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。

2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。

包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。

3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。

电磁感应还可以用于磁悬浮列车、无线充电等领域。

2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。

(完整版)高中物理电磁学知识点

(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。

定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。

4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。

单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

高中物理-电磁波谱

高中物理-电磁波谱

5、可见光
波长范围:400nm-700nm 包含七种颜色的色光:红、橙、黄、绿、蓝、聢、
紫 作用:引起人眼视觉
6、紫外线
波长范围:5nm-400nm 特征:具有较大的能量 应用:①杀菌②促进钙的吸收③防伪(例:验钞机) 危害 :过量的紫外线照射会伤害眼睛和皮肤
7、x射线和γ射线
范围:波长比紫外线更短 x射线应用:①检查人体内部器官②金属探伤③ 安检) γ射线应用:①杀死癌细胞②金属探伤
A.红外线的频率最大,可见光的频率最 B.伦琴射线的频率最大,红外线的频率最小 C.可见光的频率最大,红外线的频率最 D.伦琴射线频率最大,可见光的频率最小
4. 关于紫外线,下列说法中正确的是 ( C)
A.一切物体都会发出紫外线 B.紫外线可用于无线电通讯 C.紫外线有较高的能量,足以破坏细胞中的
物质
D.在紫外线照射下,所有物质会发出荧光
C.频率越大,其波长越大 D.频率不同, 传播速度也不同
3.关于电磁波的下列说法,不正确的是( B ) A.电磁波可以在真空中传播 B. 电磁波不能在空气中传播 C. 麦克斯韦第一次通过实验验证了电磁波的存在 D. 赫兹第一次通过实验验证了电磁波的存在
3. 在电磁波谱中,红外线、可见光和伦琴射线 (射线)三个波段的频率大小关系是 (B )
从左向右频率逐渐增大,波长逐渐减小
不同的电磁波由于具有不同的频率,才具有不同的特性
3、无线电波
范围:波长大于1mm,频率小于3GHz 应用:广播、电视、天体物理研究,微波炉中的
微波也是无线电波
4、红外线
范围:波长比无线电波短,比可见光长 特点:红外线具有热效应,任何物体都能辐射红
外线,温度越高,红外辐射越强) 应用:①红外线遥感②遥控③红外线加热

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。

高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲考纲要求1、电磁场,电磁波,电磁波的周期、频率、波长和波速Ⅰ2、无线电波的发射和接收Ⅰ3、电视、雷达Ⅰ知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。

本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。

教学目标:1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论.2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度.3.了解我国广播电视事业的发展.教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论教学难点:定性理解麦克斯韦的电磁场理论教学方法:讲练结合,计算机辅助教学教学过程:一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。

2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率LC T π2=LC f π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关(2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。

分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。

⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。

⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。

【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如右图所示。

则这时电容器正在_____(充电还是放电),电 C Liq t t o o放电 充电 放电 充流大小正在______(增大还是减小)。

解:用安培定则可知回路中的电流方向为逆时针方向,而上极板是正极板,所以这时电容器正在充电;因为充电过程电场能增大,所以磁场能减小,电流在减小。

高中物理-电磁波详解

高中物理-电磁波详解

高中物理-电磁波详解本文将以高中物理的“电磁波”为例,进行详细介绍和解释。

一、基本概念电磁波是指由电场和磁场相互作用而产生并传播的一种物理现象。

电磁波是一种横波,它的振动方向与传播方向垂直。

电磁波能够在真空中传播,不需要介质,具有频率和波长的特性。

电磁波的频率指的是在单位时间内电磁波振动的次数,单位为赫兹(Hz)。

波长指的是一个完整波形在空间中占据的距离,单位为米(m)。

二、电磁波的分类电磁波根据其波长和频率的不同,可以分为不同的种类,具体分为以下几种:1. 无线电波:波长长达几千米至几毫米,可用于广播电视、通讯等领域。

2. 微波:波长在几厘米至几毫米之间,可用于微波炉、雷达、通讯等领域。

3. 红外线:波长在0.7微米至1毫米之间,可用于红外线测温、红外线遥控等领域。

4. 可见光:波长在0.4微米至0.7微米之间,人眼可以识别,也是光学仪器中的重要组成部分。

5. 紫外线:波长在10纳米至400纳米之间,可用于杀菌消毒、紫外线灯、荧光检测等领域。

6. X射线:波长在0.01纳米至10纳米之间,可用于医学成像、材料检测等领域。

7. γ射线:波长小于0.01纳米,是能量最高的电磁波,可用于核物理等领域。

三、电磁波的应用电磁波在现代社会中有着广泛的应用,以下是其中的几个领域:1. 通讯领域:无线电波和微波可以作为通讯信号的载体,无线电技术的发展使得手机、无线局域网、卫星通讯等成为现代通讯的重要方式。

2. 医学领域:X射线和γ射线可用于医学成像和放疗,MRI(核磁共振成像)则是一种利用无线电波的医学成像技术。

3. 工业领域:激光利用了可见光和红外线的特性,可以用于切割、焊接、打印等领域。

4. 能源领域:太阳能就是一种利用太阳光中的可见光和红外线转化为电能的技术。

5. 物理学研究领域:利用X射线和γ射线可以对物质的内部结构进行研究,提供了很多新的发现。

四、例题解析1. 某个无线电台的发射频率为90MHz,求其波长。

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结1.电磁波的基本概念电磁波是由振荡的电场和磁场相互作用而产生的一种波动现象,它既具有波动性质又具有粒子性质。

电磁波的传播速度为光速,即xxxxxxxx8m/s,在真空中传播时速度不变。

2.电磁波的分类电磁波根据频率的不同可分为不同的种类,其中频率从低到高分别为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

3.电磁波的特征量及其关系1)波长:电磁波的波长λ和频率f之间有着确定的关系,即λ=c/f,其中c为光速。

2)频率:电磁波的频率f和波长λ之间有着确定的关系,即f=c/λ。

3)振幅:电磁波的振幅表示电场和磁场的最大值。

4)功率密度:电磁波的功率密度表示单位面积内电磁波传输的能量。

4.电磁波的传播特性1)直线传播:在同一介质中,电磁波呈直线传播。

2)折射:当电磁波从一种介质进入另一种介质时,由于介质折射率的不同,电磁波的传播方向会发生改变。

3)反射:当电磁波遇到介质界面时,会发生反射现象。

4)衍射:电磁波在遇到障碍物或孔时,会产生衍射现象。

5.电磁波的应用电磁波在生活中有着广泛的应用,如无线电通讯、卫星通讯、雷达、医学影像、光通信等。

1.图像特点:中央条纹宽且亮,两侧为间隔不等的明暗相间的条纹(白光入射时为彩色条纹)。

例如,数学家XXX推算出在圆板阴影的中心应有一个亮斑(即著名的泊松亮斑),后被实验证实,说明泊松亮斑是由光的衍射形成的。

2.光的偏振:光是一种横波,也是一种电磁波,因此会出现偏振现象。

自然光是在光波传播方向垂直的平面内,光振动沿各个方向振动强度都相同的光,例如太阳和电灯发出的光。

而偏振光则只在光波传播方向的垂直平面内沿特定方向振动的光。

例如,自然光经过偏振片后会变成偏振光。

另外,当自然光射到两介质分界面时,会同时发生反射和折射,而反射光线和折射光线是光振动方向互相垂直的偏振光。

偏振现象在液晶显示、观看3D电影等方面有广泛的应用。

相机前面的偏振镜可以减弱玻璃表面反射光的影响,使相片更加清晰。

高中物理必备知识点:电磁波谱总结.pptx

高中物理必备知识点:电磁波谱总结.pptx

学海无涯
类:近红外线与远红外线。 近红外线或称短波红外线,波长 0.76~1.5 微米,穿入人体组织较深,约 5~10 毫米;远红外 线或称长波红外线,波长 1.5~400 微米,多被表层皮肤吸收,穿透组织深度小于 2 毫米。 【红外线的物理特性】 1.有热效应 2.穿透云雾的能力强 【红外线的生理作用和治疗作用】 人体对红外线的反射和吸收 红外线照射体表后,一部分被反射,另一部分被皮肤吸收。皮肤对红外线的反射程度与色素 沉着的状况有关,用波长 0.9 微米的红外线照射时,无色素沉着的皮肤反射其能量约 60%; 而有色素沉着的皮肤反射其能量约 40%。长波红外线(波长 1.5 微米以上)照射时,绝大部 分被反射和为浅层皮肤组织吸收,穿透皮肤的深度仅达 0.05~2 毫米,因而只能作用到皮肤 的表层组织;短波红外线(波长 1.5 微米以内)以及红色光的近红外线部分透入组织最深, 穿透深度可达 10 毫米,能直接作用到皮肤的血管、淋巴管、神经末梢及其他皮下组织。 红外线红斑 足够强度的红外线照射皮肤时,可出现红外线红斑,停止照射不久红斑即消失。大剂量红外 线多次照射皮肤时, 可产生褐色大理石样的色素沉着,这与热作用加强了血管壁基底细胞层 中黑色素细胞的色素形成有关。
3、光浴装置 可分局部或全身照射用二种。根据光浴箱的大小不同,在箱内安装 40~60W 的灯泡 6~30 个不等。光浴箱呈半圆形,箱内固定灯泡的部位可加小的金属反射罩。全身光浴箱应附温度 计,以便观察箱内温度,随时调节。
红外线治疗的操作方法 1、患者取适当体位,裸露照射部位。 2、检查照射部位对温热感是否正常。 3、将灯移至照射部位的上方或侧方,距离一般如下: 功率 500W 以上,灯距应在 50~60cm 以上;功率 250~300W,灯距在 30~40cm;功率 2 00W 以下,灯距在 20cm 左右。 4、应用局部或全身光浴时,光浴箱的两端需用布单遮盖。通电后 3~5 分钟,应询问患者的 温热感是否适宜;光浴箱内的温度应保持在 40~50℃。 5、每次照射 15~30 分钟,每日 1~2 次,15~20 次为一疗程。 6、治疗结束时,将照射部位的汗液擦干,患者应在室内休息 10~15 分钟后方可外出。 [附]注意事项 1 治疗时患者不得移动体位,以防止烫伤。 2 照射过程中如有感觉过热、心慌、头晕等反应时,需立即告知工作人员。 3 照射部位接近眼或光线可射及眼时,应用纱布遮盖双眼。 4患部有温热感觉障碍或照射新鲜的瘢痕部位、植皮部位时,应用小剂量,并密切观察局 部反 应,以免发生灼伤。 5血循障碍部位,较明显的毛细血管或血管扩张部位一般不用红外线照射。 照 射方式的选择和照射剂量

高中物理电磁波知识点总结

高中物理电磁波知识点总结

高中物理电磁波知识点总结高中物理麦克斯韦电磁场理论知识点麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组,麦克斯韦方程组是由四个微分方程构成,:(1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献,(2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献.(3)描述了变化的磁场激发电场的规律。

(4)描述了变化的电场激发磁场的规律,麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了:1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和.2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导.3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零.4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,高中物理电磁波知识点1. 振荡电流和振荡电路大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。

2. 电磁振荡及周期、频率(1)电磁振荡的产生(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。

(3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理选修3-4电磁波知识点总结第二章第一节机械波的形成和传播1.机械波的形成和传播(以绳波为例) (1)绳上的各小段可以看做质点.(2)由于绳中各部分之间都有相互作用的弹力联系着,先运动的质点带动后一个质点的运动,依次传递,使振动状态在绳上传播.2.介质能够传播振动的物质.3.机械波(1)定义:机械振动在介质中的传播. (2)产生的条件①要有引起初始振动的装置,即波源. ②要有传播振动的_介质_. (3)机械波的特点①前面质点带动后面质点的振动,后面质点重复前面质点的振动,并且离波源越远,质点的振动越_滞后_. ②各质点振动周期都与波源振动_相同_.③介质中每个质点的起振方向都和波源的起振方向相同_.④波传播的是振动这种形式,而介质的每个质点只在自己的平衡位置附近振动,并不随波迁移.⑤波在传播“振动”这种运动形式的同时,也在传递能量,而且可以传递信息__.1.波的分类按介质中质点的振动方向和波的传播方向的关系不同,常将波分为横波和纵波 .2.横波(1)定义:介质中质点的振动方向和波的传播方向垂直的波.(2)标识性物理量①波峰:凸起来的最高处. (质点振动位移正向最大处)②波谷:凹下去的最低处. (质点振动位移负向最大处)3.纵波(1)定义:介质中质点的振动方向和波的传播方向平行的波.(2)标识性物理量①密部:介质中质点分布密集的部分.②疏部:介质中质点分布稀疏的部分.4.简谐波如果传播的振动是简谐运动,这种波叫做简谐波.波动过程中介质中各质点的运动规律(1)质点的“守位性”:机械波向外传播的只是振动的形式和能量,质点只在各自的平衡位置附近震动,并不随波迁移。

(2)“相同性”:介质中各质点均做受迫振动,各质点振动的周期和频率与波源振动的周期和频率相同,而且各质点开始振动的方向也相同,即各质点的起振方向相同。

(3)“滞后性”:离波源近的质点带动离波源远的质点依次振动,即离波源近的质点振动开始越早,离波源越远的质点振动开始越晚。

波动过程中介质中各质点的振动周期都与波源的振动周期相同,其运动特点可用三句话来描述: (1)先振动的质点带动后振动的质点; (2)后振动的质点重复前面质点的振动;(3)后振动的质点的振动状态落后于先振动的质点.概括起来就是“带动、重复、落后”.已知波的传播方向,可以判断各质点的振动方向,反之亦然.判断方法一:带动法由波的形成原理可知,后振动的质点总是重复先振动质点的运动,若已知波的传播方向而判断质点振动方向时,可在波源一侧找与该质点距离较近的前一质点,如果前一质点在该质点下方,则该质点将向下运动(力求重复前面质点的运动),否则该质点向上运动.判断方法二:上下坡法如图5所示,沿波的传播方向,“上坡”的质点向下振动,如A 、D 、E ;“下坡”的质点向上振动,如B 、C 、F 、G 、H .判断方法三:同侧法如图6所示,波形图上表示传播方向和振动方向的箭头在图像同侧.第二节 波速与波长、频率的关系1.波长(1)定义: 沿波的传播方向,任意两个 相邻的同相振动(也称振动步调完全一致) 的质点之间的距离(包含 一个 “完整的波”),叫做波的波长,常用λ表示. (2)横波中任意两个 相邻 的波峰或波谷之间的距离就是横波的波长.纵波中任意两个 相邻 的密部或疏部之间的距离就是纵波的波长.2.振幅(1)定义:在波动中,各质点离开平衡位置的 最大位移 ,即其振动的振幅,也称为 波的 振幅.(2)波的振幅大小是波所传播 能量大小 的直接量度.3.频率(1)定义:波在传播过程中,介质中质点振动的频率都 相同 ,这个频率被称为波的频率.(2)波的频率等于 波源 振动的频率,与介质的种类 无关 .(3)频率与周期的关系:f =_1T __或f ·T = 1 .1.波速:机械波在 介质 中的传播速度.(1)波速等于波长和频率的乘积.(2)经过一个周期,振动在介质中传播的距离等于一个波长(3)波速等于波长和频率的乘积这一关系虽从机械波得到,但对其他形式的波(电磁波、光波)也成立2.波速的决定因素:由 介质本身的性质决定.3.波速、波长、周期(频率)的关系:v =_λT __或v = λf . 4.波长、频率和波速的决定因素(1)波速由介质决定,与波的频率、波长无关.(2)周期和频率取决于 波源 ,而与v 、λ无直接关系.(3)波长由 波速 和 频率 共同决定.波从一种介质传播到另一种介质,波的频率不变,由于波速的变化,波长也将随之变化.(1)1和9、2和10、3和11……每两个点的振动是完全相同的,只是后一质点比前一质点晚振动一个周期.(2)1和9、2和10、3和11……每两个点到平衡位置的距离是相等如图2所示为一列向右传播的机械波,当波源1开始振动一个周期时,质点9刚好要开始振动. 再过一个周期,波将传播到17质点第三节1.波形图若以横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示该时刻各个质点偏离平衡位置的位移,规定位移的方向向上为正值,向下为负值,则在xOy坐标平面上,描出该时刻各质点的位置(x,y),用平滑曲线将各点连接起来,就得到这一时刻横波的图像.波的图像有时也称为波形图,简称波形.2.正弦波:波形图是正弦曲线的波,又称为正弦波.3.图像的物理意义直观地表明了离波源不同距离的各振动质点在某一时刻的_位置波的图像和振动图像的比较一、波的图像的理解和应用由波的图像可获取的信息1.直接读出波长.若已知波速,可计算出周期、频率.或已知周期、频率可计算出波速.2.直接读出该时刻各质点的位移,间接判断回复力、加速度情况.3.介质中各质点的振幅.4.已知波的传播方向,可知质点的振动方向;已知质点的振动方向,可知波的传播方向.二、波的图像的画法1.特殊点法先找出两点(平衡位置、波峰或波谷等特殊点)并确定其运动方向,然后确定经Δt时间后这两点所达到的位置,最后按正弦规律画出新的波形.该法适用于Δt=n T4(n =1,2,3……)的情况.2.波形平移法在已知波的传播速度的情况下,由Δx=vΔt可得经Δt时间后波向前移动的距离Δx,把图像沿传播方向平移Δx即得到相对应的图像.三、波的图像与振动图像的比较1.波的图像描述的是介质中的“各质点”在“某一时刻”离开平衡位置的位移;而振动图像描述的是“一个质点”在“各个时刻”离开平衡位置的位移.2.横、纵坐标所表示的物理量:波的图像中的横坐标x表示介质中各个振动质点的平衡位置,纵坐标y表示各个振动质点在某时刻的位移;振动图像的横坐标t 表示一个振动质点振动的时间,纵坐标y表示这个质点振动时各个不同时刻的位移.四、波的多解问题1.波具有时间和空间的周期性,传播具有双向性,所以关于波的问题更容易出现多解.造成多解的主要因素有:(1)时间间隔Δt与周期T的关系不明确;(2)波的传播距离Δx与波长λ的关系不明确;(3)波的传播方向不确定.2.在解决波的问题时,对题设条件模糊、没有明确说明的物理量,一定设法考虑其所有的可能性:(1)质点达到最大位移处,则有正向和负向最大位移两种可能;(2)质点由平衡位置开始振动,则有起振方向相反的两种可能;(3)只告诉波速不指明波的传播方向,应考虑沿两个方向传播的可能;(4)只给出两时刻的波形,则有多次重复出现的可能.第四节惠更斯原理波的反射和折射2.波的折射(1)定义:波在传播过程中,从一种介质进入另一种介质时,波传播的方向发生偏折的现象叫做波的折射.(2)折射定律波在介质中发生折射时,入射线、法线、折射线(即折射波线)在_同一平面内内,入射线与折射线分别位于法线两侧,入射角的正弦值与折射角的正弦值之比等于波在第一种介质中的传播速度跟波在第二种介质中的_传播速度_之比.对给定的两种介质,该比值为常数.(3)结论v1v2=sin isin r=λ1λ2①当v1>v2时,i>r,折射线偏向法线.②当v1<v2时,i<r,折射线偏离法线.③当垂直界面入射(i=0)时,r=0,传播方向不变,是折射中的特殊情况.特别提醒(1)频率(f)由波源决定,故无论是反射波还是折射波都与入射波的频率相等,即与波源的振动频率相同.(2)波速(v)由介质决定,故反射波与入射波在同一介质中传播,波速不变,折射波与入射波在不同种介质中传播,波速变化.(3)据v=λf知,波长λ与波速和频率有关,反射波与入射波,频率相同,波速相同,故波长相同,折射波与入射波在不同介质中传播,频率相同,波速不同,故波长不同.1.回声测距(1)当声源不动时,声波遇到了静止的障碍物会返回来继续传播,反射波与入射波在同一介质中传播速度相同,因此,入射波和反射波在传播距离一样的情况下,用的时间相等,设经过时间t听到回声,则声源距障碍物的距离为s=v声.(2)当声源以速度v向静止的障碍物运动或障碍物以速度v向静止的声源运动时,声源发声时障碍物到声源的距离为s=(v声+v) .(3)当声源以速度v远离静止的障碍物或障碍物以速度v远离声源时,声源发声时障碍物到声源的距离为s=(v声-v) .2.超声波定位蝙蝠能发出超声波,超声波遇到障碍物或捕食目标时会被反射回来,蝙蝠就依据接收到的反射回来的超声波来确定障碍物或目标位置,从而确定飞行方向.另外海豚、雷达也是利用波的反射来定位和测速的.第五节第六节波的干涉衍射多普勒效应1.波的叠加原理在几列波传播的重叠区域内,质点要同时参与由几列波引起的振动,质点的总位移等于各列波单独存在时在该处引起的振动位移的矢量和.2.理解(1)如果介质中某些质点处于两列波波峰与波峰、波谷与波谷相遇处,则振动加强 (填“加强”或“减弱”),合振幅将增大 (填“增大”“不变”或“减小”).(2)如果质点处于波峰与波谷相遇处,则振动减弱 (填“加强”或“减弱”),合振幅减小 (填“增大”“不变”或“减小”).1.波的干涉:频率的两列波叠加,使介质中某些区域的质点振动始终加强,另一些区域的质点振动始终减弱,并且这两种区域互相间隔、位置不变 .这种稳定的叠加现象(图样)叫做波的干涉.2.产生干涉的一个必要条件是两列波的频率必须相同.3.波的干涉现象是在特殊条件下波的叠加 . 一切波只要满足一定条件都能发生干涉现象. 能发生干涉现象的两个波源称为相干波源4.加强点(区)和减弱点(区)(1)加强点:质点振动的振幅等于两列波的振幅之和,A=_A1+A2_.(2)减弱点:质点振动的振幅等于两列波的振幅之差,A=_|A1−A2_|_,若两列波振幅相同,质点振动的合振幅就等于零.5.干涉图样及其特征(1)干涉图样:如图2所示.(2)特征①加强区始终加强,减弱区始终减弱(加强区与减弱区不随时间变化).②振动加强的点和振动减弱的点始终在以振源的频率振动,其振幅不变(若是振动减弱点,振幅小),但其位移随时间发生变化.③加强区与减弱区互相间隔且位置固定不变.对干涉理解干涉图样的特点:(1) 两列频率相同的波叠加,振动加强点始终加强,振动减弱点始终减弱。

相关文档
最新文档