电子水准仪原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子水准仪原理

培训讲课人:罗迪辉候讲课时间:4小时

1.1 概述

1963 年Fennel厂研制出了编码经纬仪,加上四十年代已经出现的电磁波测距技术,随着光电技术、计算机技术和精密机械的发展,到八十年代已开始普遍使用电子测角和电子测距技术,然而到八十年代末水准测量还在使用传统仪器。这是由于水准仪和水准标尺不仅在空间上是分离的,而且两者的距离可以以1米多变化到100米,因此在技术上引起数字化读数的困难。

为现实水准仪读数的数字化,人们进行了近30年尝试,如蔡司厂的RENI 002A已使测微器读数能自动完成,但粗度数还需人工读出并按键输入,与精读数一起存入存储器,因此还算不上真正的电子水准仪,又如利用激光扫平仪和带探测的水准标尺,可以使读数由标尺自动记录,由于这种试验结果还不能达到精密几何水准测量的要求,因此也没有解决水准测量读数自动化的难题。

1990年威特厂首先研制出数字水准仪NA2000。可以说,从1990年起,大地测量仪器已经完成了从精密光机仪器向光机电测一体化的高技术产品的过渡,攻克了大地测量仪器中水准仪数字化读数的这一最后难关。

到1994年蔡司厂研制出了电子水准仪DiNi10/20,同年拓普康厂也研制出了电子水准仪DL101/102。这意味着电子水准仪也将普及,并开始了激烈的市场竞争。同时也说明,目前还是几何水准测量的精度高,没有其它方法可以取代。GPS技术只能确定大地高,大地高换算成工程上感兴趣的正,还需要知道高程异常,确定高程异常还少不了精密水准测量。这也是各厂家努力开发电子水准仪的原因之一。最后还说明了拓普康公司具有较高的技术能力,能在世界上第二批研制出电子水准仪。

电子水准仪具有测量速度快、读数客观、能减轻作业劳动强度、精度高、测量数据便于输入计算机和容易实现水准测量内外业一体化的特点,因此它投放市场后很快受到用户青睐。国外的低精度高程测量盛行使用各种类型的激光定线仪和激光扫平仪。因此电子水准仪定位在中精度和高精度水准测量范围,分为两个精度等级,中等精度的标准差为:1.0-1.5mm/Km,高精度的为:0.3--0.4mm/Km。

1.2 电子水准仪的基本原理

电子水准仪又称数字水准仪,它是在自动安平水准仪的基础上发展起来的。它采用条码标尺,各厂家标尺编码的条码图案不相同,不能互换使用。目前照准标尺和调焦仍需目视进行。人工完成照准和调焦之后,标尺条码一方面被成象在望远镜分化板上,供目视观测,另一方面通过望远镜的分光镜,标尺条码又被成象在光电传感器(又称探测器)上,即线阵CCD器件上,供电子读数。因此,如果使用传统水准标尺,电子水准仪又可以象普通自动安平水准仪一样使用。不过这时的测量精度低于电子测量的精度。特别是精密电子水准仪,由于没有光学测微器,当成普通自动安平水准仪使用时,其精度更低。

当前电子水准仪采用了原理上相差较大的三种自动电子读数方法:

1)相关法(徕卡NA3002/3003)

2) 几何法(蔡司DiNi10/20)

3) 相位法(拓普康DL101C/102C)

1.3 相位法原理

拓普康电子水准仪DL101C/102C采用相位法。标尺的条码象经望远镜、调焦镜、补偿器的光学零件和分光镜后,分成两路,一路成象在CCD线阵上,用于进行光电转换,另一路成象在分划板上,供目视观测。DL101标尺上部份条码的图案,其中有三种不同的码条。R表示参考码,其中有三条2mm宽的黑色码条,每两条黑色码条之间是一条1mm宽的黄色码条。以中间的黑码条的中心线为准,每隔30mm就有一组R码条重复出现。在每组R码条左边10mm处有一道黑色的B码

条。在每组参考码R的右边10mm处为一道黑色的A码条。读者不难发现,每组R码条两边的A 和B码条的宽窄不相同,实际上A和B码条的宽度是在0到10mm之间变化,这两种码包含了水准测量时的高度信息。仪器设计时有意安排了它们的宽度按正弦规律变化。其中A码条的周期为600mm,B码条的周期为570mm。当然,R码条组两边的黄码条宽度也是按正弦规律变化的,这样在标尺长度方向上就形成了亮暗强度按正弦规律周期变化的亮度波。条码的下面画出了波形。纵坐标表示黑条码的宽度,横坐标市标尺的长度。实线为A码的亮度波,虚线为B码的亮度波。由于A 和B两条码变化的周期不同,也可以说A和B亮度波的波长不同,在标尺长度方向上的每一位置上两亮度波的相位差也不同。这种相位差就好象传统水准标尺上的分划,它可由标出标尺的长度。只要3能测出标尺底部某处的相位差,也就可由知道该处到标尺底部的高度,因为相位差可以作到和标尺长度一一对应,即具有单值性。这就是适当选则两亮度波的波长,在DL101中A码的周期为600mm,B码的周期为570mm,它们的最小公倍数为11400mm,因此在3m长的标尺上不会有相同的相位差。为了确保标尺底端面,或说相位差分划的端点相位差具有唯一性,A和B码的相位在此错过了π/2。

DL-102C的标尺与DL-101C的略有区别,DL-102C的标尺为白底黑条码,A码的波长为330mm,最小公倍数为3300mm。A和B码在波长底部错开的相位差为π。DL101-C的标尺与DL -102C的标尺可由互换使用。

当望远镜照准标尺后,标尺上某一段的条码就成象在线阵CCD上,黄条码使CCD产生光电流,随条码宽窄的改变,光电流强度也变化。将它进行模数转换(A/D)后,得到不同的灰度值。视距在Δ0.6m时标尺上某小段成象到CCDA上经A/D转换后,得到的不同灰度值(纵坐标),横坐标是CCD 上象素的序号,当灰度值逐一输出时,横轴就代表时间了。横坐标标记的数字判断,仪器采用了512个象素的线阵CCD。视距和视线高的信息的测量信号。

如何从上述测量信号中求出A和B两亮度波的相位差呢?下文用测量人员容易理解的方式来说明。设想纵坐标的灰度值就是表示亮度大小的十进位数字,而且横坐标尺寸已放大到和标尺尺寸一致。我们用一波长为600mm的正弦曲线中的离散灰度值曲线拟合,就可由得到A波的最大振幅和初相位。再用波长为570mm的正弦曲线,就可由得到B波的最大振幅和初相位。我们对最大振幅不太感兴趣,因为随着标尺上的照度不同,最大振幅在不同次数的测量中也不同,对我们求视线高无关紧要。我们求出的A和B两亮度波的初相位之差就是高度数据。不过这是与CCD上第一个象素对应的位置到标尺底端面的高度。我们不难把它换算成CCD中点象素上的相位差,这就好象是中丝读数。

象上述那样人工处理测量信号是很麻烦的,而且很费时间。在DL系列中则采用快速傅里叶变换(FFT)计算方法将测量信号在信号分析器中分解成三个频率分量。由A和B两信号的相位求相位差,即得到视线高读数。这只是初读数。因为视距不同时,标尺上的波长与测量信号波长的比例不同。虽然在同一视距上A和B的波长相同,可由求出相位差,或说视线高,但是可以想象其精度并不高。

R码是为了提高读数精度和求视距二安排的。设两组R码的间距为P(=30mm),它在CCD行阵上成象所占的象素个数为Z,象素宽为D(=25μm),则P在CCD行阵上的成象长度为: L=Z*b (1-5)

Z可由一信号分析中得出,b是CCD光敏窗口的宽度,因此l和P都为已知数据。根据几何光学成象原理,可以象传统仪器用视距丝测量距离的视距测量原理一样求出视距:D=P/l*f (1-6)

式中f是望远镜物镜的焦距。同时还可以求出物象比

A=P/l (1-7)

于是将测量信号放大到与标尺上的一样时,再进行相位测量,就可以精确得出相位差,即视线高。

电子水准仪的三种测量原理各有奥妙,三类仪器都经受了各种检验和实际测量的考验,能胜任精密水准测量作业。拓普康公司在原理上能独树一帜,说明该公司具有雄厚的技术实力,市的值得

相关文档
最新文档