浙教版九年级数学上册《简单事件的概率》教案
2021年浙教版数学九年级上册2.2《简单事件的概率》教案

2021年浙教版数学九年级上册2.2《简单事件的概率》教案一. 教材分析《简单事件的概率》是2021年浙教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行讲解的。
通过本节内容的学习,使学生能够理解简单事件的概率的含义,掌握计算简单事件概率的方法,并能够应用概率知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的概念和基本知识已经有了一定的了解。
但是在理解和应用概率知识解决实际问题时,还存在着一定的困难。
因此,在教学过程中,需要注重引导学生理解和掌握概率的基本概念和方法,并通过丰富的实例,让学生感受概率在生活中的应用。
三. 教学目标1.理解简单事件的概率的含义,掌握计算简单事件概率的方法。
2.能够应用概率知识解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.简单事件的概率的含义。
2.计算简单事件概率的方法。
3.概率在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,通过案例分析和实际问题解决,使学生理解和掌握概率知识,通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT。
2.教学案例和实际问题。
3.小组合作学习分组。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考和探索概率的含义。
例如,抛一枚硬币,正面朝上的概率是多少?让学生感受概率在生活中的应用。
2.呈现(10分钟)通过PPT呈现本节内容的学习目标,让学生明确本节课要学习的内容。
然后,讲解简单事件的概率的定义和计算方法,并通过案例进行分析,使学生理解和掌握。
3.操练(10分钟)让学生通过PPT上的练习题进行自主学习,巩固刚刚学到的知识。
同时,教师进行巡回指导,解答学生的疑问。
4.巩固(10分钟)通过PPT呈现一些实际问题,让学生应用概率知识进行解决。
初中九年级数学教案-浙江教育出版社初中数学九年级上册 简单事件的概率-一等奖

九上《简单事件的概率2》教学设计海曙区宁波实验学校莫蓉丹一、教材分析这节课是建立在前期,已经完成了概率的概念教学和公式教学后的一节概率公式的应用课。
在上一节的单个步骤事件中,直接枚举结果进行概率计算的基础上,这节课主要解决的是多个步骤事件。
本节课在强调枚举,列表,树状图各种方法的应用以外,还提供了如何把不等可能性结果转化为等可能性结果的一种方法,也为后期进一步学习概率奠定了基础。
二、教学目标1进一步掌握简单事件的概率的计算公式以及它的适用条件。
2进一步掌握适用列表,画树状图计算简单事件发生的概率的方法。
3体会概率在日常生活中的一些简单应用。
三、教学重点本节教学的重点是用等可能事件的概率公式解决一些实际问题。
四、教学难点例5要先转化为各种结果的可能性都相等的概率问题,学生不容易想到这种转化方法,是本节教学的难点。
五、教学流程(一)回顾旧知识1课前学生预习完成以下题目1小明周末去外婆家,走到十字路口时,记不清哪个路口通往外婆家,问他一次选对路的概率是_____。
2有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为_____。
3下列说法对吗请说明理由。
1 一道选择题有4个选择支,有且只有一个选择支正确。
如果从4个选择支中任选一个,一共有4种可能性相同的结果,选对的可能结果只有1种,所以选对的概率是1/4 ;2 自由转动如图三色转盘一次,事件“指针落在红色区域”的概率为1/3 。
利用公式求概率的注意点:_______________________________________________________设计意图:利用枚举法进行单个步骤事件的结果列举是上节课的内容,学生的掌握程度较好,这三题帮助复习利用公式法求概率。
第三题的设计意图是发现公式的适用前提:所有结果等可能性且互相排斥并且为例5的等可能性结果转化的必要性进行铺垫。
2回顾公式/n 让学生口述公式中各个字母表示的意思,以及这个公式使用的前提,因为有前面第三题做铺垫,学生比较容易记起公式的适用条件。
初中简单事件概率教案

初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。
2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。
3. 能够运用概率公式计算简单事件的概率。
教学重点:1. 概率的定义及各类事件的概念。
2. 频率与概率的关系。
3. 概率公式的运用。
教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。
2. 运用频率估计概率。
3. 运用概率公式计算简单事件的概率。
教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。
2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。
2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。
三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。
2. 让学生分组讨论,总结频率与概率的关系。
3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。
四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。
2. 强调频率与概率的关系,以及如何运用频率估计概率。
3. 提醒学生掌握概率公式的运用。
五、课后作业(课后自主完成)1. 完成教材课后练习题。
2. 运用概率公式计算生活中的一些简单事件概率。
教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。
通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。
浙教版数学九年级上册-2.2《简单事件的概率》教案

《简单事件的概率》教案教学目标设计用具体、明确、可操作的行为语言,描述本课的三维教学目标.知识和技能目标①.了解事件A 发生的概率为()n m A P =; ②.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率.③.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力.过程与方法目标通过问题情境进一步理解概率的意义,加深对概念的理解,进一步发展学生合作交流的意识和能力教学重点及其依据等可能事件概率的计算.由于七年级下册的列表法只是在树状图的基础上加上表格,但是真正的矩阵式表格需要较强的分析能力,所有用矩阵式表格来分析事件发生的结果总数是本节教学的难点. 教学过程一、创设情境,引入新课【教师活动】:现有一转盘,请在四个颜色区域中,设定一个区域有奖,奖品是一支笔. 几何画板展示:【学生活动预设】:大部分学生都会设定黄色区域有奖,因为黄色区域的面积较大,再让学生自己动手转动转盘,如果刚好落在自己设定有奖的区域,奖得到一份奖品.【教师活动】:如果学生没获奖,可以说:有点可惜,就差那么一点点了,谢谢你的参与.或者说看来想中奖也不是那么容易的.如果学生中奖了,可以说:哇,你的手气很好,奖你一支笔.或者说看来你也很幸运,奖你一支笔,或者说恭喜你.让几位学生都动手实践过后,可以问最后一位学生,为什么你也设定黄色区域有奖?【学生活动预设】:学生回答:因为黄色区域所占的比例比最大;因为黄色区域的面积最大;因为黄色区域的圆心角最大.【教师引导】:这四块区域的可能性相同吗?【学生活动预设】:不相同【设计意图】:让学生动手转转盘,培养学生学习数学的兴趣,激发学生参与互动的热情,幷为下面的等可能事件作铺垫.二、探究新知,巩固应用【教师活动】:现在换成这个转盘,你会设定哪个区域有奖?【学生活动预设】:无所谓,都一样【教师引导】:为什么?【学生活动预设】:这四块的面积相等.(或这四块的圆心角的度数相等)【教师活动】:根据四块颜色区域的面积相等,从而得出指针落在这四块的可能性是相同.再让学生求指针落在黄色区域的概率是多少?你是怎么得到的?【学生活动预设】:14,总共有4种结果总数,而落在黄色区域只有1种,所以指针落在黄色区域的概率就是14.(或1指指针落在黄色区域只有1种,4指所有可能的结果有4种,所有它的概率就是14)【教师引导】:如果我把所有可能的结果总数记为n ,而这一事件记为事件A ,事件A 发生的结果总数记为()m m n ≤,那么事件A 发生的概率就可以这么求?【学生活动预设】:()m P A n =【教师活动】:出示概念:如果事件发生的各种结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为()m m n ≤,那么事件A 发生的概率为()m P A n =学生齐读,教师板书概率公式.【设计意图】:让学生经历事件发生的各种结果的可能性不相同,到相同的过程,自己总结出等可能事件的概率公式.【教师总结】:图1不可以用概率公式进行计算,而图2可以用概率公式进行计算.同学们对概率公式有初步了解,下面我们来判断一下.【教师活动】出示判断题下列说法对吗?请说明理由(1)任意投掷一枚骰子,朝上一面的点数为1的概率是16. (2)自由转动如图三色转盘一次,“指针落在红色区域”的概率为13.可能性不相同 可能性相同(3)任意抛掷两枚均匀硬币,硬币落地后,一正一反的概率是1 3 .【学生活动预设】:(1)是对的,因为骰子共有6个面,每个面都是一样的,而点数1只有一个面,所有它的概率就是16.(2)是错的,因为各种结果的可能性不相同.因为三块颜色区域的面积不一样.因为三块的圆心角不相同,所以不能用概率公式进行计算.(3)学生说是正确的,共有三种情况,分别是两正、两反、一正一反,所有它的概率是13.还有学生可能会说是错误的,共有四种情况,分别是两正、两反、一正一反,一反一正,所有它的概率是1 4 .【教师追问】:可以通过什么方法把各种结果表示出来?【学生活动】:画树状图,到黑板上展示.【设计意图】:意图一是让学生更一步加深对概率公式的应用的前提是各种结果的可能性要相同,意图二是让学生回忆了树状图,为例1的解答提供了方法.三、例题解析,巩固知识例1:最近开泰为了促销,组织了一次抽奖活动,开泰准备甲、乙两个相同的转盘,一次性购满200者,将有一次抽奖活动,要求顾客让两个转盘分别自由转动一次,当转盘停止转动时.求:(1)获奖方式如下:如果两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成),可享受6折优惠.求:P(中奖)(2)获奖方式如下:如果两个指针落在区域的颜色能配成绿色(黄、蓝两色混合)或紫色(红、蓝两色混合配成),可享受6折优惠.求:P(中奖)【教师活动】:首先老师想问一下,指针落在各颜色区域的可能性相同吗?【学生活动预设】:相同,因为扇形的圆心角都是相等的.【教师引导】:既然是一个等可能事件,那么我可以利用公式来进行计算,但是计算之前你必须要知道两个总数,一个是结果总数,一个是事件A 发生的结果总数,那么用什么方法可以很清楚的分清这两个总数?【学生活动预设】:学生画树状图.【师生活动】:教师和学生一起完成树状图.所有总共有9种可能、而中奖的可能结果有2种,所有它的概率就是29. 【设计意图】:师生共同完成树状图,进一步巩固树状图的画法,加深学生的印象.【教师活动】:开泰还有一个备用方案,那么它的概率又是多少呢?【学生活动预设】:49,除了红蓝和蓝红外,还有黄蓝和蓝黄.所有中奖的概率是49. 【教师总结】:“或”指的是两者都可以.【教师活动】:时代看开泰搞活动,也马上组织了一次促销活动.例2:时代也为了促销,组织了一次抽奖活动.时代准备了一个不透明的箱子,箱子中装有4个只有颜色不同的球,其中3个红球,1个白球.一次性购物满200元者将有机甲 乙黄 红 蓝 黄红蓝黄红蓝黄红蓝会获得一次摸球的机会.【教师活动】:首先,老师想问一下,摸到红球和白球的可能性相同吗?为什么?任意摸出一个球的可能性一样吗?【学生活动预设】:摸到红球和白球的可能性不相同,因为红球有3个,而白球只有1个,任意摸出一个球的可能性是一样的.【设计意图】:让学生清楚这是等可能事件.【教师活动】:出示获奖方式获奖方式如下:先从箱子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球,总共摸球两次.若摸出一个红球,一个白球,可以得到一个杯子做纪念.求P(得到杯子)【学生活动预设】:学生动手画树状图,一位学生板演.【设计意图】:看学生用树状图求概率是否完全掌握.【教师活动】:除了画树状图这种分析方法外,还有没有其它的方法?【学生活动预设】:列表法【教师活动】:怎么做,要画几行几列?【学生活动预设】:学生思考,四行四列,五行五列.【教师活动】:我们习惯性第一列写第一次摸出所有可能的结果,第一行写第二次摸出的所有可能的结果,中间的是两次摸球后所有可能的结果.【师生活动】:教师和学生共同完成表格,再求出获奖的概率.【设计意图】:用列表法来分析事件发生的结果总数需较强的分析能力,通过教师的引导,让学生清楚如何来列表,从而降低难度.【教师活动】:时代也有一个备用方案,那么它的概率又是多少呢?出示方案:先从箱子里摸出一个球,记下颜色后不放回,再摸出一个球,总共摸球两次.若摸出一个红球,一个白球,可以得到一个杯子做纪念.求P(得到杯子)【教师活动】:请同学们在刚才树状图和列表的基础上进行修改.请两位同学到黑板上修改.【学生活动预设】:两位学生修改,如果学生改对的,再让学生讲为什么这么改.如果学生改错的,让有不同意见的学生改;最后学生分析为什么这么改.【设计意图】:让学生在原来的基础上进行修改,一是节省事件,二是学生容易想到,在无形中降低难度,其中列表法的修改更难一点,如果学生改对的,学生鼓掌祝贺,从中激发学生学习数学的兴趣.四、出谋划策,学以致用【教师活动】:出示银泰的促销活动银泰见开泰和时代都推出了促销活动,也不甘示弱,于是银泰准备了一个骰子,一次性购满200元者,可获得一次掷骰子的机会.游戏规则:获奖方式如下:任意抛掷这个骰子两次,若两次朝上一面的点数相同,将获得一张300元的代金券.求:P(中奖)【教师活动】:你会选择哪种方法分析方法?【学生活动预设】:部分学生画树状图,部分学生列表法.【教师活动】:大家选择自己的方法来解.【学生活动预设】:学生思考,幷解题.【教师活动】:教师巡视,让两位学生到黑板上来展示.【学生活动预设】:两位同学到黑板上板演,其他同学在练习本上解答.【师生活动】:两位同学写的对吗?对.【教师活动】:两位同学都解的很好,从两位同学的解答过程来看,我们发现了什么?【学生活动预设】:树状图太长了,列表法更简单一点.【教师总结】:当数据大于4个,我们常采用列表法来解.【设计意图】:为下面的小组合作设计方案做好铺垫.【教师活动】:银泰老板很烦恼,只有一个方案,现请同学们帮他出谋划策一下.游戏规则:获奖方式如下:任意抛掷这个骰子两次,若_____________________,将获得一张300元的代金券.求:P(中奖)活动要求:1、4人小组交流,设计方案.2、求出P(中奖)3、每小组轮流讲述本小组的设计方案,其它小组抢答,答对者加分,最后小组获胜者有奖.【教师活动】:教师巡视,幷指导.【学生活动预设】:小组分工,一人记方案,一人算概率,两人出谋划策.①如果两次点数的积是奇数,你将获得一张100元的代金券.1 ()=4 P获奖②如果两次点数的和是3的倍数,你将获得一张100元的代金券.1 ()=3 P获奖③如果两次点数的和为奇数(或偶数),你将获得一张100元的代金券.1 ()=2 P获奖④如果两次点数的积为大于2,你将获得一张100元的代金券.3311 ()=3613 P获奖⑤如果两次点数都是奇数(偶数),你将获得一张100元的代金券.1 ()=4 P获奖⑥如果两次点数的积为偶数,你将获得一张100元的代金券.3 ()=4 P获奖⑩……小组讲方案,其他小组抢答,若打错,则再抢答,若答对,讲解怎么得到的,幷加分,最后分数高者获胜.【设计意图】:让学生都开动脑筋,积极参与,巩固和加深本节课所学的知识点.五、【课堂小结,盘点收获】:通过本节课的学习,你有哪些收获?通过本节课的学习,我知道了……通过本节课的学习,我学会了……通过本节课的学习,我明白了……六、【布置作业,及时应用】:1、任意把骰子连续抛掷两次(1)写出抛掷后的所有可能的结果;(2)朝上一面的点数一次为3,一次为4的概率;(3)朝上一面的点数相同的概率;(4)朝上一面的点数都为偶数的概率;(5)两次朝上一面的点数的和为5的概率2、小明和小刚正在做掷骰子的游戏.两人各掷一枚骰子.游戏规则:当两枚骰子的点数之积为奇数时,小刚得1分,否则小明得1分.这个游戏对双方公平吗?为什么?如果不公平如何改游戏规则,可让这个游戏变得公平.。
简单事件的概率教案浙教版九年级数学上册

运用公式nm P(A)=求简单事件发生的概率时,首先应确定所有结果的可能性都相等,然后确定所有可能的结果总数 n 和事件 A 包含其中的结果数 m.活动意图说明:通过做练习,学生复习上节课知识,为本节课所学内容做铺垫。
环节二:探究用树状图或表格表示概率 教师活动2: 教师出示课本问题:一个布袋里装有 4 个只有颜色不同的球,其中 3 个红球,1 个白球. 从布袋里摸出1 个球,记下颜色后放回,搅匀,再摸出 1 个球. 求下列事件发生的概率: (1)事件 A :摸出 1 个红球,1 个白球. (2)事件 B :摸出 2 个红球援解:为方便起见,我们将 3 个红球编号为红1,红2,红3 . 根据题意,第一次和第二次摸球的过程中,摸到4 个球中任意一个球的可能性都是相同的.两次摸球的所有可能的结果可列表表示。
由表可知,n=4×4=16.(1)事件A 包含其中的结果数m=6(如表中绿色部分),.83166n m P(A)===∴ (2)事件B 包含其中的结果数m=9(如表中紫色部分),.169n m P(B)==∴学生活动2:全体学生大胆发言。
对于合理、正确的教师给予高度肯定,激发学生的兴趣.学生在教师的引导下完成解题过程,教师讲解解题方法。
用列表法求概率:1.当一次试验涉及两个因素,并且可能出现的等可能结果数目较多时,为不重不漏地列出所有可能的结果,常采用列表法.2.具体步骤:(1)列表,选其中的一次操作(或一个条件)为竖列,另一次操作(或另一个条件)为横行,列出表格;(2)通过表格计数,确定所有可能的结果总数 n和事件A 包含其中的结果数 m;想一想:怎样用树状图表示本题中事件发生的不同结果?用画树状图法求概率:当一次试验涉及两个或更多个因素时,为了不重不漏地列出所有等可能的结果,通常采用画树状图法.1.用树状图或表格表示概率可以较方便地求出某些事件发生的概率或策划某些事件使达到预期的概率.2.利用树状图或表格可以更直观,具体地表示出某个事件发生的所有可能出现的结果. 学生根据所学知识用树状图表示本题中事件发生的不同结果。
浙教版数学九年级上册《2.2 简单事件的概率》教学设计

浙教版数学九年级上册《2.2 简单事件的概率》教学设计一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》是学生在学习了概率基础知识后,进一步探究简单事件概率的内容。
本节课通过具体的例子,让学生理解并掌握简单事件的概率计算方法,为后续学习更复杂事件的概率打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对概率的概念和意义已经有了一定的了解。
但在实际计算过程中,可能会对如何正确运用概率公式产生困惑。
因此,在教学过程中,需要关注学生对概率公式的理解和运用情况。
三. 教学目标1.理解简单事件的概率定义及其计算方法。
2.能够运用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:简单事件的概率定义及其计算方法。
2.难点:如何正确运用概率公式计算简单事件的概率。
五. 教学方法1.情境教学法:通过生活中的实际例子,引发学生对简单事件概率的思考,提高学生的学习兴趣。
2.互动教学法:引导学生参与课堂讨论,培养学生的逻辑思维能力和团队合作精神。
3.案例教学法:分析具体案例,让学生理解并掌握简单事件概率的计算方法。
4.实践教学法:让学生通过动手操作,巩固所学内容,提高解决实际问题的能力。
六. 教学准备1.教学PPT:制作涵盖本节课重点内容的PPT,以便于课堂展示和讲解。
2.案例材料:准备一些生活中的案例,用于引导学生思考和分析。
3.练习题:准备一些有关简单事件概率的练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)利用PPT展示一些与概率相关的图片,如抛硬币、抽奖等,引导学生思考:这些现象中是否存在某种规律?从而引出本节课的主题——简单事件的概率。
2.呈现(10分钟)通过PPT讲解简单事件的概率定义及其计算方法,让学生理解并掌握如何计算简单事件的概率。
3.操练(10分钟)让学生分组讨论,分析案例材料中的具体问题,运用概率公式计算简单事件的概率。
浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。
本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。
但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。
三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.教学难点:事件的分类和概率的计算方法。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。
同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。
2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。
3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。
4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。
浙教版九年级数学第二章简单事件的概率全章教案

课题:2.1事件的可能性教学目标:1、通过生活中的实例,进一步了解概率的意义;2、理解等可能事件的概念,并准确判断某些随机事件是否等可能;3、体会简单事件的概率公式的正确性;4、会利用概率公式求事件的概率。
教学重点: 等可能事件和利用概率公式求事件的概率。
教学难点:判断一些事件可能性是否相等。
教学过程:第一课时 一、引言 出示投影:(1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。
据统计平均出生1千万头牛才会有一头是白色的。
你认为出生一头白色奶牛的概率是多少? (2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于9991,则密码的位数至少需要多少位?这些问题都需要我们进一步学习概率的知识来解决。
本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。
二、简单事件的概率1、引例:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少?小结:在数学中,我们把事件发生的可能性的大小,称为事件发生的概率如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是nm A P )(。
2、练习:如图 三色转盘,每个扇形的圆心角度数相等,让转盘自由转动一次, “指针落在黄色区域”的概率是多少? 3、知识应用:例1、如图,有甲、乙两个相同的转盘。
让两个转盘分别自由转动一次,当转盘停止转动,求(1)转盘转动后所有可能的结果;(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; 3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 解:将两个转盘分别自由转动一次,所有可能的结果可表示为如图,且各种结果的可能性相同。
所以所有可能的结果总数为n =3×3=9 (1)能配成紫色的总数为2种,所以P =92。
(2)能配成绿色或紫色的总数是4种,所以P =94。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单事件的概率》教案教学目标设计用具体、明确、可操作的行为语言,描述本课的三维教学目标.知识和技能目标①.了解事件A 发生的概率为()nm A P =; ②.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率.③.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力.过程与方法目标通过问题情境进一步理解概率的意义,加深对概念的理解,进一步发展学生合作交流的意识和能力教学重点及其依据等可能事件概率的计算.由于七年级下册的列表法只是在树状图的基础上加上表格,但是真正的矩阵式表格需要较强的分析能力,所有用矩阵式表格来分析事件发生的结果总数是本节教学的难点. 教学过程一、创设情境,引入新课【教师活动】:现有一转盘,请在四个颜色区域中,设定一个区域有奖,奖品是一支笔. 几何画板展示:【学生活动预设】:大部分学生都会设定黄色区域有奖,因为黄色区域的面积较大,再让学生自己动手转动转盘,如果刚好落在自己设定有奖的区域,奖得到一份奖品.【教师活动】:如果学生没获奖,可以说:有点可惜,就差那么一点点了,谢谢你的参与.或者说看来想中奖也不是那么容易的.如果学生中奖了,可以说:哇,你的手气很好,奖你一支笔.或者说看来你也很幸运,奖你一支笔,或者说恭喜你.让几位学生都动手实践过后,可以问最后一位学生,为什么你也设定黄色区域有奖?【学生活动预设】:学生回答:因为黄色区域所占的比例比最大;因为黄色区域的面积最大;因为黄色区域的圆心角最大.【教师引导】:这四块区域的可能性相同吗?【学生活动预设】:不相同【设计意图】:让学生动手转转盘,培养学生学习数学的兴趣,激发学生参与互动的热情,幷为下面的等可能事件作铺垫.二、探究新知,巩固应用【教师活动】:现在换成这个转盘,你会设定哪个区域有奖?【学生活动预设】:无所谓,都一样【教师引导】:为什么?【学生活动预设】:这四块的面积相等.(或这四块的圆心角的度数相等)【教师活动】:根据四块颜色区域的面积相等,从而得出指针落在这四块的可能性是相同.再让学生求指针落在黄色区域的概率是多少?你是怎么得到的?【学生活动预设】:14,总共有4种结果总数,而落在黄色区域只有1种,所以指针落在黄色区域的概率就是14.(或1指指针落在黄色区域只有1种,4指所有可能的结果有4种,所有它的概率就是14)【教师引导】:如果我把所有可能的结果总数记为n,而这一事件记为事件A,事件A 发生的结果总数记为()m m n ≤,那么事件A 发生的概率就可以这么求?【学生活动预设】:()m P A n =【教师活动】:出示概念:如果事件发生的各种结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为()m m n ≤,那么事件A 发生的概率为()m P A n =学生齐读,教师板书概率公式.【设计意图】:让学生经历事件发生的各种结果的可能性不相同,到相同的过程,自己总结出等可能事件的概率公式.【教师总结】:图1不可以用概率公式进行计算,而图2可以用概率公式进行计算.同学们对概率公式有初步了解,下面我们来判断一下.【教师活动】出示判断题下列说法对吗?请说明理由(1)任意投掷一枚骰子,朝上一面的点数为1的概率是16. (2)自由转动如图三色转盘一次,“指针落在红色区域”的概率为13.(3)任意抛掷两枚均匀硬币,硬币落地后,一正一反的概率是13.可能性不相同可能性相同【学生活动预设】:(1)是对的,因为骰子共有6个面,每个面都是一样的,而点数1只有一个面,所有它的概率就是16.(2)是错的,因为各种结果的可能性不相同.因为三块颜色区域的面积不一样.因为三块的圆心角不相同,所以不能用概率公式进行计算.(3)学生说是正确的,共有三种情况,分别是两正、两反、一正一反,所有它的概率是13.还有学生可能会说是错误的,共有四种情况,分别是两正、两反、一正一反,一反一正,所有它的概率是14. 【教师追问】:可以通过什么方法把各种结果表示出来?【学生活动】:画树状图,到黑板上展示.【设计意图】:意图一是让学生更一步加深对概率公式的应用的前提是各种结果的可能性要相同,意图二是让学生回忆了树状图,为例1的解答提供了方法.三、例题解析,巩固知识例1:最近开泰为了促销,组织了一次抽奖活动,开泰准备甲、乙两个相同的转盘,一次性购满200者,将有一次抽奖活动,要求顾客让两个转盘分别自由转动一次,当转盘停止转动时.求:(1)获奖方式如下:如果两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成), 可享受6折优惠.求:P (中奖)(2)获奖方式如下:如果两个指针落在区域的颜色能配成绿色(黄、蓝两色混合)或紫色(红、蓝两色混合配成),可享受6折优惠.求:P (中奖)【教师活动】:首先老师想问一下,指针落在各颜色区域的可能性相同吗?【学生活动预设】:相同,因为扇形的圆心角都是相等的.【教师引导】:既然是一个等可能事件,那么我可以利用公式来进行计算,但是计算之前你必须要知道两个总数,一个是结果总数,一个是事件A 发生的结果总数,那么用什么方法可以很清楚的分清这两个总数?【学生活动预设】:学生画树状图.【师生活动】:教师和学生一起完成树状图.所有总共有9种可能、而中奖的可能结果有2种,所有它的概率就是29. 【设计意图】:师生共同完成树状图,进一步巩固树状图的画法,加深学生的印象.【教师活动】:开泰还有一个备用方案,那么它的概率又是多少呢?【学生活动预设】:49,除了红蓝和蓝红外,还有黄蓝和蓝黄.所有中奖的概率是49. 【教师总结】:“或”指的是两者都可以.【教师活动】:时代看开泰搞活动,也马上组织了一次促销活动.例2:时代也为了促销,组织了一次抽奖活动.时代准备了一个不透明的箱子,箱子中装有4个只有颜色不同的球,其中3个红球,1个白球.一次性购物满200元者将有机会获得一次摸球的机会.【教师活动】:首先,老师想问一下,摸到红球和白球的可能性相同吗?为什么?任意摸出一个球的可能性一样吗?【学生活动预设】:摸到红球和白球的可能性不相同,因为红球有3个,而白球只有1个,任意摸出一个球的可能性是一样的.【设计意图】:让学生清楚这是等可能事件. 甲 乙黄 红 蓝 黄红蓝黄红蓝黄红蓝【教师活动】:出示获奖方式获奖方式如下:先从箱子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球,总共摸球两次.若摸出一个红球,一个白球,可以得到一个杯子做纪念.求P(得到杯子)【学生活动预设】:学生动手画树状图,一位学生板演.【设计意图】:看学生用树状图求概率是否完全掌握.【教师活动】:除了画树状图这种分析方法外,还有没有其它的方法?【学生活动预设】:列表法【教师活动】:怎么做,要画几行几列?【学生活动预设】:学生思考,四行四列,五行五列.【教师活动】:我们习惯性第一列写第一次摸出所有可能的结果,第一行写第二次摸出的所有可能的结果,中间的是两次摸球后所有可能的结果.【师生活动】:教师和学生共同完成表格,再求出获奖的概率.【设计意图】:用列表法来分析事件发生的结果总数需较强的分析能力,通过教师的引导,让学生清楚如何来列表,从而降低难度.【教师活动】:时代也有一个备用方案,那么它的概率又是多少呢?出示方案:先从箱子里摸出一个球,记下颜色后不放回,再摸出一个球,总共摸球两次.若摸出一个红球,一个白球,可以得到一个杯子做纪念.求P(得到杯子)【教师活动】:请同学们在刚才树状图和列表的基础上进行修改.请两位同学到黑板上修改.【学生活动预设】:两位学生修改,如果学生改对的,再让学生讲为什么这么改.如果学生改错的,让有不同意见的学生改;最后学生分析为什么这么改.【设计意图】:让学生在原来的基础上进行修改,一是节省事件,二是学生容易想到,在无形中降低难度,其中列表法的修改更难一点,如果学生改对的,学生鼓掌祝贺,从中激发学生学习数学的兴趣.四、出谋划策,学以致用【教师活动】:出示银泰的促销活动银泰见开泰和时代都推出了促销活动,也不甘示弱,于是银泰准备了一个骰子,一次性购满200元者,可获得一次掷骰子的机会.游戏规则:获奖方式如下:任意抛掷这个骰子两次,若两次朝上一面的点数相同,将获得一张300元的代金券.求:P(中奖)【教师活动】:你会选择哪种方法分析方法?【学生活动预设】:部分学生画树状图,部分学生列表法.【教师活动】:大家选择自己的方法来解.【学生活动预设】:学生思考,幷解题.【教师活动】:教师巡视,让两位学生到黑板上来展示.【学生活动预设】:两位同学到黑板上板演,其他同学在练习本上解答.【师生活动】:两位同学写的对吗?对.【教师活动】:两位同学都解的很好,从两位同学的解答过程来看,我们发现了什么?【学生活动预设】:树状图太长了,列表法更简单一点.【教师总结】:当数据大于4个,我们常采用列表法来解.【设计意图】:为下面的小组合作设计方案做好铺垫.【教师活动】:银泰老板很烦恼,只有一个方案,现请同学们帮他出谋划策一下.游戏规则:获奖方式如下:任意抛掷这个骰子两次,若_____________________,将获得一张300元的代金券.求:P(中奖)活动要求:1、4人小组交流,设计方案.2、求出P(中奖)3、每小组轮流讲述本小组的设计方案,其它小组抢答,答对者加分,最后小组获胜者有奖.【教师活动】:教师巡视,幷指导.【学生活动预设】:小组分工,一人记方案,一人算概率,两人出谋划策.①如果两次点数的积是奇数,你将获得一张100元的代金券.1 ()=4 P获奖②如果两次点数的和是3的倍数,你将获得一张100元的代金券.1 ()=3 P获奖③如果两次点数的和为奇数(或偶数),你将获得一张100元的代金券.1 ()=2 P获奖④如果两次点数的积为大于2,你将获得一张100元的代金券.3311 ()=3613 P获奖⑤如果两次点数都是奇数(偶数),你将获得一张100元的代金券.1 ()=4 P获奖⑥如果两次点数的积为偶数,你将获得一张100元的代金券.3 ()=4 P获奖⑩……小组讲方案,其他小组抢答,若打错,则再抢答,若答对,讲解怎么得到的,幷加分,最后分数高者获胜.【设计意图】:让学生都开动脑筋,积极参与,巩固和加深本节课所学的知识点.五、【课堂小结,盘点收获】:通过本节课的学习,你有哪些收获?通过本节课的学习,我知道了……通过本节课的学习,我学会了……通过本节课的学习,我明白了……六、【布置作业,及时应用】:1、任意把骰子连续抛掷两次(1)写出抛掷后的所有可能的结果;(2)朝上一面的点数一次为3,一次为4的概率;(3)朝上一面的点数相同的概率;(4)朝上一面的点数都为偶数的概率;(5)两次朝上一面的点数的和为5的概率2、小明和小刚正在做掷骰子的游戏.两人各掷一枚骰子.游戏规则:当两枚骰子的点数之积为奇数时,小刚得1分,否则小明得1分.这个游戏对双方公平吗?为什么?如果不公平如何改游戏规则,可让这个游戏变得公平.。