化工原理第五章传热ppt课件

合集下载

化工原理-第五章-传热过程与传热设备.ppt

化工原理-第五章-传热过程与传热设备.ppt
?
逆、并流:
tm
t2 t1 ln t2
t1
29
§5.5 传热效率和传热单元数
T1
T2
t
实际传热速率:
Q mhcph th1 th2 mccpc tc2 tc1
最大可能传热速率:
Q m a x 1 m h cp hth 1 tc 1 Q m a x 2 m c c p cth 1 tc 1
t2
套管式
换热器要解决的两大问题: 所需的冷流体(热流体)的量? 传热面积?
热量衡算方程 传热速率方程 总传热系数和壁温的计算
5
§5.3.1 热量衡算方程
无相变时: QmhcphT1 T2 mccpc t2 t1
t1 T1
T2
t1
T T w tw
T2 t
t
冷凝液 T
t
T 1
t2
有相变时:Q m r
T1 T2 ln(T1 / T2 )
52
27
例2
t1 T1
T2 t
( 2 ) Q m s 1 c p 1 ( T 1 T 2 ) 0 . 5 3 ( 2 4 5 1 7 5 ) 1 0 5 k J / s = 1 0 5 0 0 0 W
A逆K( Q tm)逆1 10 00 5 00 60 915.2m 2
t1
间壁的导热
Q TW tW b
T
Am
冷流体侧的对流传热 QCA(tWt)
T w tw
t
T1
t2
4
§5.3
传热过程的基本方程
t1 T1
T2 t
已知换热任务:
mc, tC1 pc
1)把热流体(冷流体)从温度T1(t1)降温

第五章 传热142页PPT

第五章 传热142页PPT

Q t1 t4 t4 t0
3
bi iA
i1
1 A
t1tLeabharlann t03 bii1
iA
1 A
总推动力 总热阻
牛顿冷Q 却 A 定 t4 律 t0:
《化工原理》电子教案/第五章
Q
t0
t4
11
四、一维圆筒壁稳态热传导
1、无限长单层圆筒壁一维稳态导热(无内热源) 特点:属一维导热,A常数, Q为常数, q常数
目录
第三节 对流传热
一、实验法求 二、各种情形下的经验式
(一)无相变 1、管内层流 2、管内湍流 3、管外强制对流 4、自然对流
(二)有相变 1、冷凝 2、沸腾
对流传热系数小结
的数量级
1
化工原理》电子教案/目录
目录
第四节 间壁式换热器的传热
一、换热器简介 二、间壁式换热器的传热过程分析 三、间壁式换热器的传热过程计算
0
r
bi i Ami
i1
教材更正:
b1 b2 b3
P141例5-4中每米管长的热损失计算式左边应
为Q,不应为Q/L,单位应为W,不应为W/m。
15
《化工原理》电子教案/第五章
四、一维圆筒壁稳态热传导
思考2: 气温下降,应添加衣服,应把保暖性好的衣服穿在里面好,还是穿在
层流流动的物质内部
机理: 气体---靠分子或原子的无规则若运动;
固体---金属靠自由电子,非金属靠晶格的震动 液体---两种观点(见教材)
热量入
管内层流
❖对流传热
自 然 对 流 强 制 对 流
发 生 在流 体内 部 流体有宏观位移
牛顿冷 Q 却 A 定 t1t律 2 :

清华大学化工原理05第五章传热3PPT课件

清华大学化工原理05第五章传热3PPT课件

例 如 : / d 3 0 ~ 4 0 , 校 正 项 1 . 0 71 ~ . 0 2
2)高粘度流体(温差过大)
N u0 .0 2 7R e P r (/ ) w
0 .8 0 .3 3
0 .1 4
( 1 )/d6 0R , e 1 0 0 0 0P , r0 .7~1 6 7 0 0 (2 ) 定 性 尺 寸 d i (3 )定 性 温 度 (t1t2)/2 , 壁 温 下 的 粘 度 w
1
11 1 t , t tt , g g t 1 1
体积膨胀系数。 强制对流与Re有关。
3、物性: c , , , , 都是t的函数
p
4、传热面形状,大小,位置。(特
征尺寸)
5、有无相变化
二、对流传热中的因次分析法
p
f ,,, c , , t ,, u L
3 2 c l u gt p f , , 2
按确定的几何形状讨论 经因次分析可以得到
Nusselt Reynolds Prandt Grashof (对流传热) (流动) (物性) (自然对流)
0.1
Pr
0.2
1/ 3

(1) 水 平 管 Re 2300, / d 50 (3) 膜 温 ( t w t ) / 2, t ( t1 t 2 ) / 2
(4) l/d>50 乘以校正系数 40 30 20 15 10
1.02 1.05 1.13 1.18 1.28
(5) 垂直管
2) 管束
直 列 : N u R e P r N u 0 . 2 6 R e P r

化工原理第五章传热

化工原理第五章传热

第五章传热一、基本知识1. 下列关于传热与温度的讨论中正确的是。

①绝热物系温度不发生变化②恒温物体与外界(环境)无热能交换③温度变化物体的焓值一定改变④物体的焓值改变,其温度一定发生了变化2. 下列关于温度梯度的论断中错误的是。

①温度梯度决定于温度场中的温度分布②温度场中存在温度梯度就一定存在热量的传递③热量传递会引起温度梯度的变化④热量是沿温度梯度的方向传递的3. 传热的目的为。

①加热或冷却②换热,以回收利用热量③保温④萃取4. 根据冷、热两流体的接触方式的不同,换热器包括()等类型。

①直接混合式②蓄热式③间壁式④沉降式5. 热量传递的基本方式为。

①热传导(简称导热)②对流传热③热辐射④相变传热6. 下列有关导热系数论断中正确的是——。

①导热系数入是分子微观运动的一种宏观表现②导热系数入的大小是当导热温差为「C、导热距离为1m导热面积为lm2 时的导热量,故入的大小表示了该物质导热能力的大小,入愈大,导热越快③一般来说,金属的导热系数数值最大,固体非金属次之,液体较小,气体最小④大多数金属材料的导热系数随温度的升高而下降,而大多数非金属固体材料的导热系数随温度的升高而升高⑤金属液体的导热系数大于非金属液体的导热系数,非金属液体中除水和甘油外,绝大多数液体的导热系数随温度的升高而减小,一般情况下,溶液的导热系数低于纯液体的导热系数⑥气体的导数系数随温度的升高而增大,在通常压力下,导热系数与压力变化的关系很小,故工程计算中可不考虑压力的影响7. 气体的导热系数值随温度的变化趋势为。

①T升高,入增大②T升高,入减小③T升高,入可能增大或减小④T变化,入不变8. 空气、水、金属固体的导热系数分别为入l、入2、入3,其大小顺序。

①入l >入2>入3 ②入l <入2<入3 ③入2>入3>入l ④入2<入3<入l9. 水银、水、软木的导热系数分别为入l、入2、入3其大小顺序为。

①入l>入2>入3 ②入l<入2<入3 ③入l>入3>入2 ④入3>入l>入210. 下列比较铜、铁、熔化的铁水三种物质导热系数的大小论断中正确的是。

传热的基本原理和规律 ppt课件

传热的基本原理和规律 ppt课件

5.1 传热过程概述
5.1.1 热传导及导热系数
5.1.2 对流
5.1.3 热辐射 5.1.4 冷热流体(接触)热交换方式及 换热器
传热的基本原理和规律
18
冷热流体(接触)热交换方式及换热器
一、直接接触式换热和混合式换热器 二、蓄热式换热和蓄热器 三、间壁式换热和间壁式换热器√
传热的基本原理和规律
接触热阻 因两个接触表面粗糙不平而产生的附加热阻。 接触热阻包括通过实际接触面的导热热阻和
通过空穴的导热热阻(高温时还有辐射传热)。 接触热阻与接触面材料、表面粗糙度及接触
面上压力等因素有关,可通过实验测定。
传热的基本原理和规律
33
二、多层平壁的一维稳态热传导
接触热 阻
图5-5 接触热阻的影响
传热的基本原理和规律
19
冷热流体(接触)热交换方式及换热器
动画22
图5-1 套管式换热器 1-内管 2-外管
传热的基本原理和规律
20
冷热流体(接触)热交换方式及换热器
图5-2 单程管壳式换热器
动画21 1-外壳,2-管束,3、4-接管,5-封头,6-管
板,7-挡板,8-泄水池
传热的基本原理和规律
21
冷热流体(接触)热交换方式及换热器

Qt1 t2 t2 t3 t3 t4
b1
b2
b3
1S 2S 3S
传热的基本原理和规律
31
二、多层平壁的一维稳态热传导
三层平壁稳态热传导速率方程
Q
t1 t4
b1 b2 b3
1S 2S 3S
对n层平壁,其传热速率方程可表示为
Q t1 tn 1
bi
iS

《化工原理传热》课件

《化工原理传热》课件

稳态传热的分析
稳态传热是指传热过程中温度场和热流量保持不变的情况,本节将分析稳态传热的问题和解决方 法。
非稳态传热的分析
非稳态传热是指传热过程中温度场和热流量随时间变化的情况,本节将分析非稳态传热的特点和 解决方法。
热传导的数值计算方法
热传导的数值计算方法是解决复杂传热问题的重要手段,本节将介绍常用的数值计算方法和软件 工具。
辐射传热原理
辐射传热是热能通过电磁波辐射传递的一种方式,本节将探讨辐射传热的原 理、黑体辐射和辐射传热系数的计算。
热传导方程探讨
热传导方程是描述热传导过程的数学方程,本节将详细讨论热传导方程的推 导和应用。
热传导系数的计算
热传导系数是热传导过程中的重要参数,本节将介绍热传导系数的计算方法, 包括理论计算和实验测定方法。
换热器传热面积的计算
换热器传热面积是换热器设计的重要参数,本节将介绍换热器传热面积的计 算方法和影响因素。
换热器的传热计算方法
换热器的传热计算方法是根据传热原理进行换热器性能评估和设计的重要步 骤,本节将介绍换热器的传热计算方法和案例分析。
热流量计算方法
热流量是换热器传热性能的重要参数,本节将介绍热流量的计算方法,包括计算公式和实际应用。
传热中的传质
在化工过程中,传热与传质密切相关,本节将讨论传热中的传质现象和传质机制。
多相流传热与传质
多相流传热与传质是化工过程中的常见现象,本节将介绍多相流传热与传质 的基本理论和常用计算方法。
流量、温度、传热性能关系的 建模
流量、温度和传热性能之间的关系是化工过程中的重要问题,本节将介绍建 立流量、温度和传热性能关系的建模方法。
传热应用案例分析
通过传热应用案例分析,将应用所学的传热知识解决实际工程问题,提升传热能力和工程实践经 验。

《化工原理传热》课件

《化工原理传热》课件

导热问题的数学描述
导热问题的数学描述通常使 用偏微分方程,如热传导方 程。
解这些方程可以得到导热过 程中的温度分布、热流量等 参数。
通过建立数学模型,可以描 述导热过程中温度随时间和 空间的变化规律。
在实际应用中,还需要考虑 其他因素如边界条件、初始 条件等。
03
对流换热
对流换热基本概念
01
02
04
辐射换热
辐射换热基本概念
定义
01
物体通过电磁波传递能量的过程称为辐射换热。
辐射换热与物质属性
02
物体的辐射换热能力与其发射率、吸收率、反射率和透射率有
关。
辐射换热与温度
03
物体的辐射换热能力随温度升高而增强。
辐射换热计算方法
斯蒂芬-玻尔兹曼定律
描述了物体在绝对黑体条件下辐射换热的规律。
发射率修正
02
它主要通过物质分子、原子或分子的振动和相互碰 撞进行热量传递。
03
热传导是三种基本传热方式之一,另外两种是热对 流和热辐射。
傅里叶定律
傅里叶定律是热传导的基本定 律,它描述了热传导速率与温
度梯度之间的线性关系。
公式为:q = -k * grad(T), 其中q为热流密度,k为导热 系数,grad(T)为温度梯度。
传热方式
01
02
总结词:传热主要有三 种方式:热传导、热对 流和热辐射。
详细描述
03
04
05
1. 热传导是指热量在物 质内部通过分子、原子 等微观粒子的运动传递 热量。不同物质导热能 力不同,金属是良好的 导热体。
2. 热对流是指由于物质 宏观运动引起的热量传 递过程,如气体、液体 等流动过程中热量的传 递。对流换热在化工、 能源、动力等领域有广 泛应用。

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算

化工原理 传热 完整ppt课件

化工原理 传热 完整ppt课件
─热导率或导热系数,W/(m·℃)或W/(m·K)。
精选
18
3、热导率
QAddxtAQdt
dx
(1) 为单位温度梯度下的热通量大小(物理意义)
物质的越大,导热性能越好
(2) 是分子微观运动的宏观表现
= f(结构,组成,密度,温度,压力)
(3) 各种物质的导热系数
金属固体 > 非金属固体 > 液体 > 气体
传热
精选
1
第一节 概述
一、传热过程在化工生产中的应用
加热或冷却 换热/能量回用 保温
强化传热过程 削弱传热过程
精选
2
能量回收:节能减排、资源回用! 同时,是化工厂提高经济效益的一个重要措施!
余热资源被认为是继煤、石油、天然气和水力之后的又一常规能源。
例如:钢铁行业烟气余热回收对比
余热没有回收
热交换器进行余热回收
流 体
间壁
流体与壁面之间的热量传递以对流方式为主,并伴有
流体分子热运动引起的热传导,通常把这一传热过程
称为对流传热。
精选
12
精选
13
6、传热速率方程式
传热过程的推动力是两流体的温度差,因沿传热 管长度不同位置的温度差不同,通常在传热计算 时使用平均温度差,以 t m 表示。经验指出,在稳 态传热过程中,传热速率Q与传热面积A和两流体 的温度差 t m 成正比。即得传热速率方程式为:
QKAtm1/tKmA总总 传热 热阻 推动力
式中 K ── 总传热系数,W/(m2·℃)或W/(m2·K); Q ── 传热速率,W或J/s;
A ── 总传热面积,m2;
tm ── 两流体的平均精选温差,℃或K。
14

化工原理 传热 精PPT课件

化工原理 传热 精PPT课件

.
3
二、传热的三种基本方式
1、热传导 热量从物体内温度较高的部分传递到温度较低的部分, 或传递到与之接触的另一物体的过程称为热传导,又 称导热。 特点:没有物质的宏观位移
➢ 气体 ➢ 固体
➢ 液体
分子做不规则热运动时相互碰撞的结果 导电体:自由电子在晶格间的运动 非导电体:通过晶格结构的振动来实现的 机理复杂
传递的热量,单位 J/s或W
热流密度q:热通量,单位时间内通过单位传热面积传递的热
量,单位 J/(s.m2)或W/m2
q Q A
式中,A──总传热面积,m2。 4、稳态传热与非稳态传热
非稳态传热 Q ,q ,t fx ,y ,z ,
稳态传热 Q ,q ,t fx ,y ,z t 0
.
11
5、两流体通过间壁的传热过程
.
18
3、热导率
QAddxtAQdt
dx
(1) 为单位温度梯度下的热通量大小(物理意义)
物质的越大,导热性能越好
(2) 是分子微观运动的宏观表现
= f(结构,组成,密度,温度,压力)
(3) 各种物质的导热系数
金属固体 > 非金属固体 > 液体 > 气体
在热传导过程中,因物质各处温度不同, 也就不同,所以
t1
T1
D0
d
i
T2
t2
外传热面积: S dL
o
o
ቤተ መጻሕፍቲ ባይዱ
内传热面积: S dL
i
i
平均传热面积:S d L
m
m
.
7
.
8
2、热载体及其选择
加热剂:热水、饱和水蒸气 矿物油或联苯等低熔混合物、烟道气等 用电加热

化工原理课件第五章 传热

化工原理课件第五章 传热

温度场的通式
温度场的通式:
t f x, y, z,
式中: t —— 某点的温度,k;
X,y,z —— 这点的空间坐标;
θ —— 时间,s。
若在稳定温度场中, 表示式为:
t f x, y, z
稳定温度场和不稳定温度场
(1)不稳定温度场 —— 温度随时间而改变 的温度场,称为:不稳定温度场 。
称为:传热速率,用Q表示,单位:J/s, 即w(瓦)。
(三)辐射
1、辐射——是一种以电磁波传递能量的现象。 物体可以由不同原因发出辐射能。
2、热辐射——物体因热而发出辐射能的过程, 称为:热辐射radiation。
3、 只要物体的绝对温度大于 0K,便会不停地 将热量以电磁波的形式传递出去,同时也不断 地将其他物体辐射来的能量转为热量。辐射与 吸收能 量的差额转变为低温物体的热量。但 是,只有物体具有较高温度时, 辐射才为主 要形式。
传热面上不同局部面积的热通量可以不同。
3、热流量Q与热通量q的关系
式中:
q dQ dA
Q——热流量,单位为:J/s,即w(瓦) 。
q——热通量(热流密度),单位为:J/(m2·s),即 w/m2。
A——传热面积, m2 。
热流量Q与热通量q的关系
(1)热通量q基于微元面dA,热通量q可以 用于局部地区。
1、热源——电热、饱和水蒸汽、烟道气、高 温载体等。
2、冷源——冷却水、空气、冷却盐水等。 冷却水——河水、海水、井水等。
二、传热的三种基本方式
• 1、热传导(导热) • 2、对流 • 3、辐射
(一)热传导(简称:导热)
1、热传导——热量从物体内部温度较高
的部分传递到温度较低的部分或者传递到与 之接触的另一物体的过程,称为:热传导, 简称:导热conduction。

化工原理第五章传热(王晓敏)ppt课件

化工原理第五章传热(王晓敏)ppt课件

420
19.31 Wm1
0.0004 13.993 0.265
(b)界面温度
t1 t2 R 1 0 .0004 2 3 .0 9 1 4 0 t1 t4 R0 .00 0 1 .9 4 3 0 .3 29 65
tt1 1 tt4 25 50 0 8 t20 0 0 2 .0 1 4 0 t2 4.9 9 C 9
13
第二节 热传导
一、傅立叶定律 1. 温度场和等温面 • 温度场:物体或空间各点温度的分布;
非稳态温度场: tf(x ,y ,z, )
稳态温度场: tf(x ,y ,z)
•等温面:温度相同的点组成的面,等温面彼此不相交。
2. 温度梯度
lim t t •温度梯度的方向垂直于等温 n0 n n 面,以温度增加方向为正。
ll0(1t)
2. 液体的导热系数
• 水的λ最大;
• 多数液体(除水和甘油)的λ随温度升高略有减小;
• 纯液体的λ比溶液大;
3. 气体的导热系数
• 气体的λ很小,有利于保温;气体的λ随温度升高而增大;
• 一般情况下,气体的λ与压力无关; 导热系数大致范围:
金属:2.3~420 W/m.K; 建筑材料: 0.25~3 W/m.K;
解:此题为单层圆筒壁的热传导问题。
已知条件:
蒸汽导管外表面的半径 r2=0.426/2=0.213m
温度 t2=177℃
保温层的外表面的半径 r3=0.213+0.426=0.639m
温度 t3=38℃
由:
Q t2 t3 ln r3 r2
pp2t精 选l l版
27
可得每米管道的热损失为:
l3A
ppt精选版
dx

《化工原理教学》传热-对流课件

《化工原理教学》传热-对流课件
《化工原理教学》传热对流课件
为了帮助学生更好地理解对流传热的概念和原理,本课件介绍了化工原理教 学中重要的一部分——传热-对流。
对流基础知识
1 对流定义
对流是物质在流体中的传递过程,常常伴随着随流体运动的热量传递。
2 对流规律
对流是由于温度场引起的流体流动现象,遵循质量守恒、动量守恒和能量守恒的原理。
3 对流换热原理
对流换热是通过流体流动引起的热量传递方式,常见于化工工程和热交换器中。
对流换热的传热机理
1
对流传热的影响因素
2
流体速度、温度梯度、表面特性等因
素会影响对流传热过程的效率。
3
对流传热机制
对流传热通过流体流动和温度差驱动, 实现了物体间的热量交换。
对流传热的计算公式
根据牛顿冷却定律和对流换热系数, 可以计算对流传热的热量传递率。
对流传热的应用
工程中的对流传热应用
对流传热在化工工程、能源行业和热处理等 领域中有着广泛而重要的应用。
实际案例分析
通过对实际案例的分析,探讨对流传热在工 业过程中的是许多工程和技术领 域中必不可少的关键过程。
学习对流传热的意义
掌握对流传热的原理和应用, 对于化工专业的学生和从业人 员至关重要。
未来的发展和应用前景
对流传热的研究和应用将在能 源、环保等领域发挥重要作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

420
19.3W 1m1
0.000 41.3993 0.265
(b)界面温度
t1 t2 R 1 0 .0004 2 3 .0 9 1 4 0 t1 t4 R0 .00 0 1 .9 4 3 0 .3 29 65
tt1 1 tt4 25 50 0 8 t20 0 0 2 .0 1 4 0 t2 4.9 9 C 9
要求及目的: • 了解和掌握传热的基本概念、规律和计算; • 能正确进行工艺设计,合理选择和使用换热器。
.
8
第一节 概 述
1. 传热在化工 生产中的应用
•任何工艺过程需在指定温度下进行,必须加 热或冷却;
• 利用余热,以降低能耗; •绝热
醋酸乙烯气体 冷凝器
冷油
冷凝器
醋酸气体 加热器
乙炔气体


精醋酸
一、傅立叶定律 1. 温度场和等温面 • 温度场:物体或空间各点温度的分布;
非稳态温度场: tf(x ,y ,z, )
稳态温度场: tf(x ,y ,z)
•等温面:温度相同的点组成的面,等温面彼此不相交。
2. 温度梯度
lim t t •温度梯度的方向垂直于等温 n0 n n 面,以温度增加方向为正。
假设:(1)材料的导热系数不随温度变化(或取平均温 度);
(2)温度仅沿半径方向变化(一维),稳定传热;
Q u,t1
.
r2 r1 Q
l
t1
t2
20
通过圆筒壁的稳定热传导
QlAdt2rll dt
dr
dr
分离变量,
积分:
Qr2 dr2ll t2dt
r r1
t1
r2
rr1
Q
Qlnr2 r1
2ll(t1t2)
.
24
解:
(a)每米管长的热损失
r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
b1=0.0035m b2=0.04m b3=0.02 m
t1=500°C t2=? t3=? t4=80°C
.
17
2. 多层平壁的稳定热传导
各层温度降: t1t1t2 t2t2t3 t3t3t4
稳定导热时,通过各层热量相等:
Q
l1A
t1 l1A
l2A
t2 t3 b2
t2 b2
t2 R2
l2A
l3A
t3 t4 b3
t3 b3
t3 R3
l3A
.
dx
热或给热(即对流传热常伴随热传导); • 自然对流与强制对流。
三、辐射(Radiation)
• 高温物体以电磁波的形式进行的一种传热现象。热辐射不
要任何介质作媒介。
• 在高温情况下,辐.射传热成为主要传热方式。
10
热传导 对流 辐射
.
11
• 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来 为什么感到很暖和?并且经过拍打以后,为什么效果 更加明显?
耐火砖: λ1=1.4 W·m-1·K-1,b1=230mm 保温砖: λ2=0.15 W·m-1·K-1,b2=115mm 建筑砖: λ3=0.8 W·m-1·K-1,b3=230mm 今测得其内壁温度为900°C,外壁温度为80°C,
求:(1)单位面积的热损失
(2)各层接触面上的温度。
.
四、圆筒壁的稳定热传导 (Steady-state conduction through a cylinder)
.
12
3. 传热速率与热阻
• 热流量Q: 单位时间内通过全部传热面积传递的热量 , J/s或W;
• 热通量q:单位时间内通过单位传热面积传递的热量, W/m2;
• 传热面上不同局部面积的热通量可以不同; • q=dQ/dA; • 传热速率=传热温差/热阻 • 电流I=电压U/电阻R
.
13
第二节 热传导
r1q1r2q2r3q3 22
例4:f50×5的不锈钢管,导热系数l1为16W/m.K,外包厚 30mm的石棉,导热系数l2为0.2W/m.K。如管内壁温为350℃, 保温层外壁温度为100℃,计算每米管长的热损失。
解:不锈钢管内半径:r1=40/2=20mm,外半径:r2=50/2=25mm, A m 1 2 r m 1 1 2 ( 0 . 0 2 0 . 0 ) / 5 2 2 0 . 1 m 2 41
rm
r2 r1 ln(r2 r1)
对数平. 均半径
Am2lrm
r2/r1<2时,rm=(r1+r2)/2;21
对多层圆筒壁,与多层平壁稳定热传导类似:
Q t1 t2 t3 t1 t4 R 1 R 2 R 3 R 1 R 2 R 3
t1t4
l l l b 1 b 2 b 3 1A m 1 2A m 2 3A m 3
l
Q2lllnt1r2tr21lnt1r2tr21t1 Rt2
t1 t2
dr
2ll
l l l Q 2 l( ( r 2 r 2 r 1 r 1 ) ) ln ( t r 1 2 r t1 2 )A m t1 b t2 b t/ 1 t A 2 m t1 R t2
br2r1 壁厚度
绝缘材料: 0.025~0.25 W/m.K; 液体: 0.09~0.6 W/m.K;
.
15
气体:0.006~0.4 W/m.K
三、平壁的稳定热传导
稳定温度场中:
QlAt
n
1. 单层平壁的稳定热传导
Q lA dt
dx
边界条件为:x = 0 时,t = t1 x = b 时,t = t2
积分上式:
QlbAt1t2
对n层圆筒壁:
l l Q
t1tn1 n bi
n
t1tn1 ln(ri1/ri)
A i1 i mi
i1 2 l i
•多层圆筒壁与多层平壁不同之处,各层传热面积不相同,计算 时应用各自的平均传热面积; •由于各层传热面积不同,虽然单位时间总传热量相同,但单位 面积传热量(热通量)则不同;
Q 2r 1 lq 1 2r 2 . lq 2 2r 3 lq 3

粗醋酸 馏
乙烯液

乙烯液体 塔
体产品
200℃
150℃
热油
.
9
2. 传热的三种基本方式
一、热传导(conduction)
• 依靠物体中微观粒子的热运动而传热;
• 特点:物体内部无宏观运动,靠物体各部分的直接接触产生 热量传递;
• 介质:物质三态均可。
二、对流(convection) : • 流体质点(微团)发生宏观相对位移而引起的传热现象; • 特点:只能发生在流体中 ; • 对流给热:通常把传热表面与接触流 体的传热称为对流给
3. 傅立叶定律--热传导的基本定律 •单位实际时间内传导的热量与温度梯度和导热面积成正比。
dQ ldA t
n
Q-单位时间内传导的热量, W; A-导热面积,m2
传热方向与温度梯度方.向相反 l-导热系数,W/m.K,W/m1.40C
二、 导热系数
1. 固体的导热系数
• 多数均一固体的λ在一定范围内与温度成直线关系:
t1
t4
b1 b2 b3
o t2 t3
A Q
x
18
Q t1 t2 t3 b1 b2 b3 l1A l2 A l3 A
t1 t2 t3 R1 R2 R3
t1 t 4
3
Ri
i1
Q
t1
tn1
n
Ri
i 1
• 推动力→总温度差 • 总热阻→各层热阻之和
例3:有一炉壁,由下列三种材料组成:
ll0(1t)
2. 液体的导热系数
• 水的λ最大;
• 多数液体(除水和甘油)的λ随温度升高略有减小;
• 纯液体的λ比溶液大;
3. 气体的导热系数
• 气体的λ很小,有利于保温;气体的λ随温度升高而增大;
• 一般情况下,气体的λ与压力无关; 导热系数大致范围:
金属:2.3~420 W/m.K; 建筑材料: 0.25~3 W/m.K;
△t:两壁面温差,K;
l:导热系数,W/m.K;
例1:厚度为230mm的砖壁,内壁温度为600°C,外壁温度为150°C。 砖壁的导热系数可取为1.0W·m-1·K-1,试求通过每平米砖壁的导热量。
例2:平壁厚500mm,若t1=900°C,t2=250°C,导热系数λ=1.0× (1+0.001t) W·m-1·K-1,试求平壁内温度分布。 (1)导热系数按平壁的平均温度tm取为常数; (2)考虑导热系数随温度的变化。
rr3 40 0..0 07 9 1.2 82;rm3r3 2r40.0 9 20.07 0.0m 8;Am32rm310.50m 22 4
.
25
Q
t1t4
50080
l l l L b1 b2 b3
1Am1 2Am2 3Am3
0.0035 0.04 0.02 4 50.1770.07 0.2960.1 50.5024
石棉层内半径:r2=25mm,外半径:r3=25+30=55mm,r3/r2>2:
rm 2ln 0 0 .0 .(05 5 /5 0 0 5..0 22 5) 50.03m 8A m 22rm 2 10 .23 m 2 9
每米管长热损失:
Q
t
350100
L
b1 b2
0.005 0.03
l l 1Am1
• 冬天,在相同的室外温度条件下,为什么有风比无风 时感到更冷些?
相关文档
最新文档