化工原理第四章对流传热41页PPT
合集下载
化工原理第四章第三节讲稿.ppt
如果用 T 表示贴壁处流体的温度梯度,
n n0
则 dQ dS T 与牛顿冷却定律 dQ dST联立:
n n0
2020/12/9
T
T n n0
——理论上计算对流传热系数的基础
表明:对一定的流体,当流体与壁面的温度差一定时,对 流传热系数之取决于紧靠壁面流体的温度梯度。
热边界层的厚薄,影响层内温度分布,因而影响温度梯度 。当边界层内、外的温度差一定时,热边界层越薄,温度梯 度越大,因而α也就上升。因此通过改善流动状况,使层流 底层厚度减小,是强化传热的主要途径之一。
第四章 传热
第三节 对流传热
一、对流传热的分析 二、壁面和流体的对流传 热速率 三、热边界层
2020/12/9
一、对流传热的分析
滞流内层 流体分层运动,相邻层间没有流体的
宏观运动。在垂直于流动方向上不存
在热对流,该方向上的热传递仅为流
流体沿固体 壁面的流动
体的热传导。该层中温度差较大,即 温度梯度较大。 缓冲层 热对流和热传导作用大致相同,在该层
2020/12/9
律可以表示为:Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。 单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/12/9
三、热边界层与换热微分方程式
热边界层(温度边界层) :
壁面附近因换热而使流体温度发生了变化的区域 。
对流传热速率
对流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。
对流传热速率方程可以表示为:
Q T Tw 1
dS
2020/12/9
n n0
则 dQ dS T 与牛顿冷却定律 dQ dST联立:
n n0
2020/12/9
T
T n n0
——理论上计算对流传热系数的基础
表明:对一定的流体,当流体与壁面的温度差一定时,对 流传热系数之取决于紧靠壁面流体的温度梯度。
热边界层的厚薄,影响层内温度分布,因而影响温度梯度 。当边界层内、外的温度差一定时,热边界层越薄,温度梯 度越大,因而α也就上升。因此通过改善流动状况,使层流 底层厚度减小,是强化传热的主要途径之一。
第四章 传热
第三节 对流传热
一、对流传热的分析 二、壁面和流体的对流传 热速率 三、热边界层
2020/12/9
一、对流传热的分析
滞流内层 流体分层运动,相邻层间没有流体的
宏观运动。在垂直于流动方向上不存
在热对流,该方向上的热传递仅为流
流体沿固体 壁面的流动
体的热传导。该层中温度差较大,即 温度梯度较大。 缓冲层 热对流和热传导作用大致相同,在该层
2020/12/9
律可以表示为:Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。 单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/12/9
三、热边界层与换热微分方程式
热边界层(温度边界层) :
壁面附近因换热而使流体温度发生了变化的区域 。
对流传热速率
对流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。
对流传热速率方程可以表示为:
Q T Tw 1
dS
2020/12/9
第四章 传热化工原理课件(包含所有考点)
r1 r0
t1
热传导热阻
令 dQ 0 dr0
对流传热热阻
t 2 tf
dQ 当r0 时, 0 dr0 故 Q 有极大值 dQ 当r0 时, 0 dr0 只有 r 时 ,增加保温层的厚度 0
才能使热损失减少
则 r0 ------临界半径 rc
15
4.2 热传导
假设:层与层之间接触良好,两个接触表面具有相 同的温度。
特点:通过每一层的 常数或q 常数 Q 推动力 热阻 三层平壁的热传导速率 方程式: Q qS t 2 t3 t3 t 4 t1 t 2 Q b1 λ1S b2 λ2 S b3 λ3 S t1 t 4
空气自 然对流 5~25 气体强 制对流 20~100 水自然 对流 20~1000 水强制对流 水蒸汽冷凝 有机蒸汽 冷凝 1000~15000 5000~15000 500~2000 水沸腾
2500~25000
24
4.3 对流传热概述
5、保温层的临界厚度
t1 t f 总推动力 Q ln r0 r1 1 总热阻 2L 2Lr0
Q
rc
r0
25
4.3 对流传热概述
6、对流传热机理
对流传热的温度分布情况图
26
4.3 对流传热概述
(一) 对流传热分析 1) 对流传热是借流体质点的移动和混合而完成的, 它和流体的流动状况密切相关。
2) 流体层流内层中的传热:流体流动过程中,由于 有层流内层的存在,在层流内层中流体是分层流动 的,相邻层间没有流体的宏观流动,因此在垂直于 流体流动方向上不存在热对流,该方向上的传热仅 为热传导,由于流体的导热系数较低,故该层的热 阻较大,即温度梯度较大。
t1
热传导热阻
令 dQ 0 dr0
对流传热热阻
t 2 tf
dQ 当r0 时, 0 dr0 故 Q 有极大值 dQ 当r0 时, 0 dr0 只有 r 时 ,增加保温层的厚度 0
才能使热损失减少
则 r0 ------临界半径 rc
15
4.2 热传导
假设:层与层之间接触良好,两个接触表面具有相 同的温度。
特点:通过每一层的 常数或q 常数 Q 推动力 热阻 三层平壁的热传导速率 方程式: Q qS t 2 t3 t3 t 4 t1 t 2 Q b1 λ1S b2 λ2 S b3 λ3 S t1 t 4
空气自 然对流 5~25 气体强 制对流 20~100 水自然 对流 20~1000 水强制对流 水蒸汽冷凝 有机蒸汽 冷凝 1000~15000 5000~15000 500~2000 水沸腾
2500~25000
24
4.3 对流传热概述
5、保温层的临界厚度
t1 t f 总推动力 Q ln r0 r1 1 总热阻 2L 2Lr0
Q
rc
r0
25
4.3 对流传热概述
6、对流传热机理
对流传热的温度分布情况图
26
4.3 对流传热概述
(一) 对流传热分析 1) 对流传热是借流体质点的移动和混合而完成的, 它和流体的流动状况密切相关。
2) 流体层流内层中的传热:流体流动过程中,由于 有层流内层的存在,在层流内层中流体是分层流动 的,相邻层间没有流体的宏观流动,因此在垂直于 流体流动方向上不存在热对流,该方向上的传热仅 为热传导,由于流体的导热系数较低,故该层的热 阻较大,即温度梯度较大。
化工原理课件:第4章 传热
二、通过多层圆筒壁的定态热传导
以三层为例:
Q= 2πl(t1 t2 ) 2πl(t2 t3)
1 ln r2
1 ln r3
1 r1
2 r2
2πl(t3 t4 ) 1 ln r4
3 r3
2πl(t1 t4 ) 3 1 ln ri1
i1 i
ri
对于n层圆筒壁:
Q=
2πl
n
(t1 1
➢ 金属(优良导电/热体):靠自由电子运动
➢不良导体(固)和大多数液体:靠晶格振动(原子、 分子在其平衡位置附近的振动、碰撞等)
➢气体:靠分子的不规则运动和碰撞。
导热一般在固体、静止或滞流流体中进行,而不能在 真空中进行。
二、对流
流体内部质点发生相对位移的热量传递过程。 ➢自然对流:因温差引起流体流动;
机理:由于流体各部分温度的不均匀分布,造成密度 的差异,在浮力的作用下,流体发生相对流动,形成 热量的交换。 ➢强制对流:人为促使流体流动(滞、湍)。 靠施加外力的办法强迫流体流动
➢对流传热:流体与固体壁面之间的传热过程。 由导热和对流两种传热方式共同参与的传热称对流换 热。即:对流传热=导热+对流
对于定态温度场
Qr Qrdr Q const
傅立叶定律 Q A dt
dr
Q 2rl dt
dr
边界条件 r r1,t t1
r r2,t t2
得:
r2
Qdr
t2 2rldt
r1
t1
不随t而变时
Q 2l(t1 t2 ) 2l(t1 t2 )
ln r2
1 ln r2
➢在单位面积内,同样的距离下,△t↑,传递的热 量↑。在诸多方向中,沿垂直等温面的方向上的 (△t/△n)最大,传热强度也最大。
《化工原理》第4章 传热.ppt
由于在热流方向上Q、、A均为常量,故分离变量后积分,
得
t2 dt Q
dx
t1
A 0
t2
t1
Q A
Q A(t1 t2 )
Q t1 t2 t
/ A R
通常式(4-8)也可以表示为
q Q t1 t2
A /
(4-7) (4-8)
(4-9)
12
第4章 传热
2.多层平壁稳定热传导
5
第4章 传热
1.内管 2.外管 图4-l 套管换热器中的换热
6
第4章 传热
在换热器中,热量传递的快慢可用以下指标来表示。 (1)传热速率Q(又称热流量):指单位时间内通过传热面的 热量,单位为W。传热速率是换热器本身在一定操作条件下 的换热能力,是换热器本身的特性。 (2)热负荷Q:指换热器中单位时间内冷、热流体间所交换 的热量,单位为W。热负荷是生产要求换热器应具有的换热 能力,设计换热器时通常将传热速率与热负荷在数值上视为 相等。 (3)热通量q(又称热流密度):指单位时间内通过单位传 热面积所传递的热量,即单位传热面积的传热速率,单位为 W/㎡。
Q A dt
(4-4)
dx
2.导热系数
导热系数在数值上等于单位温度梯度下
通过单位导热面积所传导的热量。故导
热系数是表示物质导热能力大小的一个
参数,是物质的物性。越大,导热越快。
图4-2通过壁面的热传导
10
第4章 传热
4.2.2平壁的稳定热传导
1.单层平壁导热
设有一高度和宽度很大的平壁,
厚度为。假设平壁材料均匀,导
7
第4章 传热
4.1.4 传热速率式
化工生产中经常遇到加热或冷却的传热过程。单位时间内通 过换热器传递的热量与换热面积成正比,且与冷热流体之间 的平均温度差成正比。即有
化工原理第四章传热
化工原理
4-2.2
平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )
1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型
★
1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理
等温面 在温度场中,温度相同的各点组成的面。
等温面
温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理
多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d
4-2.2
平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )
1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型
★
1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理
等温面 在温度场中,温度相同的各点组成的面。
等温面
温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理
多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d
化工原理 第四章 传热资料
n
t n
→温度梯度标量,亦称温度梯度。
传热-热传导
2. 傅立叶(Fourier)定律 傅立叶定律→即导热的基本定律,指通过等温表面的导热速率与温 度梯度及传热面积成正比。
dQ
t n
dS
dQ
t n
dS
F u S y
① 傅立叶定律 与牛顿黏性定律类似。 ② 。 ③ 热量传递过程与动量传递过程类似。
注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
Q
dt dx
S
x 0,t t1;
x b,t t2;
t1 t2
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
Q
S b
t1
t2
Q t t1 t2 R b
Rb
S
S
q
Q S
q dQ dS
因S有三种形式,计算q时须 注明选择的基准面积。
传递速率
推动力 阻力
传热速率=传热推动力温度差
热阻
Q t ;q t
R
R'
R Q ;R Q
传热-基本概念
6. 稳态传热与非稳态传热 稳态传热→传热系统中不积累能量的传热过程,特点是温度分布不随 时间而变,Q Const 。非稳态传热→传热系统中温度分布随时间而变化 的传热过程。 连续生产中的传热多为稳态传热;间歇操作的换热和连续生产时设备 的开工和停工阶段为非稳态传热。
典型的导热方式→固体中的热传导
传热-基本概念
② 热对流 热对流→简称对流,指流体各部分之间发生相对位移引起的热传递。 对流仅发生在流体中,有自然对流和强制对流两种形式。 自然对流→流体各处温度不同而引起密度差异,轻者↑,重者↓,流体 质点发生相对位移。强制对流→因泵或搅拌所致的质点强制运动。 对流传热→亦称给热,指流体流过固体表面时发生热对流和热传导的 联合传热。特点是壁面处流体靠导热传热,主体区靠对流来传热。
t n
→温度梯度标量,亦称温度梯度。
传热-热传导
2. 傅立叶(Fourier)定律 傅立叶定律→即导热的基本定律,指通过等温表面的导热速率与温 度梯度及传热面积成正比。
dQ
t n
dS
dQ
t n
dS
F u S y
① 傅立叶定律 与牛顿黏性定律类似。 ② 。 ③ 热量传递过程与动量传递过程类似。
注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
Q
dt dx
S
x 0,t t1;
x b,t t2;
t1 t2
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
Q
S b
t1
t2
Q t t1 t2 R b
Rb
S
S
q
Q S
q dQ dS
因S有三种形式,计算q时须 注明选择的基准面积。
传递速率
推动力 阻力
传热速率=传热推动力温度差
热阻
Q t ;q t
R
R'
R Q ;R Q
传热-基本概念
6. 稳态传热与非稳态传热 稳态传热→传热系统中不积累能量的传热过程,特点是温度分布不随 时间而变,Q Const 。非稳态传热→传热系统中温度分布随时间而变化 的传热过程。 连续生产中的传热多为稳态传热;间歇操作的换热和连续生产时设备 的开工和停工阶段为非稳态传热。
典型的导热方式→固体中的热传导
传热-基本概念
② 热对流 热对流→简称对流,指流体各部分之间发生相对位移引起的热传递。 对流仅发生在流体中,有自然对流和强制对流两种形式。 自然对流→流体各处温度不同而引起密度差异,轻者↑,重者↓,流体 质点发生相对位移。强制对流→因泵或搅拌所致的质点强制运动。 对流传热→亦称给热,指流体流过固体表面时发生热对流和热传导的 联合传热。特点是壁面处流体靠导热传热,主体区靠对流来传热。
化工原理第四章 传热及传热设备..
4.2 热传导
4.2.5 圆筒壁的稳定热传导 二、多层圆筒壁
第一层
第二层
盐城工学院
第三层
Q
2L(t1 tn1 ) in 1 ln ri1
i1 i
ri
-----通式
可写成与多层平壁计算公式相仿的形式:
Q
t1 t4
b1
b2
b3
1 Am1
2 Am 2
3 Am3
Am1、 Am2 、Am3分别为各层 圆筒壁的对数平均面积。
主要特点:冷热两种流体被一固体间壁所隔开,在 换热过程中,两种流体互不接触,热量由热流体通 过间壁传给冷流体。以达到换热的目的。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
解:(1)每米管长的热损失
r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
=191. 4 W/m
第四章 传热及传热设备
(2)保温层界面温度t3
盐城工学院
解得:t3=131.2℃
第四章 传热及传热设备
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
可见,在数值上: 金属 非金属 液体 气体
第四章 传热及传热设备
盐城工学院
4.2 热传导
《化工原理传热》课件
导热问题的数学描述
导热问题的数学描述通常使 用偏微分方程,如热传导方 程。
解这些方程可以得到导热过 程中的温度分布、热流量等 参数。
通过建立数学模型,可以描 述导热过程中温度随时间和 空间的变化规律。
在实际应用中,还需要考虑 其他因素如边界条件、初始 条件等。
03
对流换热
对流换热基本概念
01
02
04
辐射换热
辐射换热基本概念
定义
01
物体通过电磁波传递能量的过程称为辐射换热。
辐射换热与物质属性
02
物体的辐射换热能力与其发射率、吸收率、反射率和透射率有
关。
辐射换热与温度
03
物体的辐射换热能力随温度升高而增强。
辐射换热计算方法
斯蒂芬-玻尔兹曼定律
描述了物体在绝对黑体条件下辐射换热的规律。
发射率修正
02
它主要通过物质分子、原子或分子的振动和相互碰 撞进行热量传递。
03
热传导是三种基本传热方式之一,另外两种是热对 流和热辐射。
傅里叶定律
傅里叶定律是热传导的基本定 律,它描述了热传导速率与温
度梯度之间的线性关系。
公式为:q = -k * grad(T), 其中q为热流密度,k为导热 系数,grad(T)为温度梯度。
传热方式
01
02
总结词:传热主要有三 种方式:热传导、热对 流和热辐射。
详细描述
03
04
05
1. 热传导是指热量在物 质内部通过分子、原子 等微观粒子的运动传递 热量。不同物质导热能 力不同,金属是良好的 导热体。
2. 热对流是指由于物质 宏观运动引起的热量传 递过程,如气体、液体 等流动过程中热量的传 递。对流换热在化工、 能源、动力等领域有广 泛应用。
化工原理第四章传热42PPT课件
⑤流体传热时的相变化 相变会引起与壁面接触处流体的运动形式改变,如加剧搅
动。一般来讲,相变有利于传热。这就是用蒸汽加热的原因之 一。
空气自 气体强 水自然 水强制 水蒸汽 有机蒸 水沸腾 然对流 制对流 对流 对流 冷凝 汽冷凝
5~25 20~100 20~ 1000~ 5000~ 500~ 2500~
d. 普兰特(Prandtl)准数
Pr c p
反映流体物性对对流传热的影响。
气体:小于1接近1 ,液体:大于1 。
e.定性温度 取什么温度查取所需物性: ,,cp,
1、因给热热阻主要集中在层流内层,所以定性温度取平
均膜温
tm
tm
tw t 2
2、广泛使用:t m =流体主体的平均温度
例如:管流:
1000 15000 15000 2000 25000
⑥壁面的形状、排列方式和尺寸 流体流过固体表面的状况对流体的流动有影响,同时影响
热边界的形成和发展。当管长增加时,传热边界层中温度分 布将逐渐变得更为平坦,当通过很长的管长时,温度梯度会 消失,此时传热也就停止了。所以管子的尺寸和形状对α有较 大的影响。管子排列时:错列的a高于直列
况进行换热)。
②流体的对流状态:强制对流自然对流时a为大。 a
t
③流体的物理性质
如导热系数、热容、膨胀系数、密度和粘度等,其中导
热系数、热容、密度、膨胀系数增大对传热有利;而粘度大,
则滞流层厚,对流传热系数变小。
④传热的温度 温度对流体的物理性质有显著的影响。因此,壁面和流
体的温度以及两者的温度差对给热系数有间接但是明显的影 响。如粘度随温度的升高而降低,在其他条件不变的情况下, 热边界层减薄,有利于传热 。因此在使用物理参数时,要考 虑温度。
动。一般来讲,相变有利于传热。这就是用蒸汽加热的原因之 一。
空气自 气体强 水自然 水强制 水蒸汽 有机蒸 水沸腾 然对流 制对流 对流 对流 冷凝 汽冷凝
5~25 20~100 20~ 1000~ 5000~ 500~ 2500~
d. 普兰特(Prandtl)准数
Pr c p
反映流体物性对对流传热的影响。
气体:小于1接近1 ,液体:大于1 。
e.定性温度 取什么温度查取所需物性: ,,cp,
1、因给热热阻主要集中在层流内层,所以定性温度取平
均膜温
tm
tm
tw t 2
2、广泛使用:t m =流体主体的平均温度
例如:管流:
1000 15000 15000 2000 25000
⑥壁面的形状、排列方式和尺寸 流体流过固体表面的状况对流体的流动有影响,同时影响
热边界的形成和发展。当管长增加时,传热边界层中温度分 布将逐渐变得更为平坦,当通过很长的管长时,温度梯度会 消失,此时传热也就停止了。所以管子的尺寸和形状对α有较 大的影响。管子排列时:错列的a高于直列
况进行换热)。
②流体的对流状态:强制对流自然对流时a为大。 a
t
③流体的物理性质
如导热系数、热容、膨胀系数、密度和粘度等,其中导
热系数、热容、密度、膨胀系数增大对传热有利;而粘度大,
则滞流层厚,对流传热系数变小。
④传热的温度 温度对流体的物理性质有显著的影响。因此,壁面和流
体的温度以及两者的温度差对给热系数有间接但是明显的影 响。如粘度随温度的升高而降低,在其他条件不变的情况下, 热边界层减薄,有利于传热 。因此在使用物理参数时,要考 虑温度。
化工原理第四章讲稿PPT课件
2020/9/30
17
3、间壁式换热
间壁式换热的特点是冷、热流体被一固体隔开,分别在壁 的两侧流动,不相混合,通过固体壁进行热量传递。 传热过程可分为三步: •热流体将热量传给固体壁面(对流传热) •热量从壁的热侧传到冷侧(热传导) •热量从壁的冷侧面传给冷流体(对流传热) 壁的面积称为传热面,是间壁式换热器的基本尺寸。
q t1 t3
b1
1
r0
b2
2
接触热阻与接触面的材料,表面 粗糙度及接触面上压强等因素有 关。
2020/9/30
42
2020/9/30
39
2、多层平壁的稳定热传导
Q
1S
t1
t2 b1
t1 b1
1S
t1 R1
2S
t2 b2
t3
t2 b2
t2 R2
2S
3S
t3
t4 b3
t3 b3
t3 R3
3S
2020/9/30
40
t1 QR1,t2Q2R,t3 QR3
Qt1t2 t3 R1R2 R3
b1
SdLn
d——管径可分别用管内径di,管外径d0或平均直径dm来表示。 则对应的传热面积分别为管内侧面积Si,外侧面积S0或平均面 积Sm
2020/9/30
25
六、传热速率与热通量
传热速率(热流量 )Q :
单位时间内通过传热面的热量,单位为w。
热通量(又称为热流密度或传热速度)q :
单位传热面积的传热速率。单位为w/m2
35
2、固体的导系数
纯金属的导热系数一般随温度的升高而降低, 金属的导热系数大都随纯度的增加而增大。 非金属的建筑材料或绝热材料的导热系数随密度增加而增 大,也随温度升高而增大。
化工原理课程课件PPT之第四章传热
第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3
化工原理课程设计共41页PPT资料
• 4 塔板设计: • 板布置、开孔率 • 单溢流、弓形降液管、 • 平行受液盘、不设进口堰
• 5 流体力学验算
• • P<单板压降 • 液沫夹带是量ev<0.1kg液/kg干
气 • 漏液线:稳定系数K=u0/uow>
1.5-2.0 • 液泛Hd≤φ(HT+hw)
6 筛板塔操作负荷性能图
①液相下限线; ②液相上限线; ③漏液线;
• 4.冷、热流体输送设备及管道 选择
二 换热器的设计型计算
• 1.设计任务:将一定流量的热流体自给定 温度冷却至指定温度。
• 2.设计条件:可供使用的冷却介质温度, 即冷流体的进口温度。
• 3.计算目的:确定经济上合理的传热面积 A(S)及换热器其它有关尺寸。
• 4.设计型计算中参数的选择
5.换热器计算
二 筛板塔的设计程序
• 1)理论塔板数,实际塔板数。 • 2)选定塔板液流型式(以下只按单流型考
虑)、板间距HT、溢流堰长与塔径之比、降 液管型式及泛点百分数。
• 3)塔径计算。 • 4) 塔板板面布置设计及降液管设计。 • 5)塔板操作情况的效核计算——作负荷性能
图及确定操作点。
• 若校核计算后对设计方案不满意,应修改设 计方案,再作校核计算,直到满意为止。
三 筛板塔的设计步骤
• 1 确定 XF、XD、Xw ; 平均分子量 MF、MD、MW ;物料衡算 F′、D′、W′, F、D、W
• 2 确定N • NT 理论板数。作图法。 • 求Rmin R • ET;实际塔板数
3 工艺条件及物性数据计算
– 塔顶、进料板:Tm、Pm – Tm、Pm=1/2(PD+PF) – Tm 设tD 查PA0、PB0 计算PD – PD = PA0XA+ PB0 XB – 效正1/2(PD+ PF )= Pm – 设tF 查 PA0、PB0 计算PF 效正1/2(PD+
• 5 流体力学验算
• • P<单板压降 • 液沫夹带是量ev<0.1kg液/kg干
气 • 漏液线:稳定系数K=u0/uow>
1.5-2.0 • 液泛Hd≤φ(HT+hw)
6 筛板塔操作负荷性能图
①液相下限线; ②液相上限线; ③漏液线;
• 4.冷、热流体输送设备及管道 选择
二 换热器的设计型计算
• 1.设计任务:将一定流量的热流体自给定 温度冷却至指定温度。
• 2.设计条件:可供使用的冷却介质温度, 即冷流体的进口温度。
• 3.计算目的:确定经济上合理的传热面积 A(S)及换热器其它有关尺寸。
• 4.设计型计算中参数的选择
5.换热器计算
二 筛板塔的设计程序
• 1)理论塔板数,实际塔板数。 • 2)选定塔板液流型式(以下只按单流型考
虑)、板间距HT、溢流堰长与塔径之比、降 液管型式及泛点百分数。
• 3)塔径计算。 • 4) 塔板板面布置设计及降液管设计。 • 5)塔板操作情况的效核计算——作负荷性能
图及确定操作点。
• 若校核计算后对设计方案不满意,应修改设 计方案,再作校核计算,直到满意为止。
三 筛板塔的设计步骤
• 1 确定 XF、XD、Xw ; 平均分子量 MF、MD、MW ;物料衡算 F′、D′、W′, F、D、W
• 2 确定N • NT 理论板数。作图法。 • 求Rmin R • ET;实际塔板数
3 工艺条件及物性数据计算
– 塔顶、进料板:Tm、Pm – Tm、Pm=1/2(PD+PF) – Tm 设tD 查PA0、PB0 计算PD – PD = PA0XA+ PB0 XB – 效正1/2(PD+ PF )= Pm – 设tF 查 PA0、PB0 计算PF 效正1/2(PD+
化工原理第四章传热-PPT课件
L
根据傅立叶定律,对此薄圆筒层可写出传导的热量为
dt dt Q A 2 rL dr dr
边界条件 得:
r 2 r 1
r r 时 , t t 1 1
t2 t 1
r r 时 , t t 2 2
d r r l d t Q 2
2 l ( t t2) 2 l ( t t2) 1 1 Q r 1 r 2 2 l n l n r r 1 1
热对流(convection);
热辐射(radiation)。
1、热传导 气体 分子做不规则热运动时相互碰撞的结果
固体 导电体:自由电子在晶格间的运动
非导电体:通过晶格结构的振动实现
液体 机理复杂
特点:静止介质中的传热,没有物质的宏观位移
2、热对流
流体各部分之间发生相对位移所引起的热传递过程称为热 对流。热对流仅发生在流体中。
的x轴方向变化,故等温面皆为垂 直于x轴的平行平面。
平壁侧面的温度t1及t2恒定。Fra biblioteko b
x
取dx的薄层,作热量衡算:
傅立叶定律: 边界条件为:
dt Q A dx
x 0 时 , t t 1
得:
x b 时, t t 2
b
0
Q d x
t2
t1
A d t
t1 t2 Q A (t1 t2) 不随t而变 b b 式中 Q ── 热流量或传热速率,W或J/s; A
4.2 热传导
一、 傅立叶定律
1 温度场和温度梯度 温度场(temperature field):某一瞬间空间中各点的温度
分布,称为温度场.
物体的温度分布是空间坐标和时间的函数,即
传热操作技术—对流传热(化工原理课件)
气泡的生 成条件2
汽化核心
汽化核心与加热面的粗糙程度、氧化情况、材料的性质及其不均 匀性等多种因素有关。
➢ 在无相变的对流传热时,热阻主要集中在层流底层 ➢ 但在沸腾给热时,气泡的生成和脱离对该薄层液体
产生强烈的扰动,使热阻大为降低。 ➢ 所以沸腾给热的强度要高于无相变化的对流给热。
层流底层 过渡层 湍流主体
湍流主体:流体质点的剧烈混合,热量传递主要依
TW
靠对流传热,热传导所起作用很小,这部分热阻很
小,传热速度极快,流体的温度差极小。
层流底层 过渡层 湍流主体
➢ 在对流传热时,热阻主要集中在层流底层 ➢ 减薄层流底层的厚度是强化对流传热的重要途径
T
热
Tw
流
体
冷
tw
流 体
t
δ1
δ2
流体通过间壁的热交换
液体在加 热面上的
沸腾
管内 沸腾
在一定压差作用下,以一定流 速流经加热管时所发生的沸腾 现象,又称为强制对流沸腾
强制对流沸腾
管壁上所产生的气泡不能自由上浮,而是 被管内液体所挟与其一起流动,从而造成 复杂的两相流动。因此,其机理要比池内 沸腾复杂。
过冷 沸腾
管内沸腾
流体主体温度低于饱和温度, 而加热面上有气泡生成
自然对流 核状沸腾 膜状沸腾
α
C
不
稳稳
定 膜
定 区
F
临界点 状 D E
B
ห้องสมุดไป่ตู้
A
0.1
1.0
10
10
10
Δt = (tw-ts)/℃
2
3
温度差和沸腾传热系数关系
当△t继继续增加,加热表面上形成一层稳定的气膜,把液体和加热表面完全隔开。但此 时壁温较高,辐射传热的作用变得更加重要,故α再度随△t的增加而迅速增加。
化工原理 对流传热PPT
Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。
单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2018/11/10
3 影响对流传热系数的因素
1.引起流动的原因 自然对流:由于流体内部密度差而引起流体的流动。 强制对流:由于外力和压差而引起的流动。 强 > 自 2.流体的物性
相变 > 无相变
4 对流传热系数经验关联式的建立
一、因次分析 =f(u,l,,,cp,,gt) 式中 l——特性尺寸; u——特征流速。 基本因次:长度L,时间T,质量M,温度 变量总数:8个
由定律(8-4)=4,可知有4个无因次数群。
Nu C Re Pr Gr
a k
2018/11/10
1、对流传热速率表达式
据传递过程速率的普遍关系,壁面和流体间的对流传热速率:
对流传热推动力 系数 推动力 对流传热速率 对流传热阻力 推动力:壁面和流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。 对流传热速率方程可以表示为:
T Tw dQ 1 dS
2018/11/10
2018/11/10
二、实验安排及结果整理 以强制湍流为例:Nu=CReaPrk 1.采用不同Pr的流体,固定Re
Nu
k
lgNu=klgPr+lgCRea
双对数坐标系得一直线,斜率为k 2.不同Pr的流体在不同的Re下 lgNu/Prk=algRe+lgC 双对数坐标系中得一直线 斜率为a,截距为C
强化措施: • u,u0.8 • d, 1/d0.2 • 流体物性的影响,选大的流体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:
强制对流 自然对流
2020/3/29
2、流体的物性 流体的物性不同,对流传热系数的大小也不同,
( 2 ) Q A (T T w )A (tw t) = A t
式中:Δt——传热壁与湍流主体之间的温度差; A——传热壁与流体的接触面积。
2020/3/29
(3) ——对流传热系数、给热系数、膜系数。表
征对流传热过程的参数,影响因数众多,不是物性 常数(如λ )。 (4)复杂问题简单化的表示──牛顿冷却定律虽然 给出了计算对流传热速率简单的数学表达式,但由 于对流传热一个非常复杂的物理过程,并未简化问 题本身(有效膜厚度难以测定),只是把诸多影响
一、对流传热过程分析 1、传热边界层
【现象】流体在平壁上流过时,如果流体和壁面间 将进行换热,将引起壁面法向方向上温度分布的变 化,形成一定的温度梯度。 【定义】靠近壁面处,流体温度发生显著变化的区 域,称为传热边界层或温度边界层。
2020/3/29
2020/3/29
法向
20℃
22℃ 100℃
传热边界层——流 体温度发生显著变 化的区域。
数值的大小是一个极为复杂的问题。目前还不能对对 流传热系数从理论上来推导它的计算式,只能通过实 验得到其经验公式。 【经验公式的建立方法】 (1)通过因次分析,建立特征数(准数)关系式; (2)通过实验,测定各准数的待定系数。
2020/3/29
2、准数关系式(通过因次分析获得) 经分析可知:
=f(u,l,,,Cp,,gt)
传热边界层示意图
2、对流传热过程流体流动的分析
湍流主体 湍流主体
2020/3/29
(1)层流内(底)层的特点 层流内层内,由于流体质点只在流动方向上作一
维运动,在传热方向上无质点运动。其特点是:
①主要依靠热传导方式来进行 热量传递; ②由于流体内部存在温差还会 有少量的自然对流。 ③传热温差大。
。即:
Re,bt
因此 湍流层流
【结论】(1)为增大α,应增大Re; (2)但随着Re的增大,动力消耗大。
2020/3/29
4、传热面的形状、尺寸和位置 不同的壁面形状、尺寸会影响流型;会造成边界
层分离,产生旋涡,增加湍动,使增大。
(1)形状 比如管、板、管束等; (2)尺寸 比如管径和管长等; (3)位置 比如管子的排列方式(如管束有正四方 形和三角形排列);管或板是垂直放置还是水平放 置。
2020/3/29
虚拟层 有效膜
【有效膜模型说明】 (1)厚度为:
bt=δb+δf (2)膜内温度的变化为 线性关系,即为传导传 热; (3)膜外无传热。
有效膜模型示意图
3、有效膜模型的数学描述
(1)有效膜的厚度:bt (2)有效膜的导热系数:λ
(3)使用傅立叶定律计算在有效膜内的传热速率。
当流体被加热时:
2020/3/29
5、是否发生相变 【现象】主要有蒸汽冷凝和液体沸腾。 【特点】发生相变时,汽化或冷凝的潜热远大于温 度变化的显热(r远大于Cp)。 【结论】一般情况下,有相变化时对流传热系数较 大,即:
有相பைடு நூலகம் 无相变
2020/3/29
四、对流传热系数经验关联式的建立
1、基本方法 由于影响对流传热系数的因素非常多,因此确定其
2020/3/29
(2)湍流核心(主体)的特点
①远离壁面; ②流体质点充分混合,温 度趋于一致(热阻小); ③传热主要以对流方式进 行。
2020/3/29
(3)过渡区的特点
①存在质点混合、分子 运动的共同作用,温度 变化不像湍流主体那么 平缓均匀,也不像层流 底层变化明显。 ②传热以热传导和对流 两种方式共同进行。
式中 l———特性尺寸; u———特征流速; β——体积膨胀系数 。
因次分析结果如下:
N uKRaP ebrGcr
2020/3/29
3、特征数(准数)的符号及意义
准数名称
努赛尔特数 (Nusselt number)
符号 准数式
l Nu
含义
表示对流传热系数的准数
雷诺数 (Reynolds number)
bt
Q bt
A(tw
t)
当流体被冷却时:
Q bt'
A(TTw)
bt’
2020/3/29
4、牛顿冷却定律
令:
bt
Q bt
A(tw
t)
流体被加热: QA(twt)
流体被冷却: Q' 'A(TTw)
【说明】以上两式称为牛顿冷却定律,用于计算对 流传热速率。
2020/3/29
5、几点说明
(1)牛顿冷却定律并非从理论上推导的结果,是根 据有效膜模型建立起来的数学方程。 (这种处理问 题的方法,在工程中称之为数学模型法)