螺栓断裂

合集下载

断裂螺栓取出技巧方法

断裂螺栓取出技巧方法

断裂螺栓取出技巧方法断裂螺栓是指在使用过程中由于应力过大或其他原因导致螺栓发生断裂的现象。

断裂螺栓的存在不仅给生产和使用带来了困扰,还可能对设备和人员安全造成威胁。

因此,掌握断裂螺栓取出的技巧方法对于维护设备和保障安全至关重要。

一、了解螺栓断裂的原因在进行断裂螺栓取出之前,首先需要了解螺栓断裂的原因。

螺栓断裂的原因可能有很多,如应力集中、材料缺陷、过度紧固等。

对于不同的断裂原因,采取的取出方法也会有所不同。

二、选择适当的工具和设备在取出断裂螺栓之前,需要准备一些适当的工具和设备。

常用的工具包括扳手、钳子、锤子、电动工具等。

根据具体情况选择合适的工具,以确保取出过程的顺利进行。

三、采取适当的取出方法1. 扭转取出法扭转取出法是最常用的方法之一。

首先用扳手或其他工具反方向扭转螺栓,尝试将其取出。

如果螺栓松动,可以继续用手扭转取出。

如果螺栓仍然无法取出,可以尝试用锤子轻轻敲击螺栓,增加其松动程度。

如果螺栓断裂部分露出,可以使用钳子将其取出。

2. 钻孔取出法钻孔取出法适用于断裂螺栓无法通过扭转取出的情况。

首先使用钻头在螺栓上钻孔,直到钻头穿透螺栓。

然后使用合适的螺纹刀具将螺栓取出。

需要注意的是,在钻孔时要注意控制钻头的深度,避免损坏其他部件。

3. 热力取出法热力取出法适用于断裂螺栓与被固定部件之间存在较大的膨胀差异时。

首先使用火焰枪或其他加热工具对螺栓进行加热,使其膨胀。

然后使用扳手或其他工具进行取出。

需要注意的是,在加热时要避免过度加热,以免引起其他问题。

4. 气动取出法气动取出法适用于断裂螺栓较为困难且无法通过其他方法取出的情况。

首先使用气动工具将螺栓周围的松动物质清除干净。

然后使用气动工具对螺栓进行冲击,以震动其松动。

最后使用扳手或其他工具将螺栓取出。

四、注意安全事项在进行断裂螺栓取出时,需要严格遵守安全操作规程,确保操作人员的安全。

需要戴上适当的防护装备,如手套、护目镜等。

在使用电动工具时,要注意电源是否正常,以免发生意外。

螺栓断裂分析报告

螺栓断裂分析报告

螺栓断裂分析报告1. 引言螺栓是一种常见的连接元件,广泛应用于工程领域。

然而,在使用过程中,螺栓的断裂可能会导致严重的安全事故和设备损坏。

因此,对螺栓的断裂原因进行分析非常重要。

本文将介绍螺栓断裂的分析步骤,以帮助读者更好地了解螺栓断裂的原因,并提供相应的解决方案。

2. 分析步骤螺栓断裂分析通常可以按照以下步骤进行:2.1 收集断裂螺栓样本首先,需要收集断裂的螺栓样本。

这些样本应来自不同的工程项目,并涵盖不同的工作条件。

收集足够数量的样本有助于得出准确的结论。

2.2 观察断口形貌通过对断裂螺栓的断口形貌进行观察可以初步判断断裂的原因。

断口形貌可以分为韧性断口、脆性断口等。

韧性断口常常表明螺栓断裂是由于受到超负荷载荷所致,而脆性断口则意味着存在其他问题。

2.3 进行金相分析金相分析是一种常用的分析方法,通过对螺栓样本进行金相薄片制备和观察,可以获得螺栓的组织结构信息。

通过金相分析,可以检测到螺栓材料中的缺陷、夹杂物、氧化层等问题。

2.4 进行力学性能测试力学性能测试是评估螺栓质量的重要手段。

通过对螺栓样本进行拉伸试验、硬度测试等,可以了解螺栓的强度、韧性等性能参数。

与标准数值进行对比,可以判断螺栓是否达到设计要求。

2.5 考虑工况因素分析断裂螺栓时,还需要考虑螺栓所处的工作条件。

例如,工作温度、湿度、振动等因素都可能对螺栓的性能产生影响。

通过分析工况因素,可以找到与断裂相关的潜在问题。

2.6 结果分析与解决方案综合以上分析结果,可以得出螺栓断裂的原因。

根据不同的原因,提出相应的解决方案。

例如,如果断裂原因是由于材料质量问题,可以优化材料制备过程;如果是由于超负荷导致断裂,则需要对工作负荷进行合理评估等。

3. 结论螺栓断裂分析是一项复杂的工作,需要综合考虑多个因素。

通过对断裂螺栓样本的观察、金相分析、力学性能测试以及考虑工况因素,可以准确判断螺栓断裂的原因,并提出相应的解决方案。

对螺栓断裂问题的分析与解决不仅可以提高工程项目的安全性,还能为相关领域的研究提供参考。

螺栓断裂原因及处理方案

螺栓断裂原因及处理方案
案例五
某项目现场变桨轴承与轮毂连接螺栓发生多台次断裂,且螺栓为同一批次。
螺栓断裂原因:断裂螺栓心部硬度明显偏低,不符合订货技术要求;在 金相显微镜下,发现心部为回火索氏体和大量残余奥氏体,属于螺栓质 量问题。
3/17/2015
Mechanical Laod test
3/17/2015
No. 13
金风科技
螺栓断裂原因:机组运行时,螺栓应力幅值过大,现场更换螺栓时未按 要求进行“十”字交叉紧固,造成法兰面间存在间隙。
3/17/2015
Mechanical Laod test
3/17/2015
No. 9
金风科技
3、螺栓断裂原因及案例分析
案例二
某项目现场叶片与轮毂连接螺栓频繁发生断裂,现场检查时发现该位置螺 栓有松动迹象。
杂、间隙等。 5) 登机检查时注意断裂螺栓位置法兰与螺杆是否存在干涉的情况。 6) 关注同批次多颗螺栓断裂的问题。
3/17/2015
Mechanical Laod test
3/17/2015
No. 8
金风科技
3、螺栓断裂原因及案例分析
案例一
某项目现场偏航轴承与底座连接螺栓频繁发生断裂,现场检查时发现偏航 轴承与底座连接面有渗油情况。
4、处理螺栓断裂的几种方法
1) 如果空间足够可以将螺栓改成双头螺柱。 2) 使用加厚垫圈,将原有连接螺栓加长。 3) 采用特质的受拉螺母结构。 4) 如果确定是螺栓强度不够,可以使用强度更高的螺栓。 5) 对机组进行应力幅或载荷测试,找到螺栓断裂的真正原因,再进行处理。
3/17/2015
Mechanical Laod test
螺栓断裂原因及处理方案
目录
1、螺栓连接受力形式及预紧力分析 2、螺栓断裂分析注意事项 3、螺栓断裂原因及案例分析 4、处理螺栓断裂的几种方法

螺栓从根部断裂的原因

螺栓从根部断裂的原因

螺栓从根部断裂的原因
螺栓从根部断裂的原因有多种,以下是其中的一些常见原因:
1. 过度紧固:螺栓在安装过程中过度紧固,会导致螺栓的应力超过其承受极限,从而导致螺栓从根部断裂。

2. 疲劳断裂:螺栓在长期使用过程中,由于受到重复的载荷作用,会逐渐产生微小的裂纹,当这些裂纹达到一定程度时,就会导致螺栓从根部断裂。

3. 材料缺陷:螺栓的制造过程中可能存在材料缺陷,如夹杂、气孔等,这些缺陷会导致螺栓的强度降低,从而容易发生从根部断裂的情况。

4. 热膨胀:在高温环境下,螺栓由于热膨胀的原因,会受到额外的应力,从而导致从根部断裂。

5. 腐蚀:螺栓在潮湿、腐蚀的环境中使用,会导致其表面产生腐蚀,从而降低其强度,容易发生从根部断裂的情况。

为了避免螺栓从根部断裂,需要注意以下几点:
1. 在安装螺栓时,不要过度紧固,应该根据设计要求和实际情况确定适当的紧
固力。

2. 定期检查螺栓的状态,如有发现裂纹、变形等情况,应及时更换。

3. 在高温环境下使用螺栓时,应选择能够承受高温的材料。

4. 在潮湿、腐蚀的环境中使用螺栓时,应选择具有抗腐蚀性能的材料,并采取防腐措施。

5. 在制造螺栓时,应注意材料的质量,避免出现材料缺陷。

紧固件螺栓断裂常见原因分析

紧固件螺栓断裂常见原因分析

紧固件螺栓断裂的原因有多种多样,归纳来说,一般螺栓的损坏由应力因数、疲劳、腐蚀和氢脆等原因形成。

1、应力因数超过常规应力(超应力)由剪切、拉伸、弯曲和压缩中的任一个或其组合而产生。

大多数设计人员首先考虑的是拉伸负荷、预紧力和附加实用载荷的组合。

预紧力基本是内部的和静态的,它使接合组件受压。

实用载荷是外部的,--般是施加在紧固件上的循环(往复)力。

拉伸负荷试图将接合组件抗开。

当这些负荷超过螺栓的屈服极限时,螺栓从弹性变形变为塑性区,导致螺栓永久变形,因此在外部负荷除去时不能再恢复原先的状态。

类似原因,如果螺栓上的外负荷超过其极限抗拉强度,螺栓将断裂。

螺栓拧紧是靠预紧力扭转得来的。

在安装时,过量的扭矩导致超扭矩,同时也使紧固件受到了超应力而降低了紧固件的轴向抗拉强度,即在连续扭转的螺栓与直接受张力拉伸的相同螺栓相比,屈服值比较低。

这样,螺栓有可能在不到相应标准的最小抗拉强度时就出现屈服。

扭转力矩大可以使螺栓预紧力增大.使接合松弛相应减少。

为了增加锁紧力,预紧力一般采取上限。

这样,除非屈服强度和极限抗拉强度之间差异数目很小,一般螺栓不会因扭转而出现屈服现象。

剪切负荷对螺栓纵轴方向施加一个垂直的力。

剪切应力分为单剪应力和双剪应力。

从经验数据来讲,极限单剪应力大约是极限抗拉应力的65%。

许多设计人员优选剪切负荷,因为它利用了螺栓的抗拉和抗剪强度,它主要起类似销钉的作用,使受剪切的紧固件形成相对简单的联接.缺点是剪切联接使用范围小而且剪切联接不能经常使用,因其要求更多的材料和空间。

我们]知道,材料的组成成分和精度也起一定的决定性。

但是,将抗拉应力转换成剪切负荷的材料数据往往却是得不到的。

紧固件预紧力影响剪切联接的整体性。

预紧力越低,在与螺栓接触时接合层越易滑动。

剪切负荷能力通过乘以橫平面数计算(一个剪切平面通称单剪,两个剪切平面通称双剪),这些平面应该是无螺纹螺栓的横截面。

我们不提倡设计通过螺纹的剪切,因为紧固件的剪切强度可在横截面变化时被应力集中克服。

螺栓断裂分析报告

螺栓断裂分析报告

螺栓断裂分析报告一、引言螺栓是一种常见的连接元件,在机械设备和结构工程中得到广泛应用。

然而,螺栓在使用中可能会发生断裂,给机械设备和结构的安全运行带来隐患。

本报告旨在对螺栓断裂进行分析,并提供解决方案,以确保设备和结构的安全性。

二、螺栓断裂原因分析1.质量问题:螺栓断裂可能是由于螺栓本身存在质量问题所致,如材料强度不符合标准、制造工艺不良等。

为此,应关注螺栓的采购渠道和制造工艺,并严格按照相关标准进行选择和检测。

3.腐蚀问题:腐蚀是导致螺栓断裂的常见原因之一、在潮湿、酸性或碱性环境中,螺栓易受到腐蚀,使其材料的强度降低。

因此,在腐蚀环境中应选择抗腐蚀性能良好的螺栓材料,并进行定期维护保养。

4.紧固力不均匀:不正确的紧固力分布可能导致螺栓在负载过程中承受不均匀的力,从而引发断裂。

在安装过程中,应根据设备或结构的要求,采用正确的紧固力分布方案,并进行定期检查和调整。

三、螺栓断裂的解决方案1.优化选材:根据设备或结构的负荷、工作环境等要求,选择合适的螺栓材料。

关注材料的强度、韧性、抗腐蚀性等指标,并遵循标准进行选材。

2.合理设计螺栓连接:根据实际负荷情况和工作要求,合理选用螺栓的规格、数量和布置方式,并确保紧固力的均匀分布。

在设计过程中,可以借助有限元分析等工具来验证螺栓连接的安全性。

3.定期检查和维护:对于暴露在恶劣环境中的螺栓,应定期进行检查和维护,特别是针对腐蚀环境。

清洁螺栓表面,涂覆抗腐蚀涂层,必要时更换受损螺栓,以延长其使用寿命。

4.强化管理和培训:通过建立规范的螺栓管理制度和培训机制,提高操作人员的专业水平,加强螺栓使用和维护的知识宣传,以减少螺栓断裂的发生。

四、结论螺栓断裂是机械设备和结构工程中常见的问题,但可以通过合理选材、优化设计、定期维护和加强管理来减少其发生。

对于已经断裂的螺栓,应及时进行更换,并对其断裂原因进行调查分析,以避免类似问题再次发生。

通过以上措施的综合应用,能够提高螺栓连接的安全性和可靠性,保证设备和结构的正常运行。

螺栓断裂(1)

螺栓断裂(1)

螺栓断裂简介螺栓断裂是指螺栓在受力过程中发生断裂现象。

螺栓作为连接紧固件,广泛应用于机械设备、汽车、航空航天等领域。

螺栓的断裂可能给设备带来严重的损坏甚至危险。

本文将从螺栓断裂的原因、检测方法以及预防措施等方面进行介绍和讨论。

原因螺栓断裂原因众多,主要可以归纳为以下几个方面:1. 载荷过大过大的载荷是螺栓断裂的主要原因之一。

当设备在运行过程中受到超过螺栓所能承受的最大载荷时,螺栓很容易发生断裂。

此外,载荷过大还会导致螺栓的拉伸和应力集中,加剧了螺栓断裂的风险。

2. 过紧或过松的紧固力过紧或过松的紧固力都会导致螺栓断裂。

当螺栓被过紧固定时,可能会导致螺栓超载断裂。

而过松的紧固力则会导致螺栓在运行过程中受到额外的振动和冲击,增加了螺栓断裂的风险。

3. 材料质量问题螺栓的材料质量也是导致螺栓断裂的重要原因之一。

如果螺栓的材料存在缺陷或者不符合标准,就会导致螺栓在承受载荷时出现断裂。

此外,螺栓的表面处理以及生产工艺等也会影响螺栓的断裂强度。

4. 腐蚀和疲劳腐蚀和疲劳也是导致螺栓断裂的常见原因。

腐蚀会降低螺栓的强度和韧性,增加螺栓断裂的风险。

而疲劳则是由于螺栓长时间受到交替载荷作用,导致螺栓产生裂纹并最终断裂。

检测方法及早检测螺栓断裂的迹象对于设备的安全运行至关重要。

以下是一些常用的螺栓断裂检测方法:1. 目视检查目视检查是最简单直接的螺栓断裂检测方法之一。

通过观察螺栓的外观是否有明显的破裂或变形,可以初步判断螺栓是否存在断裂的风险。

2. 超声波检测超声波检测是一种非破坏性检测技术,可以用于检测螺栓内部的裂纹和缺陷。

通过将超声波传感器放置在螺栓上,可以探测到螺栓内部的声波反射情况,从而判断螺栓是否存在断裂的问题。

3. 磁粉检测磁粉检测是一种常用的金属表面检测方法,也可以用于螺栓的断裂检测。

通过在螺栓表面涂覆磁粉,并施加磁场,可以发现螺栓表面的裂纹和缺陷。

4. 强度测试通过对螺栓的强度进行测试,可以评估螺栓的是否存在断裂的风险。

螺栓拧紧过程断裂原因

螺栓拧紧过程断裂原因

螺栓拧紧过程断裂原因
螺栓在拧紧过程中断裂的原因可能有多种,下面我会从多个角
度来解释。

首先,螺栓拧紧过程中断裂的原因可能与螺栓本身的质量有关。

如果螺栓的材料质量不佳,或者存在制造缺陷,那么在受到一定的
拉力或扭矩时就容易发生断裂。

此外,螺栓的表面处理也可能影响
其耐久性,例如表面的氧化、腐蚀等问题都可能导致螺栓在拧紧过
程中断裂。

其次,螺栓拧紧过程中断裂的原因还可能与拧紧力的控制不当
有关。

如果在拧紧螺栓时施加的力或扭矩超过了螺栓所能承受的极限,就容易导致螺栓断裂。

这可能是由于操作人员对于螺栓拧紧规
范的不了解或者操作不当所致。

此外,安装环境和条件也可能对螺栓的断裂起到影响。

例如,
如果螺栓在高温、高压或者腐蚀性环境下使用,就容易导致螺栓材
料的疲劳、腐蚀等问题,从而加速螺栓断裂的过程。

最后,螺栓拧紧过程中断裂的原因还可能与设计安装的不合理
有关。

如果在设计中没有考虑到螺栓的受力情况、安装环境等因素,就容易导致螺栓在使用过程中断裂。

综上所述,螺栓在拧紧过程中断裂的原因可能涉及材料质量、
拧紧力控制、安装环境和设计等多个方面。

为了避免螺栓断裂,需
要在选择螺栓时注意质量,合理控制拧紧力,考虑安装环境,并在
设计中充分考虑螺栓的使用情况。

螺栓断裂的原因及防松措施

螺栓断裂的原因及防松措施

螺栓断裂的原因及防松措施01螺栓为什么越拧越紧呢?一般情况下,我们对于螺栓断裂从以下四个方面来分析:第一、螺栓的质量第二、螺栓的预紧力矩第三、螺栓的强度第四、螺栓的疲劳强度实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。

因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。

01螺栓断裂不是由于螺栓的抗拉强度以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。

即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。

02螺栓的断裂不是由于螺栓的疲劳强度螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。

换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。

03螺纹紧固件损坏的真正原因是松动螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。

受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。

受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。

04选用防松效果优异的螺纹防松方式是解决问题的根本所在以液压锤为例。

GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。

但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。

螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。

螺栓从根部断裂的原因

螺栓从根部断裂的原因

螺栓从根部断裂的原因螺栓是一种常见的紧固连接件,广泛应用于机械设备、汽车、航空航天等领域。

然而,有时候螺栓会出现从根部断裂的情况,这不仅会导致设备的损坏,还可能引发严重的安全事故。

下面我们来探讨一下螺栓从根部断裂的原因。

螺栓从根部断裂的原因之一是由于材料质量问题。

螺栓通常由高强度合金钢材料制成,如果材料的质量不达标,存在内部缺陷、夹杂物或不均匀的组织结构,就容易引发断裂。

例如,如果螺栓中存在气孔、夹杂物等缺陷,这些缺陷会成为应力集中的位置,从而导致螺栓在受到外力作用时发生断裂。

过度紧固也是螺栓从根部断裂的常见原因之一。

在装配过程中,如果螺栓被过度紧固,就会导致螺栓承受过大的拉伸力,超过其承载能力,从而发生断裂。

这种情况在使用扭矩扳手等工具进行紧固时尤为容易发生,因为过度紧固会使螺栓的应力超过其材料的极限,从而引发断裂。

螺栓在使用过程中受到的振动和冲击也是导致其断裂的重要原因。

机械设备在工作时会产生振动和冲击,如果螺栓未能承受住这些动态载荷,就容易发生疲劳断裂。

当螺栓受到周期性的振动和冲击时,会导致应力集中,从而使螺栓的强度逐渐降低,最终引发断裂。

温度变化也会对螺栓的断裂产生影响。

当螺栓在高温或低温环境下工作时,其材料会发生热胀冷缩的变化,从而引起螺栓受力状态的变化。

如果螺栓在温度变化过程中受到不均匀的热应力影响,就容易发生断裂。

除了上述因素外,螺栓的设计和安装也会影响其断裂情况。

如果螺栓的设计不合理,例如直径过小、螺纹长度不足等,就会使其承受不了额外的载荷,从而导致断裂。

同时,不正确的安装方法,例如未使用适当的扭矩、未进行预紧等,也会导致螺栓从根部断裂。

螺栓从根部断裂的原因主要包括材料质量问题、过度紧固、振动和冲击、温度变化以及设计和安装问题等。

为了避免螺栓断裂带来的损失和安全风险,我们在使用螺栓时应选择质量可靠的产品,合理安装并避免过度紧固,同时注意振动和温度变化对螺栓的影响,定期检查和维护设备,确保螺栓的安全可靠运行。

螺栓断裂的形式

螺栓断裂的形式

一、拉伸断裂
拉伸断裂是指螺栓在受到拉伸应力作用下断裂。

这种断裂形态通常是呈现一条明显的断口,呈现出清晰的颗粒状断面。

螺栓的拉伸断裂通常发生在螺栓的颈部和螺纹部分,原因是这些区域的应力集中。

拉伸断裂的原因很多,可能是由于负荷过大、安装不当、事故及腐蚀等。

为了避免拉伸断裂的发生,应按照规范正确安装和使用螺栓,并使用合适的材料。

二、剪切断裂
剪切断裂是指在受到剪切应力的作用下,螺栓发生断裂。

这种断裂形态不同于拉伸断裂,通常会呈现出交错的齿状断口。

剪切断裂的原因可能包括负荷过大、疏忽或安装不当、材料不当等。

预防剪切断裂,应使用合格的螺栓,材料应该符合规范,安装应该完全遵循标准规定。

三、疲劳断裂
疲劳断裂是指螺栓在受到持续循环应力作用下逐渐疲劳导致的断裂。

这种形态的断口表现比较复杂,有时候断口会呈现出逐渐变细的尖锐断口或者外凸的半月形形状。

疲劳断裂的发生原因通常包括频繁的负载变化、使用时间过长、高温及腐蚀等因素。

为了预防疲劳断裂,我们可以使用高质量的螺栓材料,定期检查并更换老化的螺栓,定期进行维保和检修等方式。

螺栓断裂原因及处理方案

螺栓断裂原因及处理方案
T
F 2 d c / 4
T
T1 F tan( v ) d 2 / 2 2d 2 F tan( ) v WT d c3 / 16 dc d c2 / 4
T≈0.5σ。
对钢制M10~M68螺栓:τ
d. 危险截面上受复合应力( σ、 τ T)作用—→强度准则 螺栓为塑性材料—→第四强度理论。
3/17/2015
Mechanical Laod test
3/17/2015
No. 5
金风科技
1、螺栓连接受力形式及预紧力控制
3/17/2015
Mechanical Laod test
3/17/2015
No. 6
金风科技
1、螺栓连接受力形式及预紧力控制
3/17/2015
Mechanical Laod test
3/17/2015
Mechanical Laod test
3/17/2015
No. 13
金风科技
4、处理螺栓断裂的几种方法
1) 如果空间足够可以将螺栓改成双头螺柱。 2) 使用加厚垫圈,将原有连接螺栓加长。 3) 采用特质的受拉螺母结构。 4) 如果确定是螺栓强度不够,可以使用强度更高的螺栓。 5) 对机组进行应力幅或载荷测试,找到螺栓断裂的真正原因,再进行处理。
受拉螺栓 螺栓连接 受剪螺栓 1.2螺栓失效部位 由于机组上只采用受拉螺栓,故在此只分析受拉螺栓。据统计, 对于受拉螺栓,其失效形式主要是螺纹部分的塑性变形和螺杆的疲劳 断裂。
15% 20% 65%
仅受预紧力F’ 紧联接:需拧紧 同时受预紧力F’和工作载荷F
螺栓头部位失效占比15%,螺纹起始部位20%,螺纹旋合部位 65%。
3/17/2015

螺栓断裂分析

螺栓断裂分析

螺栓断裂(螺栓头根部断裂,如果是单件估讣是应力集中的原因,断裂批量应是材料或热处理问题。


1.拧紧力矩过大(8.8级M8螺栓的介理拧紧力矩在18~23N.m)
2.螺栓根部设计不合理导致了应力集中
3.热处理没有达到要求,,导致硬度过髙,发生脆性断裂。

是否有回火脆性?螺纹处是否有
脱碳组织?
4.材料问题(8.8级螺栓的材质应该是40MnB或者是35CrMOA
5.电镀时如处理不当,容易导致氢的侵蚀,导致氢脆:氢脆断口的特征为:微观准解理面、微孔及韧性的
发丝。

(判断是否为氢脆有个最简单的办法:把样品表而水和油污淸洗干净,
烘干,倒一烧杯石蜡.加热到没有气泡冒出为止.然后把样品放入石蜡中,如果有气泡冒出就说明氢含址高)
6.枪未调好扭距,有冲击,岀现瞬间过载。

7.材料本身就有缺陷(螺栓头杆结合处有微裂纹。

螺栓断裂分析报告

螺栓断裂分析报告

螺栓断裂分析报告摘要:本报告针对螺栓断裂现象进行了详细的分析和研究。

通过对螺栓断裂的原因、影响以及防止措施的探讨,为相关行业的螺栓使用提供了重要的参考。

本报告基于理论分析与实际案例,对螺栓断裂的破坏机理进行了深入剖析,为预防螺栓断裂提供了有益的建议。

1. 引言螺栓断裂是制造行业普遍存在的问题,对设备和生产过程的正常运行产生了严重的影响。

因此,了解螺栓断裂的原因和预防方法对确保设备和工业机械的长期运行至关重要。

2. 螺栓断裂的原因螺栓断裂的主要原因可以归结为以下几点:2.1 载荷过大:超过螺栓设计承载能力的载荷会加剧螺栓的应力,导致螺栓断裂。

2.2 腐蚀和疲劳:螺栓在潮湿或酸碱环境中易受到腐蚀,长期使用和重复加载会引起螺栓疲劳,最终导致断裂。

2.3 不合适的材料选择:选择低强度或不符合工作环境需求的材料使用螺栓,容易导致断裂。

2.4 不当的安装和紧固:螺栓的安装和紧固过程如果不正确,会影响其承载能力,增加螺栓断裂的风险。

3. 螺栓断裂的影响3.1 安全问题:螺栓断裂可能导致设备或机械的故障,对人员和生产环境造成潜在的安全隐患。

3.2 生产中断:螺栓断裂会导致设备停机和生产中断,给企业带来经济损失和生产延误。

3.3 维修和更换成本:螺栓断裂需要进行维修和更换,企业需要承担额外的成本。

4. 螺栓断裂的预防措施4.1 正确的设计和选择:根据工作环境和载荷要求,合理设计和选择螺栓材料和规格。

4.2 适当的安装和紧固:严格按照安装规范进行螺栓的安装和紧固,确保螺栓能够承受设计载荷。

4.3 定期检测和维护:定期检查螺栓的状态,及时发现问题并采取措施修复或更换。

4.4 使用防腐措施:在潮湿或有腐蚀环境的场所使用螺栓时,应采取防腐措施,延长螺栓的使用寿命。

5. 结论通过对螺栓断裂现象进行分析和探讨,我们可以得出以下结论:5.1 正确的设计和选择对于防止螺栓断裂至关重要。

5.2 安装和紧固过程必须按照规范进行,以确保螺栓可以承受设计载荷。

螺栓断裂失效模式

螺栓断裂失效模式

螺栓断裂失效模式
螺栓断裂失效模式是指螺栓在使用过程中出现断裂现象的具体形式和原因。

常见的螺栓断裂失效模式包括以下几种:
1. 疲劳断裂:螺栓在受到重复加载的情况下,由于应力集中、材料的疲劳寿命到达或低周疲劳引起的断裂,常见于长期受到振动或震动加载的螺栓。

2. 过载断裂:螺栓受到超过其承载能力的加载时,由于应力超过材料强度极限而引起的断裂。

过载断裂通常发生在突然的大负荷或冲击加载下。

3. 弯曲断裂:螺栓由于受到应力集中或不均匀加载而产生弯曲变形,最终导致断裂。

弯曲断裂通常发生在螺栓的长度与直径比较大的情况下。

4. 腐蚀断裂:螺栓长期暴露在腐蚀介质中,导致螺栓材料的腐蚀损失,最终引起断裂。

5. 应力腐蚀断裂:螺栓同时受到应力和腐蚀介质的作用,引起材料的应力腐蚀破坏,最终导致断裂。

螺栓断裂失效模式的分析可以帮助设计和使用螺栓时避免断裂问题的发生,提高螺栓的可靠性和安全性。

螺栓断裂的原因分析及预防措施

螺栓断裂的原因分析及预防措施

1、螺栓断裂的原因:1.由于螺栓的材料导致的,假如我们选用的材料比较好了之后,那么我们的螺栓质量也就会比较好。

假如我们选用的材料比较差,那么我们的螺栓在一定程度上断裂的程度就会比较多。

2.螺栓的强度不够高导致的,由于螺栓在承受的压力如果大于螺栓的强度,那么螺栓就会很容易出现断裂的现象。

因此我们在使用螺栓的时候最好能够了解一下该螺栓所能够承受的强度是多大,这样我们就能够选择高于这个强度的螺栓,螺栓断裂的可能性也会减少很多。

3.制造不合格导致的,很多的螺栓会因为生产不合格,这样就没有办法发挥出标准螺栓的质量,在一定程度上就会导致了螺栓的断裂。

我们在生产螺栓之后一定要经过检测,这样才能够保证螺栓是合格的才进行销售,这个也是对于消费者的一种最基本的保证。

4.由于螺栓的疲劳强度导致的。

螺栓会断裂最多的因素就是由于螺栓的疲劳强度所致。

我们在使用螺栓一开始是没有什么问题的,但是在经过物件的作业之后就有可能会产生一定的松动,在松动的时候继续作业是会让螺栓的疲劳强度增大,在到达了螺栓所能够承受的范围极限,那么螺栓也就随之断裂了。

2、预防螺栓断裂的措施:1.塞加垫铁2.改进螺栓加工工艺3.改进标准节加工工艺3、螺栓的质量有螺栓的长度、规格、类别、连接形式等条件决定。

4、螺栓的预紧力矩使得螺栓受到拉应力、剪应力两种力,而预紧力的控制是为了保证法兰连接系统紧密不漏、安全可靠地长周期运行,垫片表面必须有足够的密封比压,特别在高温工况下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变形,因此高温连接系统的密封比常温困难得多,此时螺栓预紧力的施加与控制就显得十分重要,过大或过小的预紧力都会对密封产生不利影响。

螺栓预紧力过大,密封垫片会被压死而失去弹性,甚至会将螺栓拧断;过小的螺栓预紧力又使受压后垫片表面的残余压紧应力达不到工作密封比压,从而导致连接系统泄漏。

因此如何控制螺栓预紧力是生产实际中必须重视的问题。

5、螺栓的抗拉强度和屈服强度决定了螺栓的强度,强度越大,通常寿命越大。

螺栓断裂文档

螺栓断裂文档

螺栓断裂引言螺栓是一种常用的紧固件,广泛应用于各个领域,如机械制造、建筑工程、汽车制造等。

然而,螺栓的断裂是一种常见的故障,会导致设备的停工和安全隐患。

本文将探讨螺栓断裂的原因、预防措施以及处理方法,以期提高螺栓的可靠性和安全性。

螺栓断裂的原因螺栓断裂的原因复杂多样,主要包括以下几个方面:1. 过载当螺栓承受超过其承载能力的载荷时,会发生断裂现象。

这可能是由于设计不合理、材料不符合要求或者使用过程中的意外超载造成的。

因此,在设计和使用过程中,需要对螺栓进行充分的强度计算和载荷分析,合理选择螺栓材料和尺寸,以避免超载断裂。

2. 疲劳螺栓在长时间的工作循环中,受到的循环载荷会引起疲劳断裂。

循环载荷包括振动、冲击、震动等,这些载荷会在螺栓表面产生应力集中,从而导致疲劳裂纹的形成和扩展。

为了预防螺栓的疲劳断裂,需要选择高强度的材料、合理的表面处理和正确的安装方法。

3. 材料质量螺栓的材料质量直接影响其断裂的风险。

低质量的材料可能存在成分不合格、缺陷、夹杂物等问题,这些缺陷会降低螺栓的强度和抗疲劳性能,增加断裂的风险。

因此,在购买和使用螺栓时,应选择信誉好的供应商,并进行材料质量检测。

4. 安装错误错误的安装方法也会导致螺栓断裂。

例如,过紧或过松的拧紧力矩都会对螺栓产生不良影响,造成松动或者断裂。

正确的安装方法包括合理的拧紧力矩、均匀的力分布和正确的工具使用等。

螺栓断裂的预防措施为了避免螺栓断裂,可以采取以下预防措施:1. 合理设计在设计上,应充分考虑螺栓的承载能力和工作环境,选择合适的材料、尺寸和标准。

合理的力学计算和工程分析可以保证螺栓的强度和可靠性。

2. 材料检测在采购螺栓时,应选择信誉好的供应商,并进行材料质量检测。

对于重要的工程项目,可以采用无损检测等方法来检测螺栓的材料质量和缺陷情况。

3. 正确安装正确的安装方法是避免螺栓断裂的关键。

在安装过程中,应遵循螺栓的安装规范,包括拧紧力矩、工具使用、力分布等。

简述普通螺栓受剪连接的五种可能破坏形式

简述普通螺栓受剪连接的五种可能破坏形式

简述普通螺栓受剪连接的五种可能破坏形式一、螺栓断裂螺栓断裂是普通螺栓受剪连接中最常见的破坏形式之一。

当受到剪力作用时,螺栓可能会发生断裂,导致连接失效。

螺栓断裂通常发生在螺纹部分或螺栓头部。

造成螺栓断裂的原因主要有以下几点:材料强度不足、过度紧固或过度加载、腐蚀等。

二、剪切面破坏受剪连接时,螺栓和连接材料之间会产生剪切力,如果剪切力过大,就会导致连接材料的剪切面破坏。

这种破坏形式主要发生在连接材料中,破坏形式为剪切面的断裂。

剪切面破坏的原因有:连接材料强度不足、过度加载或过度紧固、连接材料质量问题等。

三、剥离破坏剥离破坏是指连接材料表面被剪切力撕裂、剥离的破坏形式。

当受到剪切力时,连接材料表面可能会发生剪切面的剥离,导致连接材料的破坏。

剥离破坏的原因主要有:连接材料强度不足、连接材料表面处理不当、连接材料与螺栓之间存在松动等。

四、剪切滑移破坏剪切滑移破坏是指连接材料中的晶粒出现滑移现象,导致连接材料的破坏。

当受到剪切力时,连接材料中的晶粒可能会发生滑移,从而破坏连接材料的结构。

剪切滑移破坏通常发生在连接材料中,破坏形式为晶粒的滑移和变形。

五、剪切变形破坏剪切变形破坏是指连接材料在受到剪切力作用下发生的变形破坏。

当受到剪切力时,连接材料会发生剪切变形,从而导致连接材料的破坏。

剪切变形破坏主要发生在连接材料中,破坏形式为连接材料的变形和破碎。

总结起来,普通螺栓受剪连接的五种可能破坏形式为:螺栓断裂、剪切面破坏、剥离破坏、剪切滑移破坏和剪切变形破坏。

这些破坏形式的发生与连接材料的强度、连接方式的紧固力、螺栓材料的质量等因素密切相关。

为了确保连接的可靠性,需要选择合适的螺栓和连接材料,并正确进行连接和紧固操作,以避免以上破坏形式的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺栓断裂原因分析2010/10/28 17:22:07螺栓断裂分析的方法及程序在紧固件的失效分析中,螺栓的失效最多、也最为常见,而螺栓的断裂失效则占螺栓失效的80%左右,严重威胁着整个构件的安全。

因此,我们有必要、也必须对断裂螺栓进行分析。

由于螺栓的结构、形状和受力形式比较复杂,且在材料、工艺和使用状况等因素的影响下,经常发生各种形式的断裂失效。

由于螺栓种类多、用量大,普遍采用冷变形制造工艺,并依据各种不同性能要求而采用不同钢材和热处理工艺,同时进行严格的材料和工艺检查。

尽管如此,往往由于工艺管理和控制不善,构成了批量或频次较高的断裂失效,经常影响着正常生产和使用。

下面我们就谈谈紧固件断裂失效分析的方法。

紧固件断裂失效分析的方法一、系统方法系统方法,又称相关性方法,就是把失效分析类型、失效方式、断口特征形貌、工作条件、材质情况、制造工艺水平和过程、使用和维护情况等放在一个研究系统中,从总体上予以考虑的方法。

寻找失效原因应从设计、材质、制造、使用、维护等相关方面去考虑,并据此进行测试和分析,找出失效原因。

本方法的特点是:从一般到个别,从普遍到特殊,从单项分析到综合联系上找原因。

这就是尽可能地收集与全局有关的资料和测试信息,从而确定分析系统的范围。

该方法主要针对失效原因复杂的断裂螺栓。

二、抓主要矛盾方法在紧固件失效分析时要抓住失效中起主要作用的因素。

如在断裂失效中就一定要对断裂源、断裂形状及导致断裂的因素重点分析和研究。

这也是我们螺栓断裂失效分析中最常用的方法。

举例来说,当一个螺栓断裂件送到我们手上,我们发现该螺栓的支撑面的装配痕迹不对称(就是说一边有明显的装配痕迹而一边没有或者两边装配痕迹相差很大)。

我们都知道:力是造成痕迹的唯一原因,接下来我们就应对这一应力进行重点分析。

三、比较方法选择一个同批次,同服役状态而没有失效的螺栓与断裂螺栓一一对比,然后进行分析比较,从中找出差异,寻找出引起失效的原因。

该方法多用于尺寸精度的比较,如在内六角螺栓中,内六角偏斜,导致头杆不同心,引起掉头等!四、历史方法历史方法是根据同样螺栓、同样工作条件,在过去表现的情况和变化规律,来判断现在失效的可能原因。

所以历史方法是客观的依据。

它主要依赖过去的失效资料的积累,并运用归纳法和演绎法进行分析。

这种方法非常重要,往往会引起工艺的改进。

举例来说,本公司生产的外六角螺栓,去年以前均存在掉头现象(几乎每批次均有,为数极少),而又分析不出具体原因,只知道个别螺栓头杆结合部存在强度不足,因此总结以前的教训,将R角增大,结果从去年以来,该螺栓再没掉头。

五、逻辑方法它是根据背景资料(设计、材料和制造情况)和失效现场调查材料以及分析、测试获得的信息,进行分析、比较、综合、归纳和概括,作出判断和推论,得出可能的失效原因。

该方法是最常用,也是最直接的分析方法。

螺栓断裂分析的基本程序以上就是螺栓断裂分析的基本方法,看起来并不是很难,但真正运用起来,对症下药,却是很不容易。

下面我们就来谈谈螺栓断裂分析的基本程序。

当断裂螺栓送到我们手中,我们首先要做的是追溯该紧固件,包括制造日期、零件、名称、零件图纸、发货日期等,以确定该断件是否为本公司制造。

接下来我们应该了解失效现场(包括断裂时间、地点、经过以及向有关工作人员询问断件的装配、服役和失效的情景等)。

紧跟着就是对断裂件的测试和分析,它包括以下几方面的内容:一、宏观观察宏观观察就是对断裂件进行直观检测(或用小于10X的放大镜观察)。

以便能发现必须研究的问题;如发现断件表面伤痕严重,就应该从受力方面分析以及校对断件的尺寸是否符合设计要求。

如发现断件粘有异物,应着手对异物进行分析,看是否是异物导致的失效。

举例来说,去年本公司生产的M8X18内六角螺栓在客户装配线上断裂,将整个装配体锯开,发现螺牙内充满异物,究其原因是涂胶过多,装配中咬死拧断。

二、断口分析首先,我们看看螺栓中常见缺陷的断口特征:1.萘状断口这种螺栓断口在宏观上呈较平坦的粗晶断口。

用掠入光照射时,由于各个晶面具有不同的反光能力,因而闪烁着象结晶萘一般的光泽,故称之为萘状断口。

形成这种断口的主要原因跟过热或粗晶粒有关,而大多数是因为原材料带来的缺陷。

当然,后续热处理中由于热处理温度过高导致晶粒长大,也会出现这种断口。

如自功钉由于渗碳淬火时温度过高或保温时间太长导致晶粒长大,拧断后的脆性断口就是典型的萘状断口。

2.瓷状断口宏观上呈亮灰色,有较微弱的金属光泽,似打碎的瓷器断口。

出现这种断口往往是因为硬度太高,如淬火螺栓的冲击断口就是典型的瓷状断口。

3.石状断口宏观上呈浅灰色、无金属光泽的碎石块状粗晶组织。

微观上呈沿晶粒韧性断裂,晶界面上有MnS表决权杂析出。

该种断口出现在严重过热以至过烧螺栓中。

如红锻螺栓由于终锻温度过高,脆断后可能出现这种断口!4.夹杂断口肉眼观察断口能见到与金属颜色相异的物质,以各种不规则形状分布,其区域实际有大量的金属或异金属夹杂,该断口一般呈现脆性断裂。

如固定汽车减震弹簧钢板的U形螺栓由于MnS夹杂而脆断。

5.螺栓在静拉伸应力下的断口形貌接着,我们就来看螺栓在单纯应力下的断口。

说到断口,我们不得不提到断口的三要素:纤维区、放射区和剪切唇。

1)纤维氏在静拉伸应力下,该区一般位于断口的中央,呈粗糙的纤维状。

纤维区宏观平面与拉伸应力轴相垂直,裂纹核心在该区形成。

种纤维状特征是由于显微空穴的形成和长大在断口上留下的友观形态。

对于高强度螺栓,其纤维区还具有一种圆环状花样特征,这是一种环形剪切脊。

在环形花样的中央或靠近中央处,有一个或几个锥形坑,象“火山口”那样,它既为裂纹起处。

实验证明,“火山上”总有夹杂物存在。

对于带缺口的螺栓断口,裂纹直接在缺口或缺口附近产生,此时纤维区不再在断口中央,而沿圆周分布,裂纹将由表面向内部扩展。

2)放射区紧接着纤维区的第二个区域是放射区。

纤维区是裂纹缓慢扩展的标志,而放射区则是裂纹快速扩展的表征。

每根放射条称为放射元,放射方向与裂纹扩展方向一致。

根据放射花样的形貌,可分为“放射纤维”和“放射剪切”两种。

“放射纤维”的放射元呈纤维状,一般很直,无论裂纹源是否在断口中央或放射花样是否粗大,都不会使“放射纤维”弯曲。

“放射剪切”花样是一种典型的剪切脊,其宏观形貌似菊花状。

每一条放射剪切元的顶峰,有纵向隙裂,这可能是由作用在隙裂面上的拉应力所造成。

通常隙裂面上存在有较多夹杂物和缺陷。

3)剪切唇断裂过程的最后阶段形成剪切唇。

剪切唇表面光滑,与拉应力成45°角,是一种典型的切断形断口。

按断裂学的观点,它是在平面应力条件下发生的不稳定断裂。

剪切唇常与放射区相毗邻。

对于韧性好的螺栓,可出现纤维区直接与剪切唇相连接的特征。

螺栓的形状、尺寸、热处理状态以及加载速度、受力状态对断口三个区均有影响。

但一般来说,螺栓的强度越高,则放射区比例越大,螺栓的脆性也越大;如果纤维区和剪面积越大,则螺栓的韧性越好。

因此在分析研究时,可根据这三个区形态及在断口所占的比例粗略地评价螺栓的性能,这在实际分析中也是有用的。

此外加载速度增大或有三向应力状态存在时都会使断口放射区有增大趋势。

6.螺栓在冲击应力下的断口形貌在冲击断口中也同样会出现那三个区域。

一般情况下,在受力点先形成纤维区,然后是放射区和剪切唇。

若螺栓塑性很好,则放射区完全消失,整个截面上只有纤维区及剪切唇。

7.螺栓在交变应力下的断口形貌疲劳断裂在断裂失效中所占的比例很大,所以对疲劳断口的研究十分重要。

大多数螺栓疲劳断裂是在交变应力下低于螺栓的疲劳极限情况下发生,形成所谓的低力高周次疲劳。

典型的疲劳断口一般也有三个区,即疲劳源区、疲劳裂纹扩展区及瞬时断裂区。

1)疲劳源区用肉眼和放大镜就能大致判断疲劳源的位置。

疲劳源是疲劳破坏的起点,它常常发生在表面,如带孔螺栓的孔、凹槽、尖角、加工刀痕等宏观应力集中的部位。

但有时也发生在内部,如脆性夹杂物、缩孔处。

疲劳源数目有时不止一个,而有两个甚至两个以上。

当螺栓表面有严重的缺口应力集中时,腐蚀疲劳和低周疲劳的断口上常为多疲劳源。

2)疲劳扩展区这是疲劳断口上最重要的特征区域,在此区域上常有疲劳断裂独特的宏观标志,这些条纹目前应用各种名称来描述它,如贝纹状、蛤壳状、海滩波纹状等。

贝纹状的推进线标志着螺栓震动或停止时,疲劳裂纹扩展过程中所留下的痕迹。

通常认为这些贝纹线的形成与裂纹受阻而暂时停歇或构件运转时外载荷变化有关,贝纹线一般从疲劳源开始,向四周推进呈弧线形线条,垂直于裂纹扩展方向。

在实验室作恒应力或恒应变试验时,断口一般无贝纹线特征,此时疲劳断口表面由于多次反复压缩而摩擦,使该区变得光滑,呈细晶状,有时甚至光洁得象瓷状结构。

对于低周疲劳断口也观察不到这种贝纹状推进线。

若仔细观察疲劳断口,可以看到在疲劳源的周围,存在着一个非常光洁、细洁、贝纹线不明显的狭小区域,这是由于疲劳裂纹源在该区扩展速度很慢及裂纹反复张开和闭合而使断口磨光的缘故。

尽管这个区域从本质上看,应属于疲劳扩展区,但常习惯于称它为“疲劳源区”。

此外在此区域,还常看到以疲劳源区为中心向四周辐射的放射状台阶,这说明疲劳裂纹不是简单的一个宏观平面,而是沿着一系列具有高度差的宏观平面向周围扩散。

此外,在疲劳扩展区,除贝纹线外,有时也可看到二次台阶条纹,这些台阶是由于裂纹扩展到后期,裂纹不断生长,有效截面不断减少,有效应力不断增加,裂纹扩展速度提高,此时往往有因撕裂螺栓而造成的台阶。

为区别由于应力集中引起的一次台阶而称之为二次台阶。

3)瞬时破断区瞬时破断区(或称最终破断区,过载破断区)是疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。

对于非常脆的螺栓,此区为结晶状的脆性断口。

8.螺栓的应力腐蚀和氢脆断口的宏观形貌应力腐蚀的裂纹源常产生于螺栓的表面,断口的裂纹源及亚临界扩展区因介质的腐蚀作用而呈黑色或灰黑色。

黑色区域为裂纹源及亚临界扩展区。

氢脆也是应力腐蚀的一种形式,它是由于外界环境中氢侵入螺栓,在螺栓装配后一段时间发生的。

如酸洗、电镀等作用下引起的氢使晶界脆化,形成延晶断裂,其断口有放射状或结晶状等脆性特征。

三、确定断裂源了解了螺栓在各应力下的断口形貌,接下来就是怎样确定断裂源。

因为断裂源是螺栓中性能最为薄弱或所受应力最集中的地方,它记载了该螺栓从原材料到成品过程中可能存在的缺陷,以及该螺栓在装配和服役方面的信息。

通过对断裂源的分析,得出断裂的真正原因。

一般来说,可以用以下几个方法来确定断裂源:1.对于螺栓来说超负荷引起的断口,其纤维区就是断裂源所在的位置。

具有圆环脊状花样的纤维区,其裂纹源总是在最内层的“火山口”处。

2.对于脆性断口可利用断口上的“放射状”或“人字纹”的汇集处寻找断裂源。

相关文档
最新文档