空中领航学(E01)ppt课件
空中领航学框架课件
第二节 航图的特点和应用
一、航空地图的特点 (一)图幅尺寸大小适当,便于使用 (二)负载量小,航行要素突出 (三)航图颜色便于阅读,减少成本 (四)各航图间连续性好 (五)航行资料现势性强 (六)采用两种方向表示方法
二、航空地图的应用 (一)航图的分幅和编号 1、百万分之一世界航图的分幅和编号 2、其它比例尺航图的分幅和编号 (二)航图的选择 (三)航图的拼接
连接起来,这条曲线就叫等磁差曲线。将不同的 等磁差曲线在一幅地图中描绘出来叫做等磁差图。 (二)磁倾 (三)地磁力 地球磁场对磁体的作用力叫地磁力。 (四)磁差年变率
第二节 空中领航学使用的坐标系
一、地平坐标系 可以明确飞机在航站区 域范围和航站基准点之 间的位置关系 二、空间直角坐标系 该坐标系是与地球牢固连接,即随着地球旋
概念; 1909年,俄国什瓦布斯基求出偏流公式; 1910年-1013年,航空地图问世。 1914-1918年朱拉夫琴科是第一位证明罗
盘领航是主要领航方法的飞行家。 20世纪20年代之后,无线电领航成为主流。
六、学习方法和学习要求:
学习方法:
学习要求:
1、课前预习,上课记笔记,课后复习 和作业。
(三)航线代号的使用 1、航线(航段)代号选用顺序 2、航线走向表述方法
复习思考题
1.比较极地平面投影、等角正圆柱投影、 等角正割投影的投影原理,失真情况和适 用范围。
2.什么是坐标纵偏角,高斯投影中坐标系 是如何确定的。
3.五十万分之一、二十万分之一航图是如 何分幅的?
4.大圆航线和等角航线的定义。
第二章 航图和飞行航线
第一节 航图的基本原理
一、地图三要素
(一)地图比例尺
①数字比例尺 ②文字比例尺 ③图解比例尺或直线比例尺 ④面积比例尺 (二)地图符号 1、地物符号 2、地形符号:标高点;等高线;分层着色;晕渲 法:
空中领航学 领航 第一章
中国民航大学职业技术学院 张同荣
2、地球运动与气候条件
地球自转运动与昼夜变化 白昼 (向着太阳)
昏线
晨线
西
东
黑夜 (背着太阳)
中国民航大学职业技术学院 张同荣
等角航线( Rhumb Line)
2 1 tanc (2 1 ) / ln tan ln tan 4 2 4 2
中国民航大学职业技术学院 张同荣
大圆航线和等角航线的关系
地球上任意两点间都有一条大圆航线和一条等角航线 ,只有当两点都在赤道上或同一经线上时,这两条航 线才重合。 等角航线一般比大圆航线距离长,经度差越大,航线 角越接近90 °或270 °,距离差越大;中纬度地 区距离差最大。经度差小于30 °情况下,无论其他 条件如何,距离差都很小,可忽略不计。 等角航线的特点:航线角可以从任意位置经线开始量 取,飞行员在飞行中不需要改变航线角。飞行操作比 较方便,但航线距离大于大圆航线。 近程飞行:等角航线 远程飞行:全程采用大圆航线,分航段用等角航线。
第一章 航空地理基础
中国民航大学职业技术学院 张同荣
Contents
1
2 3
地球运动与地理坐标
时间和时刻
飞行航线
4
日出日落、天亮天黑
中国民航大学职业技术学院 张同荣
1.地球的形状和大小
中国民航大学职业技术学院 张同荣
1、目前使用北京大地坐标系。 东西半径(长半轴) 6378.140km; 南北半径(短半轴) 6356.755km; 长短半轴相差21.385km; 平均半径R=6371.004km;
空中领航学(E_01)
Air Navigation
空中领航学
Form of the Earth
All air navigation is done with reference to the surface of the earth.
Shape and Size
For practical
R
purpose the earth can
经
无
线
线
赤道
电 信号
14
Air Navigation
空中领航学
Great circle Small circle
15
Air Navigation
空中领航学
大圆具有如下特点:
• 大圆是在球体表面上所能画出的最大的圆; • 在球体表面两点之间的最短距离是大圆的弧; • 除了像地球的地理两极(径向相反)的两点以
10
Air Navigation
空中领航学
To support visual navigation procedures, we use dead reckoning (DR) to deduce our position.
To assist us with our visual navigation procedures, we can use any radio navigation equipment installed in our aeroplane to obtain information from ground-based radio beacons.
3
Air Navigation
空中领航学
空中领航学是引领飞机航行的一门 应用学科,它以地球作为参照系来研究 飞机相对于地球的运动及其导航方法。
宇宙航行 课件(共61张)
D. 西昌 ,向东发射
第5节 宇 宙 航 行
小结
1、第一宇宙速度(环绕速度):v =7.9千米/秒
(地球卫星最大的绕行速度,地球卫星的最小发射速度)
Mm v2 mg G 2 m R R
v
GM R
或
v gR
2、第二宇宙速度(脱离速度):v =11.2千米/秒
(卫星挣脱地球束缚变成小行星的最小发射速度)
卫星变轨原理
思考:人造卫星在低轨道上运行,要想让其在 高轨道上运行,应采取什么措施? 在低轨道上加速,使其沿椭 圆轨道运行,当行至椭圆轨 道的远点处时再次加速,即 可使其沿高轨道运行。
万有引力相同
·
1、卫星在二轨道相切点
2、卫星在椭圆轨道运行
速度—内小外大(切点看轨迹) 近地点---速度大,动能大 远地点---速度小,动能小
不行,因为飞船加速后做离心运动会偏离原来的圆 轨道而无法与空间站对接。
对接方法:
• 飞船首先在比空间站低的 轨道运行,当运行到适当 位置时,再加速运行到一 个椭圆轨道。 • 通过控制轨道使飞船跟空 间站恰好同时运行到两轨 道的相切点,此时飞船适 当减速,便可实现对接, 如图示。
空间站
飞船
例:在太空中有两飞行器a、b,它们在绕地 球的同一圆形轨道上同向运行,a在前b在后, 它都配有能沿运动方向向前或向后喷气的发动 机,现要想b 尽快追上a 并完成对接,b应采 取的措施是( B ) A、沿运动方向喷气 B、先沿运动方向喷气,后沿运动反方向喷气 C、沿运动反方向喷气 D、先沿运动反方向喷气,后沿运动方向喷气
练习:求近地卫星的周期
r T 2 GM 地
3
(6.37 10 ) 2 3.14 s 11 24 6.67 10 5.98 10
空中领航学:第1章 地理和天文有关知识
(UTC) 是以零时区的时刻为标准所确定的时刻。作为国际统 一时刻。
36
4、澳大利亚采用的时刻
Eastern Standard Time (EST) is used in the eastern states of Australia. (150°E) EST is 10 hr ahead of UTC.
0o经线左右各7·5o的范围为0时区,向 东、向西各编有12个时区。
同一时区内的各地,同中央经线的经 度差最大为7·5o,时刻差不超过30分钟。 时区之间的时刻差,正好等于两个时 区编号的差值。
35
3、世界时(Universal Time)(UT)
(Universal MeanTime)(UMT) (Greenwich Mean Time)(GMT)
8
一、地理坐标
(Geographical Coordinates)
(一)地球的形态 (二)地球上假想的线 (三)经线和经度 (四)赤道、纬线和纬度 (五)经纬度的应用
9
(一)地球的形态(form of the Earth)
1、形状(Shape) 是一个扁球体,东西长南北扁。为了计算方便,
把它看成是个椭球,称之为地球椭球。
气球
1783年 飞艇
法国 蒙特尔费兄弟 450米 25分
1851年 法国 亨利·吉法尔
飞机
长44米 直径12米 体积2499米3
3马力 三叶螺旋桨 10km/h
巴黎---特拉普
27km
1903年 美国 莱特兄弟
4
二、学习空中领航学的必要性
领航工作贯穿于飞行的全过程
沿航线飞行 准时到达 防止迷航 特殊情况处置
空中领航学:第2章 航空地图及其应用
(Aeronautical Charts and its Using)
地图是将地面上地貌、地物等各种景物,按 照一定的投影方法和比例关系,用特定的符号、 颜色和文字注记,绘成的平面图。
一、地图基本知识 二、航空上常用的几种投影图 三、基本地图作业
1
一、地图基本知识
(一)地图比例尺 (二)地貌、地物在地图上的表示 (三)地图投影
9
(三)地图投影
(Chart Projection)
1、地图投影的含义 是将地球上的线和点,按一定要求描绘到
平面坐标系内的方法。 是把地球上的经纬线描绘到平面上的一种
方法。 采取透视投影的原理,用数学计算的方法
进行绘制。
10
X a Y b
X R
Y
RLnTan(45
)
2
Y
(x,y)
X
11
2、地图投影的失真
31
32
33
34
35
36
37
38
39
(五)澳国使用的主要航图
世界航图(WAC)(World Aeronautical Charts) 目视终端图(VTC)(Visual Terminal Charts) 高低空航路图(Enroute Charts(ERC) High and
Low) 区域导航图(RNAV)(Area Navigation Charts) 终端区域航图(TAC)(Terminal area Charts) 澳大利亚计划航图(PCA)(Planning Chart
是指把地球椭球的曲面投影到 平面上,致使地图产生的变 形。
长度失真:长度的伸长或缩短。 角度失真:角度的扩大或减小。 面积失真:面积的扩大或缩小。
空中领航学(E-01)
02
航空气象知识与应用
大气层结构及对飞行影响
01
02
03
大气层垂直结构
对流层、平流层、中间层、 热层和外大气层,各层温 度、压力和气流特性不同, 对飞行影响各异。
大气稳定性
温度递减率与干绝热递减 率的差异导致大气稳定、 中性或不稳定,影响飞行 安全和航迹规划。
风的影响
高空风、山谷风、海陆风 等地方性风对飞行速度和 航向产生偏移,需进行风 修正。
分析数据链技术对领航的改进 作用,如提高定位精度、增强 态势感知能力等。
数据链技术未来发展趋势
探讨数据链技术未来发展趋势 及其对领航的潜在影响,如5G 通信技术、人工智能等技术的 融合应用。
06
人为因素与安全管理策略
人为因素在领航中影响分析
飞行员技能水平不足
可能导致飞行操作失误,增加事故风险。
机组资源管理不当
天气现象识别与预测方法
常见天气现象
天气图分析
云、雾、降水、雷暴、冰雹等,通过 观察、探测和预报识别。
通过解读天气图上的等值线、符号和 标注,分析天气系统、锋面、气旋等 天气现象的发展趋势和影响范围。
天气预报
利用气象观测资料、数值预报产品和 经验预报方法,提供航路天气、机场 天气和危险天气预警。
气象资料获取途径和解读技巧
高经济效益。
适应性
根据飞机性能和机组能力,选 择适合的航线和飞行高度。
实时性
根据实时天气和交通情况,灵 活调整航线规划。
飞行计划制定流程梳理
收集信息
初步规划
详细制定
收集航路、天气、机场、 导航设施等相关信息。
根据收集的信息,初步 规划出航线、备降机场、
飞行高度等。
空中领航学领航第-章PPT课件
领航
航线
航路
航迹
领航的基本概念
01
02
03
04
领航是一门指导航空器沿预定航线飞行并在规定时间内到达目的地的科学技术。
航线是航空器在一定时间内飞行的路线,是航空器进行领航的依据。
航路是空中交通管理部门规定的供航空器飞行的空中通道,属于空中交通管理范畴。
航迹是指航空器实际飞行的路线,是航空器飞行过程中实时监测和记录的重要信息。
无线电导航
随着无线电技术的发展,人们开始使用无线电信号进行导航,如无线电罗盘、无线电信标等。
卫星导航
20世纪70年代以来,卫星导航系统逐渐成为主流导航方式,如GPS、GLONASS和Galileo等。
早期领航
古代人们通过观察天文现象和地标进行导航,如北极星、太阳和月亮等。
领航学的发展历程
02
CHAPTER
领航定位技术
介绍现代领航中常用的定位技术,如GPS、北斗卫星导航系统、惯性导航系统等,以及它们在领航中的应用和优缺点。
领航计算方法
介绍领航中常用的计算方法,如航位推算、速度和距离计算、高度和时间计算等,以及如何利用现代计算机技术进行自动化计算。
领航应急处理
介绍在紧急情况下如何快速准确地做出领航决策,包括迷航、失去导航信号、紧急降落等情况的处理方法和注意事项。
惯性领航
领航的基本原理
地标罗盘领航法
利用地面标志和罗盘等工具,通过观测和计算确定航空器的位置和航向,指导航空器飞行。这种方法需要飞行员具备较高的领航技能和经验。
无线电领航法
利用地面无线电导航台和航空器上接收设备,通过信号的传播和接收确定航空器的位置和航向,指导航空器飞行。这种方法需要飞行员具备相应的无线电导航知识和技能。
通用版科学三年级上册STEM社团课01空中运载者课件
空中运载者
你见过它们吗?能说出它们的名字吗?
直升机为什么可以垂直起降飞行?
这到底是什么原因呢?
直升机的结构有哪几部分
螺旋桨 机身 支架
橡皮筋
这些部件各自有什么作用呢?
探究实验
一、验证螺旋桨旋转的方向对直升机模型 起飞的影响
螺旋桨顺时针旋转 飞机模型向上飞
螺旋桨逆时针旋转 飞机模型向下落
准备好了吗?开始实验啦!
加油哦!做属 于我们自己的 直升飞机!
拓 展 创新
一、你知道直升机有哪些用途?
二、对自己做的直升飞机改装哪几部分,就 能使直升飞机飞得更高,试一试。
直升机有螺ห้องสมุดไป่ตู้桨、机身、支架和橡皮筋。
二、橡皮筋的性质
1、橡皮筋具有弹性,可产生弹性形变,产生弹性势能。 2、在一定范围内,弹性形变程度越大,弹性势能就越大。
三、“空中运载者”的实验原理
“空中运载者”——直升机模型能飞起来是因为旋紧的橡皮 筋具有弹性势能,释放出来后转化为动能,带动螺旋桨旋转,拨 动空气产生向上的升力;当升力大于机身重量时,直升机就起飞 了。
螺旋桨旋转的方向影响飞机模型的飞行。 螺旋桨顺时针旋转,直升飞机才能飞起来。
探究实验
二、橡皮筋的转数对直升机模型起飞的影响
橡皮筋转数少 直升机模型飞得低
橡皮筋转数多 直升机模型飞得高
橡皮筋转数的多少影响飞机模型起飞的高度。 在一定范围内,橡皮筋转数越多,直升机模型飞得越高。
总结
一、直升机模型的结构
航天科普(航空知识)ppt课件
;.
1
火箭为什么能飞起来
火箭是靠火箭发动机向前推进 的。火箭发动机点火以后,推 进剂(液体的或固体的燃烧剂 加氧化剂)在发动机的燃烧室 里燃烧,产生大量高压燃气; 高压燃气从发动机喷管高速喷 出,所产生的对燃烧室(也就 是对火箭)的反作用力,就使 火箭沿燃气喷射的反方向前进 火箭推进原理依据的是牛顿第 三律:作用力和反作用力大小 相等,方向相反。一个扎紧的 充满空气的气球一旦松开,空 气就从气球内往外喷,气球则 沿反方向飞出。
;.
3
月球上面都有些什么? 1969年7月20日,两名美国宇
航员第一次登上月球,第一眼看 到的就是十分奇异的景色:在地 球上,阳光是从头顶上照下来的, 可这里的上空是黑洞洞的,月球 表面却洒满灿烂的阳光。宇航员 的周围是尘土、岩石和环形山, 没有水,没有任何生命。月球是 一片荒漠的世界。
;.
4
前苏联科学家发表的一项研 究结果说,月球岩石中有玄武 岩,这就证明月球上曾经有火 山活动。关于月球早先有火山 活动,世界上许多科学家的看 法是一致的。但是,从月球采 回的一块岩石,据估计它的年 龄已有46亿年了,而在地球上, 只有在格陵兰最偏僻的地方才 能找到40亿年前的石块。难道 月球比地球的年龄还大?或者 是月球的火山活动比地球还早? 这又是一个谜!;. Nhomakorabea2
卫星为什么能绕着地球飞
卫星围绕地球飞行的动力正是重力 ,也就是地球 的引力,就象月球 围着地球转一个道理,它们都是地 球的卫星,不过“人造”卫星是人 造出来的而已。变轨是靠卫星上火 箭动力。燃料中已经含有液氧,所 以不需要空气,其实火箭发射,也 不是靠空气中的氧气燃烧,而是液 氧,否则它燃烧的动力远远不够!
;.
5
还有没有适合人类居住的星球?
空中领航学 领航 第一章分解
表示方法:
(1)λE116°19′ (2) 116°19′E (3) E116°19′ (4)LONG E 116°19′
中国民航大学职业技术学院 张同荣
中国民航大学职业技术学院 张同荣
中国民航大学职业技术学院 张同荣
地理位置与地理坐标
中国民航大学职业技术学院 张同荣
纬度1 °,对应111km或60nm. 赤道上经度1 °,对应111km或60nm. 不同纬度上经度1 °对应距离为该纬度上纬线长, S=rdλ=Rcosφdλ. 经度1 °=111cosφ 例:求北纬30 °上经度1 °对应的距离。 S=111*cos30 °=95km
NM
△M
NT
MC
TC
中国民航大学职业技术学院 张同荣
1.东北的时间比西边的时间早; 2.两地的时间差等于经度差所对应的时间; 3.时间换算东加西减。
例:锦州地方时为10:30,λE=121°07′,拉萨 λE=91°07′,求锦州地方时10:30时,拉萨地 方时多少? 1.由两地经度可知:△λ=121°07′91°07′=30° 2.由经度和时间的关系可知:△t=30°*4=2h 3.由地球运动方向可知拉萨地方时为: 10:30-2=08:30
中国民航大学职业技术学院 张同荣
1、航线
航线:飞机从地球 表面一点(起点) 飞到地球表面另一 点(终点)的预定 路线。
航路:由于地面导航设施、空中交通管理、飞行任务 、地形等因素的影响,一条航线常常由起点、转弯点 、终点等航路点构成,其中还包括指定的或飞行员自 选的检查点,这样的航线我们成为航路。 建立了固定航路导航设施、有固定宽度的航线成为固 定航路。 航线通常用航线角和距离来度量。领航使用的
空中领航学优秀课件
Air Navigation
仪表进近图仪表进近图认读6354
1
2
(1)该程序旳主用进近导航设施是 VOR/DME ,该进近属于 非精密 进近程序。 (2)该程序旳着陆跑道是 02号 。 (3)该程序旳机场标高是415.5m/1363ft(QNH),跑道入口标高是411.7m/1351ft(QNH)。 (4)该程序旳进近频率是125.2MHz,备用进近频率是119.55MHz,塔台频率是118.2MHz, 备用塔台频率是130.0MHz。 (5)ATIS 126.4表达自动终端情报服务(通波)频率126.4MHz。 (6)VAR2°W表达磁差-2°。
间进近定位点。
仪表进近图
(12)中间进近定位点旳高度是 700m/2297ft(QFE),最终进近 定位点旳高度是500m/1640ft (QFE),中间进近航段是否完 全平飞?否。
(13)中间进近定位点、最终进 近定位点、复飞点距离呼号为 DLC旳DME台旳距离分别是多少? 10nm、4.7nm、0.8nm,距离跑 道入口分别是18.2km、8.4km、 1.1km。
高度是1100m/ 3609ft(QNH),
15
15
起始进近航段下降了多少高度
250m /820ft。
14
仪表进近图
(16)C类飞机从江北导航台 上空旳IAF加入修正角程序, 出航航迹是180°,入航航迹是 21°,入航转弯开始时机用 VOR/DME交叉定位点来控制, 该修正角程序属于左程序还是 右程序?右程序。
(10)MSA是最低扇区高度,
89
该机场旳MSA是以频率
112.3MHz、呼号DLC旳大连
VOR台为中心,半径为46km,
《飞行原理空气动力》PPT课件
飞机在无风和不加油的条件下,连续飞行耗尽 可用燃油时飞行的水平距离
航时
飞机耗尽可用燃油时能持续飞行的时间。
28
起飞
起飞定义:从起飞线开始,经过滑跑-离地爬升到安全高度(飞机高于起飞表面10.7 米—CCAR-25)为止的全过程。
主要性能指标:地面滑跑距离、离地速度和 起飞距离。
影响起飞性能的主要因素:起飞重量、大气 条件(密度、风向等)、离地时的迎角、增 升装置的使用、发动机的推力及爬升阶段爬 升角的选择等。
18
3.4 巡航飞行
飞机巡航飞行应满足的平衡条件:升力等 于重力、推力等于阻力。
平飞所需速度:飞机在某高度上保持平飞 所需的升力(等于重量)对应的飞行速度。
平飞速度
1
平飞 (2W / CL S)2
19
影响平飞所需速度的因素: 飞机重量:重量愈大所需速度愈高。 升力系数:取决于飞机的迎角,迎角减小
如果着陆重量过大或机场温度较高或在海拔较高 的机场着陆,都会造成接地速度过大,使飞机接 地时受到较大的地面撞击力,损坏起落架和机体 受力结构;也会使着陆滑跑距离过长,导致飞机 冲出跑道的事故发生。
着陆时的重量不能超过规定的着陆重量。 在不超过临界迎角和护尾迎角的条件下,接地迎
角应取最大值,增升增阻的后缘襟翼在着陆时要 放下最大的角度,以最大限度的增加升力系数减 小接地速度
最大正过载表示飞机承受的气动升力指向 机体立轴的正向并达到最大;
最大最负过载表示飞机承受的气动升力指 向机体立轴的反向并达到最大;
最大速度表示此时飞机的载荷或升力不一 定最大,但机翼表面的局部气动载荷很大, 压力中心靠后,考验机翼结构局部强度的 严重受载情况。
27
巡航飞行
巡航速度
空中领航学框架课件
陀螺罗盘的基本结构
陀螺磁罗盘
陀螺磁罗盘
第四节 空速及测量系统
一、空速的基本概念 1、仪表空速 2、修正表速 3、指示空速 4、当量空速
5、真空速 6、马赫数 二、测量空速的仪表 (一)相对气流流速与动压的关系 (二)空速表及其基本工作原理 1、仪表空速表 2、仪表真空速表 3.真空速表 4、电动式组合空速表
第三节 空速的测量计算
概念:飞机相对于空气运动的速度叫做空速(AS) 单位:公里/小时(KM/H)
海里/小时(Kt) 测量:根据相对气流流速与动压的关系,
通过空速表测量出来
空速的基本概念
➢ 仪表空速(BAS) ➢ 修根 与正据 动表海 压速平 之面间(标的C准关AS大系)气所条测件定下的相空对 速气 。流流速 ➢ 指仪示表空空速速经(过IA机S械)误差修正后,就是修正空速。
2 、考前不划重点! 3、平时勤思考,多问。——“平时来找 我,不是考后来找我”
4、每章的习题认真准备,习题作为平 时成绩。
第一篇 领航基础
第一章 领航基础知识
第一节 地球的相关知识
一、地球的形状大小和四季变化 1.地球的形状大小: 近似“梨形”。 椭球体,称为地球椭球体。 2.四季变化
二、地理坐标 (一)纬度纬线 北纬 南纬 (二)经度 (三)经纬度的表示与书写 三、地球磁场 (一)磁差 :把地球上磁差相等的各地点用曲线
M V M数只与动压、静a压有关。
马赫数表的结构
8.安全高度和最小超障余度的概念。 9.航线两侧25KM范围内最高障碍物的标高h=
2213m,沿航线最低海压QNH=756mmHg,山区飞 行,求。 10.某飞行沿真航线角164°飞行,山区飞行,航 线两侧25KM范围内最高障碍物标高为3100m,求 飞行的高度层? 11.已知△M=-4°,TH=314°,△C=+2°,求 CH和MH。 12.比较直读磁罗盘、陀螺半罗盘和陀螺磁罗盘运 用范围,误差修正。 13.描述五种速度和四种误差之间的关系 14.试比较仪表空速表、仪表真空速表和真空速表 的工作原理及修正的误差。 15.如果飞机飞行高度为5400m,表速为280KM/H, =5米/秒,求TAS。
空中领航---领航基础01
空中领航---领航基础01领航学研究的主要内容:a.领航基础及元素:地球地图指示测定和计算b.领航原理和方法:飞机航行规律,确定飞机位置的原理和方法c.领航设备工作原理和使用:设备工作原理,测算领航参数原理和方法d.领航误差及修正原理e.领航准备和实施:程序和方法空中领航基本环节1. 地球及地图从整个地球来看,地球大致像一个椭球体,其表面极不规则,不便于用数学公式来表达。
地球高低起伏,最高海拔8846.27m(我国西藏与尼泊尔交界处的珠穆朗玛峰);最低海拔11022m(太平洋西部的马里亚纳海沟),但地球的半径大约是6371km。
海洋面积:71%,陆地面积:29%。
测量工作是在地球表面上进行的。
海水面所包围的地球形体看作地球的形状,取其平均的海水面作为地球形状和大小的标准。
目前我国使用的大地坐标系为北京大地坐标系,所选用的参考椭球为1975年国际第16届大地测量与地球物理联合会推荐的参考椭球。
其数据为:东西半径(长半轴)为6378.140公里,南北(短半轴)为:6356.755公里。
领航学中为了研究方便,通常把地球看做正球体,平均半径为6371.004公里。
2.地理坐标纬度:纬度是指某点与地球球心的连线和地球赤道面所成的线面角,其数值在0至90度之间。
位于赤道以北的点的纬度叫北纬,记为N;位于赤道以南的点的纬度称南纬,记为S经度,地理学名词,一般指球面坐标系的纵坐标,具体来说就是地球上一个地点离一根被称为本初子午线的南北方向走线以东或以西的度数。
按国际规定英国首都伦敦格林尼治天文台原址的那一条经线定为0°经线,然后向左右延伸。
而各地的时区也由此划分,每15个经度便相差一个小时。
3.地球磁场地球磁场,简言之是偶极型的,近似于把一个磁铁棒放到地球中心,使它的北极大体上对着南极而产生的磁场形状,但并不与地理上的南北极重合,存在磁偏角。
当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的电流的磁效应(近似于电生磁)产生磁场的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空中领航学
As a pilot, you must aviate, navigate
and communicate.
.
8
Air Navigation
空中领航学
Types of Navigation
The basic method of navigation in VFR (day) operations is map reading, which is visual-contact navigation. It requires more or less continuous visual reference to the ground and is therefore of limited value in poor visibility conditions or when navigating above extensive cloud cover.
the most soph也isti是cat领ed航pa员ssen,ger jets. When
flying cross-country, you are the pilot, the
navigator and th又e 是rad无io线op电era通to信r. 员。
.
7
Air Navigation
Air Navigation
空中领航学
Air Navigation
课件制作 王惠民
课程讲授
.
1
Air Navigation
空中领航学
Flight, or air navigation is the means by which pilots reach their destination and find their exact location at any time.
.
9
Air Navigation
空中领航学
To support visual navigation procedures, we use dead reckoning (DR) to deduce our position.
To assist us with our visual navigation procedures, we can use any radio navigation equipment installed in our aeroplane to obtain information from ground-based radio beacons.
外,在球体表面上两点之间只能画出一个大圆。
.
15
Air Navigation
空中领航学
Small Circles 小圆
A small circle is any circle on the surface of a sphere that is not a great circle; that is, the centre of a small circle is not at the centre of the earth.
be treated as a perfect
sphere with an average
地球半径: diameter of
R = 6 371.004 km.
.
11
Air Navigation
空中领航学
Rotation of the Earth
The earth rotates toward the east.
在地球表面上除大圆以外的圆,其圆心不是球心。
True north
轴极
Polar axis
66º33’
.
True south
12
Air Navigation
空中领航学
Imaginary Lines on the Earth’s Surface Great Circles 大圆
A great circle (GC) drawn on the earth’s surface has a plane which passes through the centre of the sphere (earth). 大圆以地球的球心为其圆心。
.
10
Air Navigation
空中领航学
Form of the Earth
All air navigation is done with reference to the surface of the earth.
Shape and Size
For practical
R
purpose the earth can
.
2
Air Navigation
空中领航学
空中领航学是引领飞机航行的一门 应用学科,它以地球作为参照系来研究 飞机相对于地球的运动及其导航方法。
空中领航学所要解决的三大基本问题,是确定:
飞机位置 飞机航 Navigation
空中领航学
空中领航学研究的主要内容:
领航基础及元素; 领航原理和方法; 领航设备工作原理和使用; 领航误差及修正原理;
.
6
Air Navigation
空中领航学
Chapter 1 Fundamentals of Air Navigation
Basic Principles
Tt你ohae既llbaa是siricc驾rparf驶tin, cf员irpolm,es
of air navigation apply the simplest trainers to
领航准备和实施。
.
4
Air Navigation
空中领航学
.
5
Air Navigation
空中领航学
本课件 (共九章) 系根据西澳教材 An Aviation Theory Centre Manual Meteorology and Navigation , 即 The Pilot’s Manual 系列丛书第二册制 作,仅供课堂教学使用。特此申明,谨 向该书编者致谢。
线经
赤道
无 线 电
信号
.
13
Air Navigation
空中领航学
Great circle
.
Small circle
14
Air Navigation
空中领航学
大圆具有如下特点:
• 大圆是在球体表面上所能画出的最大的圆; • 在球体表面两点之间的最短距离是大圆的弧; • 除了像地球的地理两极(径向相反)的两点以