第1章 算法概述

合集下载

第1章群体智能算法概述

第1章群体智能算法概述

第1章 群体智能算法概述1975年,美国Michigan大学的John Holland[1]教授发表了其开创性的著作《Adapatation in Natural and Artificail System》,在该著作中John Holland教授对智能系统及自然界中的自适应变化机制进行了详细阐述,并提出了计算机程序的自适应变化机制,该著作的发表被认为是群体智能(Swarm Intelligence)[2]算法的开山之作。

随后,John Holland和他的学生对该算法机制进行了推广,并正式将该算法命名为遗传算法(Gentic Algorithm,GA)[3]~[5]。

遗传算法的出现和成功,极大地鼓舞了广大研究工作者向大自然现象学习的热情。

经过多年的发展,已经诞生了大量的群体智能算法,包括:遗传算法、蚁群优化(Ant Colony Optimization,ACO)[6]~[7]算法、差异演化(Differential Evolution,DE)[8]~[12]算法、粒子群优化(Particle Swarm Optimization,PSO)[13]~[16]算法等。

随着群体智能算法在诸如机器学习、过程控制、经济预测、工程预测等领域取得了前所未有的成功,它已经引起了包括数学、物理学、计算机科学、社会科学、经济学及工程应用等领域的科学家们的极大兴趣。

目前关于群体智能计算的国际会议在全世界各地定期召开,各种关于信息技术或计算机技术的国际会议也都将智能进化技术作为主要研讨课题之一。

甚至有专家指出,群体智能计算技术、混沌分析技术、分形几何、神经网络等将会成为研究非线性现象和复杂系统的主要工具,也将会成为人们研究认知过程的主要方法和工具。

1.1 群体智能算法的特点1.1.1 智能性群体智能算法通过向大自然界中的某些生命现象或自然现象学习,实现对于问题的求解,这一类算法中包含了自然界生命现象所具有的自组织、自学习和自适应性等特性。

第1章_C语言概述(C语言程序设计)

第1章_C语言概述(C语言程序设计)

通过以上例子可以看出: 通过以上例子可以看出: 1. C程序是由函数构成的。每个程序由一个或多个函数组成, 程序是由函数构成的。每个程序由一个或多个函数组成, 程序是由函数构成的 其中必须有且仅有一个主函数main( )。 有且仅有一个主函数 其中必须有且仅有一个主函数 。 2. 一个可执行的 语言程序总是从 一个可执行的C语言程序总是从main函数开始执行,而不 函数开始执行, 语言程序总是从 函数开始执行 论其在整个程序中的位置如何。 论其在整个程序中的位置如何。 3. C对输入输出实行函数化。 对输入输出实行函数化。 对输入输出实行函数化 4. C程序书写格式自由,一行内可以写几个语句,一个语句 程序书写格式自由,一行内可以写几个语句, 程序书写格式自由 也可以分写在多行上。 也可以分写在多行上。 5. 可用 可用/*……*/对C程序中的任何部分作注释,注释可以写在 对 程序中的任何部分作注释 程序中的任何部分作注释, 程序的任何位置上, 也可不在同一行上。 程序的任何位置上,“/*”与“*/”也可不在同一行上。 与 也可不在同一行上 6. 在C语言中,大小写字母是有区别的。( 语言习惯用小 语言中, 。(C语言习惯用小 语言中 大小写字母是有区别的。( 写字母) 写字母)
主函数
main( ) { int x, y, z; printf(“Please input two integers:\n”) ; scanf(“%d%d” , &x, &y); z = add_xy(x, y); printf(“%d %d %d.”, x, y, z); }
西南林学院计科系
第 1章 概述
西南林学院计科系
第 1章 概述
将汇编源程序翻译为目标程序(机器语言)的过程称 为汇编 汇编。 汇编 连接的原因是由于在目标程序中还可能要调用一些 连接 标准程序库中的标准子程序或其他自定义函数等,由于 这些程序还没有连接成一个整体,因此,需通过“连接 程序”将目标程序和有关的程序库组合成一个完整的 “可执行程序”。

2019-wfx-第1章 概述 -递归算法的复杂度分析

2019-wfx-第1章 概述 -递归算法的复杂度分析

【例1.7】有以下递归算法: void mergesort(int a[],int i,inБайду номын сангаас j)
{ int m; if (i!=j) { m=(i+j)/2; mergesort(a,i,m); mergesort(a,m+1,j); merge(a,i,j,m); }
}
其中,mergesort()用于数组a[0..n-1](设n=2k,这里的k为正整数)的归并
算法设计与分析
咸阳师范学院计算机学院 吴粉侠
递归算法的时间复杂度分析
递归算法是采用一种分而治之的方法,把一个“大问题”分解为若 干个相似的“小问题”来求解。
对递归算法时间复杂度的分析,关键是根据递归过程建立递推关系 式,然后求解这个递推关系式,得到一个表示算法执行时间的表达式, 最后用渐进符号来表示这个表达式即得到算法的时间复杂度。
i+=2; } }
解:该算法是一个非递归算法,其中只临时分配了i、k两个变量 的空间,它与问题规模n无关,所以其空间复杂度均为O(1),即该算
法为原时工作算法。
【例1.10】有如下递归算法, 分析调用
maxelem(a,0,n-1)
的空间复杂度。
int maxelem(int a[],int i,int j) { int mid=(i+j)/2,max1,max2;
排序,调用该算法的方式为:
mergesort(a,0,n-1);
另外merge(a,i,j,m)用于两个有序子序列a[i..j]和a[j+1..m]的有序合并,是
非递归函数,它的时间复杂度为O(n)(这里n=j-i+1)。分析上述调用的时间复杂度。

计算机算法设计与分析第1章算法概述

计算机算法设计与分析第1章算法概述
课程安排

理论课:1~10周,40学时 周二(5-6)、周五(1-2)
上机: 18学时



期末考试: 闭卷笔试,第 11周
上课点名三次不到者取消考试资格; 迟到或作业缺交,一次扣10分(平时成绩)。
1
教学目的和要求
本课程是计算机类专业的专业基础课程; 通过课程学习和上机实践,对计算机常用算 法有一个较全面的了解,掌握通用算法的一 般设计方法; 学会对算法的时间、空间复杂度分析,掌握 提高算法效率的方法和途径。
24
三、算法复杂性分析

本课程主要对算法的时间复杂性进行分析。
关于算法的复杂性,有两个问题要弄清楚:
(1)用怎样的一个量(指标)来表达一个算法的
复杂性;

(2)对于一个算法,怎样具体计算它的复杂性。
25
1、算法的三种时间复杂性

算法的最坏、最好和平均时间复杂性 (1)最坏情况下的时间复杂性 Tmax(n) = max{ T(I) | size(I)=n } (2)最好情况下的时间复杂性
8
图1.1 算法的概念图
(一)算法的性质

1、算法具有某些特性,如下几条:
(1)输入:有零个或多个外部提供的量作为算
法的输入。

(2)输出:算法产生至少一个量作为输出。这 些输出是和输入有某种特定关系的量。
9
(一)算法的性质

(3)确定性:组成算法的每条指令是清晰,无
歧义的。

(4)有限性(有穷性):算法中每条指令的执

29
2、算法的时间复杂性计算
int search(int A[ ], int m, int c) { int i=1; while( A[i]<c && i<m ) i=i+1; if (A[i]==c) return i; else return 0; }

进化优化算法概述

进化优化算法概述

第一章 进化优化算法概述1.1 进化算法的一般框架自1960年以来,进化算法已经发展出相当多的种类,但一般认为进化算法有5个基本组成部分[3]:1.问题解的遗传表示。

2.种群的初始化方法。

3.根据个体适应度对其进行优劣判定的评价函数。

4.产生新的种群的进化算子5.算法的参数取值1.1.1进化优化算法解决对象的描述进化算法主要是求解优化问题,其数学模型如下:Maximizey =f (x )(1.1)Subject to g(x )=()(1x g ,)(2x g ,…,)(x g m )≤0 (1.2)其中 x =(1x ,2x ,…,n x )∈X ,x 是决策向量,X 是决策向量形成的决策空间;y 是决策目标。

这是个最大化问题,对于最小化问题可以令y '=C -f (x )转化为最大化问题,因此,它们在本质上是一致的。

根据优化函数f (x )是否连续可以将最优化问题分为二大类:连续函数的最优化与离散函数的最优化。

后者也可以称为组合优化问题。

根据是否包含约束条件(1.2)可分为约束优化问题和无约束优化问题。

此外,若y 是一个决策向量,则是一个多目标的优化问题,我们将在第二章进一步讨论。

1.1.2进化优化算法结构进化算法的一般结构如图 1.1所示,进化算法维持由一群个体组成的种群P (t )(t 为进化代数)。

每个个体代表问题的一个潜在解。

每个个体通过目标函数评价得到适应度并根据优胜劣汰的原则进行选择。

被选择的个体经历遗传操作产生新的个体,主要有两种遗传操作:杂交是将多个个体的有关部分组合起来形成新的个体,变异是将一个个体改变而获得新的个体。

新产生的个体(子代)继续被评价优劣。

从父代种群和子代种群中选择比较优秀的个体形成新的种群。

在若干代后,算法收敛到一个最优个体,该个体很有可能代表问题的最优或次优解。

图1.1 进化算法流程图1.1.3进化算法几个环节的解释遗传编码:如何将问题的解编码成染色体是进化算法使用中的关键问题,目前的编码方式主要有二进制编码[4]、Gray编码、实数编码、字符编码等,对于更复杂的问题,用合适自然的数据结构来表示染色体的等位基因,可以有效抓住问题的本质,但总的来说,完整的遗传编码理论尚未建立,部分文献[5~7]的讨论都有都有一定的局限性。

算法设计与分析(第2版) 郑宗汉 第1章-1

算法设计与分析(第2版) 郑宗汉 第1章-1

8
Байду номын сангаас
学习要求
深刻理解每一类算法的思想及其实现
能熟练运用所学知识解决实际问题
培养提高计算思维能力
9
考核方式
Homework and Reading: 20%
Final Exam (Written Test): 80%
10
第1章 算法的基本概念
1.1 引言
1.1.1 算法的定义和特性
c %3 0
(1.1.3)
16
1.1.2 算法的设计和复杂性分析
百鸡问题的穷举法
输入:所购买的3种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[],m[],s[]
1. void chicken_question(int n, int &k, int g[], int m[], int s[]) 2. { 3. int a,b,c; 分析发现:只能买到n/5 4. k = 0; 只公鸡,n/3只母鸡,将 5. for (a = 0; a <= n; a++) { 算法进行改进。 6. for ( b = 0; b <= n; b++) { 7. for (c = 0; c <= n; c++) { 8. if ((a + b + c == n) && (5 * a + 3 * b + c / 3 == n) && (c%3 == 0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. } 14. } 15. } 16. } 17. }

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。

全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。

主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。

书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。

为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。

粤教版普通高中信息技术必修1《数据与计算》第三章《算法基础》

粤教版普通高中信息技术必修1《数据与计算》第三章《算法基础》

粤教版普通高中信息技术必修1《数据与计算》第三章《算法基础》第一节算法概述信息技术的发展与普及使得我们的生活更加便捷高效。

在这背后,算法作为信息技术的核心,扮演着重要的角色。

本章将介绍算法的基础知识,帮助读者更好地理解和应用。

第二节算法的定义算法是解决问题或执行特定任务的一系列步骤的有限序列。

它可以被看作是一种转换关系,将输入转换成输出。

算法应具备以下特性:有穷性、确定性、可行性和有效性。

第三节算法的分类根据问题的性质和解决方法的不同,算法可以分为不同的类型。

常见的算法分类包括搜索算法、排序算法、图算法等。

每种类型的算法都有其独特的特点和应用场景。

第四节算法的分析算法的效率是衡量算法好坏的重要指标之一。

通过对算法进行分析,可以评估其时间复杂度和空间复杂度。

时间复杂度描述了算法运行时间与输入规模的关系,空间复杂度描述了算法所需的额外存储空间。

第五节常用算法的介绍本节将详细介绍一些常用的算法。

其中包括二分查找算法、冒泡排序算法、快速排序算法等。

通过学习这些算法的原理和实现方法,读者可以更好地理解和运用。

第六节算法的设计与实践好的算法设计是提高算法效率的基础。

本节将介绍算法设计的基本思想,包括贪心算法、动态规划算法等。

此外,我们还将探讨算法在实际应用中的一些问题与解决方法。

第七节算法的应用领域算法在信息技术的各个领域都有广泛的应用。

本节将介绍算法在图像处理、人工智能、数据挖掘等领域中的具体应用,展示算法的强大能力和潜在价值。

结语算法作为信息技术的核心,对我们的生活产生了深远的影响。

通过本章的学习,我们不仅了解了算法的基本概念和分类,还学习了常用算法的原理和实现方法。

相信在将来的学习和实践中,我们能够更好地应用算法解决问题,提高工作和生活效率。

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

计算机算法设计与分析(第5版)第1章

计算机算法设计与分析(第5版)第1章
• 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n

for x > -1,
x ln(1 x) x 1 x

for any a > 0,
Hale Waihona Puke log b nlim

算法导论答案 (4)

算法导论答案 (4)

算法导论答案第一章:算法概述啊算法的定义算法是一系列解决问题的明确指令。

它是一个有穷步骤集,其中每个步骤或操作由确定性和可行性特征。

算法是通过将预期的输入转换为输出来解决问题的工具。

第二章:插入排序插入排序的思想插入排序是一种简单直观的排序算法,其基本思想是将待排序的序列分为已排序和未排序两部分,每次从未排序的部分中取出一个元素,并将其插入到已排序部分的正确位置,直到所有元素都被排序。

插入排序的算法实现以下是插入排序的伪代码:INSERTION-SORT(A)for j = 2 to A.lengthkey = A[j]// Insert A[j] into the sorted sequence A[1.. j-1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key插入排序的时间复杂度插入排序的时间复杂度为O(n^2),其中n是排序的元素个数。

虽然插入排序的最坏情况下的复杂度很高,但是对于小规模的数据集,插入排序是一种较快的排序算法。

第三章:分治策略分治策略的基本思想分治策略是一种解决问题的思想,它将问题的规模不断缩小,直到问题足够小而可以直接解决。

然后将子问题的解合并起来,得到原问题的解。

分治策略的应用实例一种经典的应用分治策略的算法是归并排序。

归并排序将待排序的序列划分为两个子序列,分别排序后再将两个有序子序列合并为一个有序序列。

以下是归并排序的伪代码:MERGE-SORT(A, p, r)if p < rq = floor((p + r) / 2)MERGE-SORT(A, p, q)MERGE-SORT(A, q + 1, r)MERGE(A, p, q, r)MERGE(A, p, q, r)n1 = q - p + 1n2 = r - qlet L[1..n1+1] and R[1..n2+1] be new arraysfor i = 1 to n1L[i] = A[p + i - 1]for j = 1 to n2R[j] = A[q + j]L[n1 + 1] = infinityR[n2 + 1] = infinityi = 1j = 1for k = p to rif L[i] <= R[j]A[k] = L[i]i = i + 1elseA[k] = R[j]j = j + 1分治策略的时间复杂度归并排序的时间复杂度为O(nlogn),其中n是待排序序列的长度。

算法设计与分析 第1章

算法设计与分析 第1章

例1 f(n) = 2n + 3 = O(n) 当n≥3时,2n+3≤3n,所以,可选c = 3,n0 = 3。对于n≥n0,f(n) = 2n + 3≤3n,所以,f(n) = O(n),即2n + 3O(n)。这意味着,当n≥3 时,例1的程序步不会超过3n,2n + 3 = O(n)。
例2 f(n) = 10n2 + 4n + 2 = O(n2) 对于n≥2时,有10n2 + 4n + 2≤10n2 + 5n,并 且当n≥5时,5n≤n2,因此,可选c = 11, n0 = 5;对于n≥n0,f(n) = 10n2 + 4n + 2≤11n2,所 以f(n) = O(n2)。
算法设计与分析
湖南人文科技学院计算机系 授课:肖敏雷
邮箱:minlei_xiao@
关于本课程
课程目的:计算机算法设计与分析导引

不是一门试验或程序设计课程 也不是一门数学课程
教材:计算机算法设计与分析-王晓东 前导课:数据结构+程序设计 参考资料:

算法设计与分析—C++语言描述 陈慧南编 电子工业出版社 计算机算法基础(第三版) 余祥宣 华中科技大学
渐近时间复杂度 使用大O记号及下面定义的几种渐近表示法 表示的算法时间复杂度,称为算法的渐近时间复 杂度(asymptotic complexity)。 只要适当选择关键操作,算法的渐近时间复 杂度可以由关键操作的执行次数之和来计算。一 般地,关键操作的执行次数与问题的规模有关, 是n的函数。 关键操作通常是位于算法最内层循环的语句。
当 n≥n0 时 , 有 f(n)≥cg(n) , 则 记 做 f(n)=Ω

solutions

solutions

算法设计与分析课程实验与设计福州大学王晓东第1章算法概述算法实现题1-1 统计数字问题算法实现题1-2 字典序问题算法实现题1-3 最多约数问题算法实现题1-4 金币阵列问题算法实现题1-5 最大间隙问题第2章递归与分治策略算法实现题2-1 输油管道问题算法实现题2-2 众数问题算法实现题2-3 邮局选址问题算法实现题2-4 马的Hamilton周游路线问题算法实现题2-5 半数集问题算法实现题2-6 半数单集问题算法实现题2-7 士兵站队问题算法实现题2-8 有重复元素的排列问题算法实现题2-9 排列的字典序问题算法实现题2-10 集合划分问题算法实现题2-11 集合划分问题2算法实现题2-12 双色Hanoi塔问题算法实现题2-13 标准2维表问题算法实现题2-14 整数因子分解问题第3章动态规划算法实现题3-0 独立任务最优调度问题算法实现题3-1 最少硬币问题算法实现题3-2 序关系计数问题算法实现题3-3 多重幂计数问题算法实现题3-4 编辑距离问题算法实现题3-5 石子合并问题算法实现题3-6 数字三角形问题算法实现题3-7 乘法表问题算法实现题3-8 租用游艇问题算法实现题3-9 汽车加油行驶问题算法实现题3-10 最小m段和问题算法实现题3-11 圈乘运算问题算法实现题3-12 最大长方体问题算法实现题3-13 正则表达式匹配问题算法实现题3-14 双调旅行售货员问题算法实现题3-15 最大k乘积问题算法实现题3-16 最少费用购物算法实现题3-17 收集样本问题算法实现题3-18 最优时间表问题算法实现题3-19 字符串比较问题算法实现题3-20 有向树k中值问题算法实现题3-21 有向树独立k中值问题算法实现题3-22 有向直线m中值问题算法实现题3-23 有向直线2中值问题算法实现题3-24 树的最大连通分支问题算法实现题3-25 直线k中值问题算法实现题3-26 直线k覆盖问题算法实现题3-27 m处理器问题算法实现题3-28 红黑树的红色内结点问题第4章贪心算法算法实现题4-1 会场安排问题算法实现题4-2 最优合并问题算法实现题4-3 磁带最优存储问题算法实现题4-4 磁盘文件最优存储问题算法实现题4-5 程序存储问题算法实现题4-6 最优服务次序问题算法实现题4-7 多处最优服务次序问题算法实现题4-8 d森林问题算法实现题4-9 汽车加油问题算法实现题4-10 区间覆盖问题算法实现题4-11 硬币找钱问题算法实现题4-12 删数问题算法实现题4-13 数列极差问题算法实现题4-14 嵌套箱问题算法实现题4-15 套汇问题算法实现题4-16 信号增强装置问题算法实现题4-17 磁带最大利用率问题算法实现题4-18 非单位时间任务安排问题算法实现题4-19 多元Huffman编码问题算法实现题4-20 多元Huffman编码变形算法实现题4-21 区间相交问题算法实现题4-22 任务时间表问题算法实现题4-23 最优分解问题算法实现题4-24 可重复最优分解问题算法实现题4-25 可重复最优组合分解问题算法实现题4-26 旅行规划问题算法实现题4-27 登山机器人问题第5章回溯法算法实现题5-1 子集和问题算法实现题5-2 最小长度电路板排列问题算法实现题5-3 最小重量机器设计问题算法实现题5-4 运动员最佳匹配问题算法实现题5-5 无分隔符字典问题算法实现题5-6 无和集问题算法实现题5-7 n色方柱问题算法实现题5-8 整数变换问题算法实现题5-9 拉丁矩阵问题算法实现题5-10 排列宝石问题算法实现题5-11 重复拉丁矩阵问题算法实现题5-12 罗密欧与朱丽叶的迷宫问题算法实现题5-13 工作分配问题算法实现题5-14 独立钻石跳棋问题算法实现题5-15 智力拼图问题算法实现题5-16 布线问题算法实现题5-17 最佳调度问题算法实现题5-18 无优先级运算问题算法实现题5-19 世界名画陈列馆问题算法实现题5-20 世界名画陈列馆问题(不重复监视)算法实现题5-21 2´2´2魔方问题算法实现题5-22 魔方(Rubik’s Cube)问题算法实现题5-23 算24点问题算法实现题5-24 算m点问题算法实现题5-25 双轨车皮编序问题算法实现题5-26 多轨车皮编序问题算法实现题5-27 部落卫队问题算法实现题5-28 虫蚀算式问题算法实现题5-29 完备环序列问题算法实现题5-30 离散01串问题算法实现题5-31 喷漆机器人问题算法实现题5-32 子集树问题算法实现题5-33 0-1背包问题算法实现题5-34 排列树问题算法实现题5-35 一般解空间搜索问题算法实现题5-36 最短加法链问题算法实现题5-37 n2-1谜问题算法实现题6-1 最小长度电路板排列问题算法实现题6-2 最小长度电路板排列问题算法实现题6-3 最小权顶点覆盖问题算法实现题6-4 无向图的最大割问题算法实现题6-5 最小重量机器设计问题算法实现题6-6 运动员最佳匹配问题算法实现题6-7 n皇后问题算法实现题6-8 圆排列问题算法实现题6-9 布线问题算法实现题6-10 最佳调度问题算法实现题6-11 无优先级运算问题算法实现题6-12 世界名画陈列馆问题算法实现题6-13 子集树问题算法实现题6-14 排列树问题算法实现题6-15 一般解空间的队列式分支限界法算法实现题6-16 子集树问题算法实现题6-17 排列树问题算法实现题6-18 一般解空间的优先队列式分支限界法算法实现题6-19 骑士征途问题算法实现题6-20 推箱子问题算法实现题6-21 图形变换问题算法实现题6-22 行列变换问题算法实现题6-23 重排n2宫问题算法实现题6-24 最长距离问题算法实现题7-1 模平方根问题算法实现题7-2 素数测试问题算法实现题7-3 集合相等问题算法实现题7-4 逆矩阵问题算法实现题7-5 多项式乘积问题算法实现题7-6 皇后控制问题算法实现题7-7 3SAT问题算法实现题7-8 战车问题算法实现题7-9 圆排列问题算法实现题7-10 骑士控制问题算法实现题7-11 骑士对攻问题第8章线性规划与网络流算法实现题8-1 飞行员配对方案问题算法实现题8-2 太空飞行计划问题算法实现题8-3 最小路径覆盖问题算法实现题8-4 魔术球问题算法实现题8-5 圆桌问题算法实现题8-6 最长递增子序列问题算法实现题8-7 试题库问题算法实现题8-8 机器人路径规划问题算法实现题8-9 方格取数问题算法实现题8-10 餐巾计划问题算法实现题8-11 航空路线问题算法实现题8-12 软件补丁问题算法实现题8-13 星际转移问题算法实现题8-14 孤岛营救问题算法实现题8-15 汽车加油行驶问题算法实现题8-16 数字梯形问题算法实现题8-17 运输问题算法实现题8-18 分配问题算法实现题8-19 负载平衡问题算法实现题8-20 深海机器人问题算法实现题8-21 最长k可重区间集问题算法实现题8-22 最长k可重线段集问题算法实现题8-23 火星探险问题算法实现题8-24 骑士共存问题第9章NP完全性理论与近似算法算法实现题9-1旅行售货员问题的近似算法算法实现题9-2 可满足问题的近似算法算法实现题9-3 最大可满足问题的近似算法算法实现题9-4 子集和问题的近似算法算法实现题9-5 子集和问题的完全多项式时间近似算法算法实现题9-6 2SAT问题的线性时间算法算法实现题9-7 实现算法greedySetCover《算法设计与分析》期中试卷1 试题1 数列极差问题试题2 双调TSP回路问题试题3 最佳调度问题《算法设计与分析》期中试卷2 试题1 石子合并问题试题2 整数因子分解问题试题3 汽车加油问题《算法设计与分析》期终试卷1 试题1 乘法表问题试题2 工作分配问题试题3 飞行员配对方案问题《算法设计与分析》期终试卷2 试题1 直线k中值问题试题2 图形变换问题试题3 无向图的最大割问题。

计算机算法设计与分析--第1章 算法概述

计算机算法设计与分析--第1章 算法概述
12
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。

算法设计与分析(第2版)-郑宗汉-第1章-1

算法设计与分析(第2版)-郑宗汉-第1章-1
参考书:算法导论(原书第3版) ,Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, lifford Stein, 殷建平 等译, 机械工业出版社, 第1版,2013年7月
2021/3/10
5
第1章 算法的基本概念
References
1973. 5. A. V. Aho, J. D. Ullman等. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974. 6. A. V. Aho, J. D. Ullman等. Data Structures and Algorithms. Addison-Wesley,
1983.4. 7. S. Baase. Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, second edition, 1988. 8. E. Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms.
2021/3/10
12
第1章 算法的基本概念 1.1.1 算法的定义和特性
最大公约数问题:求两个正整数m和n的最大公约数
设计:
确可定行性性::
输入: 输出: 第一步: 第二步:
2021/3/10
8
第1章 算法的基本概念
学习要求
深刻理解每一类算法的思想及其实现 能熟练运用所学知识解决实际问题 培养提高计算思维能力
2021/3/10
9
第1章 算法的基本概念

Python最优化算法实战学习笔记

Python最优化算法实战学习笔记

Python最优化算法实战第一章最优化算法概述1.1最优化算法简介最优化算法,即最优计算方法,也是运筹学。

涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、仓储库存论、物流论、博弈论、搜索论和模拟等分支。

当前最优化算法的应用领域如下。

(1)市场销售:多应用在广告预算和媒体的选择、竞争性定价、新产品开发、销售计划的编制等方面。

如美国杜邦公司在20世纪50年代起就非常重视对广告、产品定价和新产品引入的算法研究。

(2)生产计划:从总体确定生产、储存和劳动力的配合等计划以适应变动的需求计划,主要采用线性规划和仿真方法等。

此外,还可用于日程表的编排,以及合理下料、配料、物料管理等方面。

(3)库存管理:存货模型将库存理论与物料管理信息系统相结合,主要应用于多种物料库存量的管理,确定某些设备的能力或容量,如工厂库存量、仓库容量,新增发电装机容量、计算机的主存储器容量、合理的水库容量等。

(4)运输问题:涉及空运、水运、陆路运输,以及铁路运输、管道运输和厂内运输等,包括班次调度计划及人员服务时间安排等问题。

(5)财政和会计:涉及预算、贷款、成本分析、定价、投资、证券管理、现金管理等,采用的方法包括统计分析、数学规划、决策分析,以及盈亏点分析和价值分析等。

(6)人事管理:主要涉及以下6个方面。

①人员的获得和需求估计。

②人才的开发,即进行教育和培训。

③人员的分配,主要是各种指派问题。

④各类人员的合理利用问题。

⑤人才的评价,主要是测定个人对组织及社会的贡献。

⑥人员的薪资和津贴的确定。

(7)设备维修、更新可靠度及项目选择和评价:如电力系统的可靠度分析、核能电厂的可靠度B风险评估等。

(8)工程的最佳化设计:在土木,水利、信息电子、电机、光学、机械、环境和化工等领域皆有作业研究的应用。

(9)计算机信息系统:可将作业研究的最优化算法应用于计算机的主存储器配置,如等候理论在不同排队规则下对磁盘、磁鼓和光盘工作性能的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最好情况( • (2)最好情况(Best case)下的时间复杂性 最好情况 •
Tmin(n) = min{ T(I) | size(I)=n }
• (3)平均情况(Average case)下的时间复杂性 平均情况( 平均情况 •
Tavg(n) =
size ( I ) =n
∑ p( I )T ( I )
算法是指解决问题的一种方法或一个过程。 • 算法是若干指令的有穷序列,满足性质: • (1)输入 输入:有外部提供的量作为算法的输入。 输入 • (2)输出 输出:算法产生至少一个量作为输出。 输出 • (3)确定性 确定性:组成算法的每条指令是清晰,无歧义的。 确定性 • (4)有限性 有限性:算法中每条指令的执行次数是有限的,执行每条指令 有限性 的时间也是有限的。 • (5)可行性:算法描述的操作可以通过已经实现的基本操作执行有 (5)可行性: 可行性 限次来实现。
用科学规范的语言,对所求解的问题做准确的描述. 用科学规范的语言,对所求解的问题做准确的描述.
2)建立数学模型
通过对问题的分析, 通过对问题的分析,找出其中的所有操作对象及操作对象之间 的关系并用数学语言加以描述. 的关系并用数学语言加以描述.
3)算法设计
根据数学模型设计问题的计算机求解算法. 根据数学模型设计问题的计算机求解算法.
c ⋅ g(n)
Running Time
f (n)
n0
Input Size
•算法运行时间的上限 算法运行时间的上限 •上界的阶越低,则评估就越精确,结果就越有价 上界的阶越低,则评估就越精确, 上界的阶越低 T(n)= 值。例:T(n) =3n2 ,T(n)=O(n2),而n2= 取前者。 O(n3), 取前者。
4)算法的正确性பைடு நூலகம்明
证明算法对一切合法输入均能在有限次计算后产生正确输出. 证明算法对一切合法输入均能在有限次计算后产生正确输出.
5)算法的程序实现
将算法正确地编写成机器语言程序. 将算法正确地编写成机器语言程序.
6)算法分析
对执行该算法所消耗的计算机资源进行估算. 对执行该算法所消耗的计算机资源进行估算.
1.1 算法及其重要特性
• 软件(software):程序及其各种文档资料的总称 • 程序(algorithm)=算法+数据结构 • 算法(procedure):解的描述(程序的灵魂) • 数据结构(data structure):现实世界的数据模型 • 语言(language):实现的工具
算法(Algorithm) 算法(Algorithm)
• (1)Tmax(n) = max{ T(I) | size(I)=n }=n • (2)Tmin(n) = min{ T(I) | size(I)=n }=1 • (3)在平均情况下,假设: • • (a) 搜索成功的概率为p ( 0 ≤ p ≤ 1 ); (b) 在数组的每个位置i ( 0 ≤ i < n )搜索成功的概率相同,均为
Meaning: for all data sets big 渐近复杂性分析的记号 enough (i.e., n>n0), the algorithm always executes in less than C|g(n)| 在下面的讨论中,对所有n,f(n) ≥ 0,g(n) ≥ 0。 (1)渐近上界记号O(Big-O) 渐近上界记号O 渐近上界记号 )
1.2 算法的描述方法
算法的描述方法 • 自然语言 – 优点:容易理解 – 缺点:冗长、二义性 – 使用方法:粗线条描述算法思想 – 注意事项:避免写成自然段 欧几里德算法:①输入m和n; ②求m除以n的余数r; ③若r等于0,则n为最大公约数,算法结束; 否则执行第④步; ④将n的值放在m中,将r的值放在n中; ⑤重新执行第②步。
举例:
例1 :f(n) = 2n + 3 = O(n) 当n≥3时,2n+3≤3n,所以,可选 = 3,n0 = 3。对于 时 ,所以,可选c , 。对于n≥n0,f(n) , = 2n + 3≤3n,所以,f(n) = O(n),即2n + 3∈O(n)。这意味着, ,所以, , ∈ 。这意味着, 不会超过3n, 当n≥3时, 2n + 3 不会超过 ,2n + 3 = O(n)。 时 。 例2: f(n) = 10n2 + 4n + 2 = O(n2) 对于n≥2时, 有10n2 + 4n + 2≤10n2 + 5n,并且当 对于 时 , 并且当n≥5时, 时 5n≤n2,因此,可选 = 11, n0 = 5;对于 因此,可选c ;对于n≥n0,f(n) = 10n2 + , 4n + 2≤11n2,所以 所以f(n) = O(n2)。 。 例3: f(n) = n!= O(nn) 对于n≥1,有n(n − 1)(n − 2) … 1≤nn,因此,可选c = 1,n0 = 对于 , 因此,可选 , 1。对于 所以, 。对于n≥n0,f(n) = n!≤nn,所以,f(n) = O(nn)。 , ! 。
– 优点:表达能力强、抽象性强、容易理解
欧几里德算法:1. r = m % n;
2. 循环直到r = 0; 2.1 m = n; 2.2 n = r; 2.3 r = m % n; 3. 输出n;
问题的求解(Problem Solving): 问题的求解(Problem Solving):
1)问题的陈述
算法分析与设计
Design and Analysis of Computer Algorithm
教材: 教材:算法设计与分析 王红梅 编著 清华大学出版社出版
课程简介
算法分析与设计是计算机的核心课程之一, 算法分析与设计是计算机的核心课程之一,在众多的计 算机系统软件和应用软件中都要用到本课程的内容。 算机系统软件和应用软件中都要用到本课程的内容。它是操 作系统、编译原理等课程的先行课程, 作系统、编译原理等课程的先行课程,在计算机的理论体系 中占有极其重要的位置。 中占有极其重要的位置。 通过本课程的学习, 通过本课程的学习,使学生掌握算法分析与设计的基本 理论,使学生学会算法分析与设计的基本方法,掌握 掌握计算机科 理论,使学生学会算法分析与设计的基本方法 掌握计算机科 学及应用领域常见的有代表性的非数值算法及算法设计的若 干重要方法,并学会用这些算法解决实际问题。 干重要方法,并学会用这些算法解决实际问题。 本课程以算法设计策略为知识单元, 本课程以算法设计策略为知识单元,介绍算法设计方法 和分析技巧,这些策略包括递归技术、分治、动态规划、贪 和分析技巧,这些策略包括递归技术、分治、动态规划、 心算法、回溯法、分支限界法等策略,它们的内容相对独立。 心算法、回溯法、分支限界法等策略,它们的内容相对独立。 其先修课为高等数学、程序设计、数据结构。 其先修课为高等数学、程序设计、数据结构。
算法渐近复杂性
设T(n)为算法A的时间复杂性函数,则它是n的单增函数,如果存在 为算法A的时间复杂性函数, 的单增函数, 一个函数 Ť(n) 使得当n→ ∞,有 T(n)- Ť(n)) / T(n)→0 时的渐进性态或 渐进复杂性 。 称Ť(n) 是T(n)当 n→ ∞ 时的 或 在数学上, 有相同的最高阶项. 为略去T( 在数学上,T(n)与 Ť(n)有相同的最高阶项.可取 Ť(n)为略去T(n)的 低阶项后剩余的主项. 代替T( 低阶项后剩余的主项.当n充分大时我们用Ť(n)代替T(n)作为算法复 杂性的度量,从而简化分析. 杂性的度量,从而简化分析. 例如 T(n)=3n2+4nlogn+7, 则 Ť(n)可以是3n2. 3n
其中I是问题的规模(input size)为n的实例,p(I)是实 例I出现的概率。
• 例:顺序搜索算法 在具有n个元素的数组a[1...n]中找出值等于 的元素的位置。 中找出值等于k的元素的位置 在具有 个元素的数组 的数组 中找出值等于 的元素的位置。
template<class Type> int seqSearch(Type *a, int n, Type k) { for(int i=0;i<n;i++) if (a[i]==k) return i; return -1; }
若存在正常数c和自然数 若存在正常数 和自然数n0 使得当 和自然数 n≥ n 0 时 , 有 0 ≤ f ( n ) ≤ cg ( n ) ≥ 充分大时有上 则称函数 f(n )在n充分大时有上 在 充分大时有 界, 且g(n)是它的一个上界, 记为 f(n) =O(g (n) ) , 也称 f(n) 的 阶 不 高 于 g ( n ) 的 阶 。
若进一步假定算法中所有不同元运算的单位执行时间相同,则可不 若进一步假定算法中所有不同元运算的单位执行时间相同, 考虑Ť(n)所包含的系数或常数因子。 ( 所包含的系数或常数因子。 渐进分析适用于n充分大的情况,当问题的规模很小时, 渐进分析适用于n充分大的情况,当问题的规模很小时,或比较的两 算法同阶时,则不能做这种简化. 算法同阶时,则不能做这种简化.
重要的问题类型
1. 查找问题 2. 排序问题 3. 图问题 4. 组合问题 5. 几何问题
1.3 算法分析
算法分析( Analysis): ):对算法所需要的 算法分析(Algorithm Analysis):对算法所需要的 两种计算机资源—— ——时间和空间进行估算 两种计算机资源——时间和空间进行估算 时间复杂性(Time Complexity) 时间复杂性( Complexity) 空间复杂性( Complexity) 空间复杂性(Space Complexity) 算法分析的目的: 算法分析的目的: 设计算法—— ——设计出复杂性尽可能低的算法 设计算法——设计出复杂性尽可能低的算法 选择算法—— ——在多种算法中选择其中复杂性最低者 选择算法——在多种算法中选择其中复杂性最低者
相关文档
最新文档