四年级奥数周期问题教案

合集下载

四年级奥数-周期问题-教案

四年级奥数-周期问题-教案

周期问题教案教学目标:1、使学生了解很多事物变化的周期性,掌握事物变化的周期;2、使学生能掌握周期问题中的基本概念,对于较复杂的周期问题,能够通过画图,计算等方法分析,找出周期,达到解决问题的目的。

教学重难点:理解周期问题意义,掌握准确需寻找周期数的方法与解决周期问题的公式,如何使用总量除以周期,并区分是否有余数。

教学过程:情景导入:《老和尚和小和尚的故事》从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说:“从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说……”从而揭示周期问题的概念:在日常生活中,同样有一些现象按照一定规律周而复始,持续重复出现,我们把这种特殊的规律问题称为周期问题。

归纳定义:在日常生活中,有很多现象都是按照一定的规律、依次持续重复出现的,我们把这种现象叫做周期现象,而重复出现一次的个数叫做周期。

专题简析:在日常生活中,有一些现象按照一定的规律持续重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,能够从总量里减掉不是特球的个数后,再继续算。

例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。

第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。

练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?(3)公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

小学奥数周期问题教案模板

小学奥数周期问题教案模板

课时安排:2课时教学目标:1. 让学生了解周期问题的定义,掌握周期问题的解题方法。

2. 培养学生观察规律、分析问题的能力,提高学生的逻辑思维能力。

3. 通过实际操作,使学生能够灵活运用周期问题的解题方法解决实际问题。

教学重点:1. 周期问题的定义和特点。

2. 周期问题的解题方法。

教学难点:1. 确定周期。

2. 利用周期解决问题。

教学准备:1. 多媒体课件。

2. 彩灯图片、自然数排列图片、钟面图片等。

3. 练习题。

教学过程:第一课时一、导入新课1. 展示彩灯图片,引导学生观察彩灯颜色的排列规律。

2. 提问:彩灯的颜色是如何排列的?有没有一定的规律?二、新课讲解1. 引入周期问题的定义:周期现象在运动变化过程中,某些特征有规律循环出现;周期:连续两次出现所经过的时间或重复出现一次的个数。

2. 举例说明周期现象,如彩灯的颜色排列、自然数的排列、钟面的时针和分针的转动等。

3. 讲解周期问题的解题方法:a. 观察法:通过观察题目中的现象,找出规律。

b. 逆推法:从结果出发,逆向思考,找出规律。

c. 经验法:根据生活经验,找出规律。

三、课堂练习1. 练习1:计算第13只彩灯和第24只彩灯的颜色。

2. 练习2:找出以下数列的周期:1,2,1,2,1,2,……四、小结1. 回顾本节课所学内容,强调周期问题的定义和特点。

2. 强调解题方法的重要性,鼓励学生在实际生活中运用所学知识。

第二课时一、复习导入1. 复习上一节课所学的周期问题知识。

2. 提问:如何确定周期?如何利用周期解决问题?二、新课讲解1. 讲解确定周期的技巧:a. 观察法:通过观察题目中的现象,找出规律。

b. 逆推法:从结果出发,逆向思考,找出规律。

c. 经验法:根据生活经验,找出规律。

2. 讲解利用周期解决问题的方法:a. 利用除法求余数:将问题中的数量除以周期,求出余数。

b. 根据余数确定答案:根据余数的大小,找出周期中的相应位置,确定答案。

三、课堂练习1. 练习1:计算第49个自然数在排列顺序中位于哪个字母下面。

四年级上数学教案-简单的周期现象-苏教版

四年级上数学教案-简单的周期现象-苏教版

四年级上数学教案-简单的周期现象-苏教版一、教学目标1. 让学生通过观察、实验、分析等方法,发现周期现象的存在,理解周期现象的特点。

2. 培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和数据分析能力。

3. 培养学生合作交流、积极参与的学习态度,激发学生对数学学习的兴趣。

二、教学内容1. 简单周期现象的概念2. 周期现象的特点3. 周期现象在生活中的应用三、教学重点与难点1. 教学重点:让学生通过观察、实验、分析等方法,发现周期现象的存在,理解周期现象的特点。

2. 教学难点:如何引导学生运用数学知识解决实际问题,提高学生的逻辑思维能力和数据分析能力。

四、教学过程1. 导入新课- 利用多媒体展示生活中常见的周期现象,如四季变化、昼夜更替等,引导学生发现周期现象的存在。

- 提问:同学们,你们在生活中还遇到过哪些周期现象呢?2. 探究新知- 让学生分小组讨论,分享各自发现的周期现象,并总结周期现象的特点。

- 引导学生运用数学知识,如除法、乘法等,计算周期现象的周期长度。

- 通过实例讲解,让学生了解周期现象在生活中的应用,如音乐、舞蹈等。

3. 实践活动- 让学生分组进行实验,观察周期现象,如摆动的钟摆、滴水的水龙头等,记录数据并进行分析。

- 引导学生运用所学的数学知识,解决实际问题,如计算一个摆动的钟摆摆动60次需要多长时间。

4. 总结与拓展- 让学生总结本节课所学的内容,分享学习收获。

- 提问:同学们,你们还知道哪些周期现象?它们有什么特点?如何运用数学知识解决实际问题?五、课后作业1. 让学生观察生活中的周期现象,记录下来,并尝试运用数学知识解决相关问题。

2. 预习下一节课的内容,提前了解周期现象的更多应用。

六、教学反思通过本节课的教学,让学生了解周期现象的存在,并理解其特点。

在教学过程中,注重引导学生运用数学知识解决实际问题,培养学生的逻辑思维能力和数据分析能力。

同时,通过实践活动,让学生亲身体验周期现象,提高学生的实践操作能力。

周期问题教案

周期问题教案

周期问题教案本教案旨在帮助学生更好地理解周期问题,并培养他们解决周期问题的能力。

一、教学目标1. 理解周期问题的定义和基本概念;2. 掌握周期问题的解决方法;3. 能够应用所学知识解决实际问题。

二、教学准备1. 教学工具:投影仪、白板、标志笔;2. 教材:周期问题相关的教材和习题。

三、教学步骤步骤一:引入1. 利用一些实际例子引导学生思考周期问题的概念,并解释周期问题的定义;2. 通过提问和讨论,引导学生回顾和巩固以前学过的周期问题知识。

步骤二:讲解1. 介绍周期问题的求解方法,如画图法、列式法等;2. 结合具体例子,详细讲解每种解题方法的步骤和实施过程;3. 强调解题中需要注意的关键步骤和常见错误。

步骤三:练习1. 在白板上出示一些周期问题的例题,由学生利用所学方法解答;2. 引导学生分别使用不同的方法解答,并对答案进行比较和讨论;3. 练习过程中,教师及时给予指导和反馈。

步骤四:拓展1. 给学生提供更多的周期问题习题,让他们进一步巩固和应用所学知识;2. 引导学生思考和解答一些更复杂的周期问题;3. 鼓励学生尝试从不同的角度解决周期问题,培养他们的创新思维能力。

步骤五:总结1. 回顾教学内容,再次强调周期问题的定义和解决方法;2. 总结学生在学习过程中遇到的问题和收获;3. 鼓励学生对周期问题的学习进行思考和总结。

四、教学反思通过本教案的实施,学生能够在引导下,了解周期问题的概念和解决方法,并能够运用所学知识解决一定难度的周期问题。

在教学过程中,应充分引导学生进行思考和探究,激发他们的学习兴趣和自主学习能力。

教师还应根据学生的实际情况,灵活调整教学步骤和方法,确保学生能够有效地掌握和应用所学知识。

五、教学拓展为了加深学生对周期问题的理解和应用能力,教师可以组织一些实践活动,如实地考察、小组合作等。

通过实践,学生能够将所学知识与实际问题相结合,更好地理解和应用周期问题的解决方法。

此外,教师还可以鼓励学生参加一些数学竞赛或解题比赛,提高他们解决周期问题的能力和竞争意识。

周期问题教案(优秀范文五篇)

周期问题教案(优秀范文五篇)

周期问题教案(优秀范文五篇)第一篇:周期问题教案周期问题教案教学目标:1、使学生了解许多事物变化的周期性,掌握事物变化的周期;2、使学生能掌握周期问题中的基本概念,对于较复杂的周期问题,可以通过画图,计算等方法分析,找出周期,达到解决问题的目的。

教学重难点:理解周期问题意义,掌握正确需寻找周期数的方法与解决周期问题的公式,如何使用总量除以周期,并区分是否有余数。

情景导入:由几个简单的故事导入:如:《老和尚和小和尚的故事》:从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说:“从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说·······”从而揭示周期问题的概念:在日常生活中,同样有一些现象按照一定规律周而复始,不断重复出现,我们把这种特殊的规律问题称为周期问题。

一:简单的口述游戏抢答:问生:在我们日常生活中,有哪些是按照一定规律周而复始,不断重复出现的现像?提示:如一周有七天,一年有12个月,一年有春夏秋冬四季,人的十二生肖,钟表上的时针、分针、秒针:每转一圈都会重复继续等等,都是周期问题。

设置悬念:刚才同学们举的这些现象中,一年当中的12个月的12,12生肖中的12,一个星期7天中的7在我们的周期问题当中是什么意思呢?归纳定义:在日常生活中,有许多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象,而重复出现一次的个数叫做周期。

通过归纳的定义让同学们找出刚刚举例的周期。

如:一周七天:***234······ 重复体是哪些?说明周期是几?再如:一年四季:春夏秋冬春夏秋冬春夏······ 重复体是哪些?说明周期是几?判断是否属于周期现象后怎样快速寻找周期?说明:周期问题中我们首先去找重复体,重复体中有几个数,那说明周期就是几。

周期问题(四年级)

周期问题(四年级)

周期问题一、教学目标1、引导学生发现周期问题的规律,探索周期问题中的几个常见问题的解决策略,初步理解运用有余数除法解决求第几个问题的方法。

2、培养学生思维能力和语言表达能力。

二、考点、热点回顾周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2三、典型例题例1、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是_________球,第100个又是_____________球。

变式训练1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是______________颜色美美怕这种颜色的珠子数量不够,请你帮她算出这种颜色在这串珠子中共有_________个。

周期问题优秀教案(教师版)

周期问题优秀教案(教师版)

课题:周期问题班级姓名一、本讲知识点和能力目标1、知识点:周期。

2、知识目标:(1)让学生知道许多事物的变化都具有周期性,掌握其中变化的周期,并能灵活运用周期变化规律解决实际问题。

(2)通过自主互动式的学习,提高学生主动探究问题的能力。

(3)初步渗透物质世界是变化的规律,引导学生善于自主发现规律,并生成认真研究规律的好习惯。

3、能力目标:能够运用数学方法解决生活中的周期问题.二、教案方法自主、启发与导学三、本讲内容安排第一课时周期的意义和初级类型。

第二课时较复杂的周期问题。

(代表性问题)第三课时周期问题的拓展和探索。

第四课时独立练习四、课外延伸、知识拓展周期与余数问题的结合五、需要理解和记忆的知识在日常生活中了那么多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象儿歌从前有座山,山里有个庙,庙里有个老和尚给小和尚讲故事。

讲的是,从前有座山,山里有个庙,庙里有个老和尚给小和尚讲故事。

讲的是,从前有座山,山里有个庙,……常见的简算形式有关时间的儿歌一、三、五、七、八、十、腊,三十一天永不差。

四、六、九与十一三十天要牢记。

二月只有二十八。

平年三百六十五,闰年再把一日加。

第一课时【经典例题】例1.根据周期找位置:(1)卡片出示:△○○△○○△○○△○○……3个一组——一个△两个○(2)学生同桌说一说排列规律,说出它的变化周期是几?答:变化周期是3(3)提问:第13个图形是什么?第60个呢?13÷3=4(组)………1(个)60÷3=20(组)答:第13个图形是△。

第60个是○。

例2.在3.4507507……中的第50位小数是几?50÷3=18(组)……2(个)答:第50位小数是0。

例 3.2007年六·一是星期五,明年的六、一儿童节将会是星期几?(365+1)÷7=366÷7=52(周)……2(天)答:明年的六、一儿童节将会是星期日。

小学奥数周期问题教案

小学奥数周期问题教案

小学奥数周期问题教案教案标题:小学奥数周期问题教案教学目标:1. 学生能够理解什么是周期问题,并能够运用所学知识解决相关问题。

2. 学生能够培养逻辑思维和问题解决能力。

教学准备:1. PowerPoint演示或黑板2. 奥数周期问题的练习题3. 计算器4. 学生练习册教学步骤:引入:1. 引入周期问题的概念,解释周期问题是指在一定的规律下,某个事件或现象会重复出现的问题。

2. 通过举例子来让学生更好地理解周期问题,例如:一年有四个季节,每个季节持续三个月,那么一年有多少个月?探究:1. 让学生参与探究周期问题的解决方法。

2. 给学生一个简单的周期问题,如:一辆车每隔5秒钟通过一次红绿灯,那么10分钟内通过红绿灯多少次?3. 引导学生思考解决问题的方法,例如:可以通过计算每分钟通过红绿灯的次数,然后再乘以10分钟。

4. 让学生自己计算并给出答案,然后进行讨论和解释。

拓展:1. 给学生更复杂的周期问题,如:一辆车每隔3分钟通过一次红绿灯,红灯持续40秒,绿灯持续60秒,黄灯持续10秒,那么一小时内通过红绿灯多少次?2. 让学生分析问题,并找出解决方法,例如:可以计算每小时通过红绿灯的次数,然后再乘以通过红绿灯所需的时间。

3. 让学生自己计算并给出答案,然后进行讨论和解释。

巩固:1. 让学生进行奥数周期问题的练习题,帮助他们巩固所学知识。

2. 监督学生的解题过程,及时给予指导和帮助。

总结:1. 对本节课所学内容进行总结,强调周期问题的解决方法和重要性。

2. 鼓励学生在日常生活中多观察和思考周期问题,并能够灵活运用所学知识解决实际问题。

作业:布置相关的奥数周期问题作业,要求学生在规定时间内完成,并检查作业的正确性。

教学反思:及时总结本节课的教学效果,思考学生的学习情况和问题,并做出相应的调整和改进。

小学四年级奥数(周期问题)

小学四年级奥数(周期问题)

小学四年级奥数第8 讲周期问题知识方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯我们发现在日常生活和学习中,有许多现象都是按照一定的规律、依次不断重夏出现的,我们把这种现象叫周期现象,而重复出现一次的时间或重复出现一次的个数做周期。

在研究这些筒单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环一次的个数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。

重点点拨⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【例 1】假设所有的自然数排列起来,如下所示, 49 应该排列在第几个循环及哪个字母下面 ?(1) A B C D E1 2 3 4 56 7 8 9 1011(2) A B C D E1 2 3 4 510 9 8 7 611分析与解从排列情况可以知道,这些自然数是按从小到大5 个数一个循环,我们可以根据这些数除以 5 所得的余数来分析判断 :(1)49÷5=9⋯449 应该排在第 10 个循环第 4 个字母 D 下面。

(2)49÷10=4⋯9 应该在 B的下面。

【例 2】用 1,2, 3,4 这四张卡片可以组成不同的四位数,如把它们从小到大依次排列,第一个是 1234,第二个是1243,第 20 个是多少 ?分析与解每个数字在千位上都出现 6次,一共可以组成24 个不同的四位数,以 6 次为一周期。

20÷6=3⋯⋯ 2应是第四周期中的第 2 个数,千位上是 4 的数从小到大是 4123, 4132,4213等,所以第 20 个数是 4132。

【例 3】下面是一个 11 位数,它的每三个相邻的数字之和都是 24,求它每一位数上的数字分别是多少 ?分析与解我们把从左边算起的第一数记做 a1(a1=8),依次编号位 a1,a2,⋯⋯ a11.每三个相邻数字和都是 24 可知,a1+a2+a3=a2+a+a4=a+a1+a3=24 因为 a1=8,所以 a2+a3=16,而 a2+a3+a1=24,所以 a4=8,同理 a7=8,a10=8,由此可见这个数字的周期是 3。

四年级奥数周期问题二(数列中的周期问题)

四年级奥数周期问题二(数列中的周期问题)

教学主题:周期问题二(数列中的周期问题)教学重难点:正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;要确定解题的突破口,解决实际问题。

教学过程:1.导入问题导入例如:1,2,1,2,1,2,…那么第18个数是多少?2.呈现例1.小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?解析:⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,81516÷= (1)⑵每个周期各个数之和是:7025317++++=.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17167279⨯+=,所以,这81个数相加的和是279.例2.⑴44⨯⨯……4⨯(25个4),积的个位数是几?⑵24个2相乘,积末位数字是几?解析:⑴按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,……,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以25212÷=…1,25个4相乘,积的末位数字是4.⑵按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,……,4个一组2446÷=,所以24个2相乘,积末位数字是6.例3.12个同学围成一圈做传手绢的游戏,如图.⑴从1号同学开始,顺时针传l00次,手绢应在谁手中?⑵从1号同学开始,逆时针传l00次,手绢又在谁手中?⑶从1号同学开始,先顺时针传l56次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?121110987654 3 21解析:⑴因为一圈有l 2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l 00次,我们先用除法求传了几圈、还余几次.100128÷=(圈)……4(次)从1号同学顺时针传4次正好传到5号同学手中.⑵与第一小题的道理一样,先做除法.100128÷=(圈)……4(次)这4次是逆时针传,正好传到9号同学手中(如图).⑶先顺时针传156次,然后逆时针传l 43次,相当于顺时针传15614313-=(次);再顺时针传l 07次,与13次合并,相当于顺时针传13107120+=(次),1201210÷=(圈),手绢又回到l 号同学手中.例4.甲、乙两人对一根3米长的木棍涂色。

周期问题教案

周期问题教案

《周期问题》教案《周期问题》教案周福红周福红周福红教学目标;教学目标;1、 引导学生发现周期问题的规律,探索周期问题中求第几个问题的多种解决策略,初步理解运用有余数除法解决求第几个问题的方法。

2、 培养学生的思维能力和语言表达能力。

培养学生的思维能力和语言表达能力。

3、 教学重点:引导学生发现周期问题的规律,探索周期问题中求第几个问题的多种解决策略,初步理解运用有余数除法解决求第几个问题的方法。

教学难点:初步理解运用有余数除法解决求第几个问题的方法。

过程过程: :一、一、 情境引入:情境引入:师:黑板上有这么多的○,咱们来摆摆,师:黑板上有这么多的○,咱们来摆摆,师摆:师摆:●●●●●●● 老师是怎么摆的(只说颜色)一起说。

老师是怎么摆的(只说颜色)一起说。

师:下面该摆什么了?师:下面该摆什么了? 引导:干净利落。

引导:干净利落。

引导:干净利落。

师:师:看来在我们摆○的过程中也蕴含着数学规律。

看来在我们摆○的过程中也蕴含着数学规律。

看来在我们摆○的过程中也蕴含着数学规律。

这节课我们就来探索其中的规律。

这节课我们就来探索其中的规律。

(板书课题)题)二、新授二、新授(一)探索周期性问题的规律(一)探索周期性问题的规律1、理解每组排列都相同、理解每组排列都相同师:同学们都发现了○的排列规律,怎么使别人一眼就能看出来呢?怎么分组?(一起说)(一起说)师:这样一分组就能使别人清楚的看到我们发现的规律,每组都有几个○,每组的○是按什么顺序排列的?(电脑出示)么顺序排列的?(电脑出示)师:师:如果还有第如果还有第4组,组,怎样排列呢?你怎么这么肯定?第怎样排列呢?你怎么这么肯定?第10组、组、第第100组呢?……谁能用一句话来说一说。

(每组的排列顺序都相同,都是按(每组的排列顺序都相同,都是按●●●●的顺序依次重复排列的)的顺序依次重复排列的)2、理解每组的第几个都相同、理解每组的第几个都相同师:你知道第8组的第一个圆是什么颜色的吗?第28组、第128组?……组?……师:你发现了什么规律?为什么每组的第一个圆都相同?由此你又想到了什么?( (电脑演示每组的第电脑演示每组的第2个、第3个圆个圆) )(二)逐步渗透,与有余数除法建立联系。

周期问题教案

周期问题教案

周期问题教案教案标题:解决周期问题的方法教案目标:1. 理解什么是周期问题。

2. 学习解决周期问题的方法。

3. 运用所学方法解决周期问题。

教学步骤:一、导入(5分钟)1. 师生共同讨论:你们在生活中遇到过什么周期问题?有什么困扰?二、概念解释与讲解(10分钟)1. 引入周期问题的概念:周期问题是在一定的时间内重复出现的问题。

2. 举例说明周期问题:例如,每周一次的数学测试、每天早上的起床问题等。

3. 解释周期问题的困扰:由于周期问题的重复性,可能会让人感到枯燥乏味、缺乏动力等。

三、解决周期问题的方法(15分钟)1. 制定计划:根据周期性的出现,事先制定相应的计划,并确定具体行动步骤。

2. 设立目标:为每一个周期问题设立明确而具体的目标,这能够增加动机和动力。

3. 利用工具:例如使用备忘录、日历、闹钟等工具来提醒和规划周期性的问题。

4. 寻找乐趣:通过寻找问题的乐趣和意义,能够增加自己对周期问题的兴趣和投入度。

四、练习与实践(20分钟)1. 学生们分组讨论自己遇到的周期问题,并尝试运用所学方法解决。

2. 学生们制定自己面临的周期问题的计划和目标,并分享给其他同学。

3. 老师对学生们的解决方案进行评价和指导。

五、总结与拓展(10分钟)1. 老师进行总结:总结本堂课学到的解决周期问题的方法。

2. 对学生提出拓展问题:如何将解决周期问题的方法应用到其他方面的生活中?六、作业(5分钟)1. 要求学生们在一周的时间内,针对一个自己面临的周期问题,制定相应的计划和目标,并进行实践。

2. 要求学生们在下节课开始之前,将自己的实践结果写成报告,并准备进行展示。

教具准备:1. 白板、黑板笔、擦布等写字工具。

2. 学生们的讨论和练习材料。

四年级上数学教案-简单的周期(探索规律)-苏教版

四年级上数学教案-简单的周期(探索规律)-苏教版

四年级上数学教案-简单的周期(探索规律)-苏教版一、教学目标1.认识周期的概念,了解周期的特点和周期性的现象;2.通过试验、观察、总结归纳等方法,探索周期现象中的规律;3.发展学生的观察、实验、分析问题和解决问题的能力;4.培养学生的观察能力,让他们养成观察、发现规律的好习惯。

二、教学重点和难点1.重点:让学生认识周期的特点以及探索周期现象中的规律;2.难点:如何启发学生发现周期的规律,提高学生的观察能力。

三、教学内容1. 师生共同探索:什么是周期1.导入:请同学们向大家介绍什么是“周期”。

2.学习:学生通过与老师和其他同学的互动,了解周期的概念,掌握周期现象的基本特点。

3.总结:总结生活中常见的周期现象。

2. 认识简单的周期1.导入:通过小小的试验,探究一下简单的周期。

2.学习:引导学生通过实验和观察,认识简单的周期现象。

3.思考:通过老师的引导,师生共同思考这个周期现象中是否存在什么规律和特点。

4.总结:总结这个周期现象的规律和特点。

3. 找规律的游戏1.游戏:老师设计一个寻找规律的游戏,引导学生发现其中的周期性规律。

2.分析:通过游戏的分析,学生发现规律并进行总结归纳。

3.总结:老师引导学生总结这个周期现象的规律和特点。

4. 发挥思维的活动1.活动:老师设计一个新的探索周期现象的活动,让学生发挥自己的思维和想象,探索规律。

2.思考:学生通过自己的思考和实践,发掘周期性规律。

3.总结:老师引导学生总结这个周期现象的规律和特点。

四、教学方法1.情境教学法:通过游戏、实验等情境活动的方式,让学生更好地认识周期和周期性现象。

2.合作探究法:通过师生合作探讨、讨论、总结等方式,让学生更好地发现规律和总结归纳。

3.启发式教学法:通过启发学生发现问题、探究规律等方式,激发学生学习兴趣,并提高学生的观察能力。

五、教学评估1.观察学生的参与情况和表现;2.对学生的表现进行评价,并给出具体的评价标准;3.收集学生的反馈,不断改进教学方法,提高教学效果。

四年级奥数专题 周期性问题(学生版)

四年级奥数专题 周期性问题(学生版)

周期性问题学生姓名授课日期教师姓名授课时长知识定位本讲是小升初的热点内容。

通过本讲的学习,主要是锻炼学生观察和总结的能力。

要求学生能够发现问题的周期,并且能够确定周期。

本讲除了讲解一般排序的周期问题外,还将讲解数表、末尾数字和圆周上的周期问题。

在学习这部分内容时应当注意:数字或图形或事物是从什么位置开始循环的,能够确定周期。

并且会处理余数问题,能够准确的根据余数确定问题中的事物所在的位置。

重点难点:1.找准变化的规律2.确定解题的突破口知识梳理【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

一、周期问题的一般定义和解题思路周期问题的定义:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.解题思路:周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

二、竞赛考点:同余知识的应用 例题精讲【试题来源】【题目】今天是星期_________ ;那么80天后是星期______________ 。

周期问题教案

周期问题教案

周期问题教案教案:周期问题(500字)一、教学目标:1. 知识与能力:(1) 理解周期问题的概念和基本性质;(2) 掌握求解周期问题的方法和技巧;(3) 能够运用周期问题解决实际问题。

2. 过程与方法:(1) 通过引导学生观察、感知周期问题,培养学生的综合分析和解决问题的能力;(2) 通过小组合作和整合资源,激发学生的参与热情和主动学习的态度;(3) 通过师生互动,让学生充分发展形成推理、思考、表达和交流的能力。

3. 情感态度与价值观:(1) 培养学生的合作与交流意识,培养学生的团队意识和创新精神;(2) 培养学生的观察和思考能力,培养学生的实际问题解决能力;(3) 强化学生的自主学习和探究能力,提高学生的学习兴趣和主动性。

二、教学重点:1. 掌握周期问题的概念和基本性质;2. 学会求解周期问题的方法和技巧。

三、教学难点:1. 提高学生的动手能力和实际问题解决能力;2. 培养学生的综合分析和判断能力。

四、教学过程:1. 创设情境,引导学生思考:教师通过引导学生观察生活中的周期性现象,如季节变化、月份、星期、天数、月亮的圆缺、植物的生长等,引出“周期问题”的概念和基本性质。

2. 学习与合作探究:(1) 学生分小组合作,探究周期问题的解决方法。

每个小组选择一个周期性现象进行观察和记录,然后通过分析和总结,找出解决周期问题的关键方法和技巧。

(2) 学生展示并讨论各自小组的成果,共同总结出解决周期问题的一般方法,并将其归纳为“周期解题法”。

3. 整合资源,提升解题能力:(1) 教师提供一些周期问题的练习题,让学生在小组内进行讨论和解答,并互相评价和提出改进建议。

通过合作和竞赛的方式,提高学生的解题能力和对周期问题的理解。

(2) 教师提供一些实际生活中的周期问题,让学生进行综合分析和综合解决。

通过实际问题的解决,培养学生的实际问题解决能力和综合分析能力。

4. 总结与拓展:(1) 学生通过小组汇报和讨论,总结出解决周期问题的一般方法和技巧。

小学四年级奥数精讲循环周期问题

小学四年级奥数精讲循环周期问题
练习题:
1、校门口摆了一排花,每两盆菊花之间摆3盆月季花。一共摆了112盆花,如果第一盆花是菊花,那么共摆了多少盆月季花?
2、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?
3、一个圆形花坛周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗,花坛周围共插了多少面黄旗?
练习题:1、
A
B
C
D
A
B
C
D
……
1
2
3
1
2
3
1
2
……
上表中每一列两个符号为一组,如:第一组为“A1”,第二组为“B2”,……问第25组是什么?
2、有同样大小的红、白、黑球共120个,按先3个红的,后2个白的,再1个黑的排列,问(1)、白球一共有多少个?(2)、第68个球是什么颜色球?
例题4:有一列数按“432791864327918643279186……”排列。那么前54个数字之和是多少?
教师签字:
毅杰教育个性化辅导授课案
教师:学生:日期:星期:时段:
课题
“周期问题”
学情分析
在日常生活中,有一些按照一定的规律不断重复出现。如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等。像这些问题,我们称为“简单周期问题”。这一类问题一般要利用余数的知识来解答。所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。
教学反思:
三、本次课后作业:
1.2003年3月19日是星期三,问8月1日是星期几?
2.1989年12月5日是星期二,那么再过10年的12月5日是星期几?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期问题教案
2015/6/6 授课人:XXX
教学目标:
1、使学生了解许多事物变化的周期性,掌握事物变化的周期;
2、使学生能掌握周期问题中的基本概念,对于较复杂的周期问题,可以通过画图,计算等方法分析,找出周期,达到解决问题的目的。

教学重难点:理解周期问题意义,掌握正确需寻找周期数的方法与解决周期问题的公式,如何使用总量除以周期,并区分是否有余数。

教学过程:
情景导入:《老和尚和小和尚的故事》从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说:“从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说……”从而揭示周期问题的概念:在日常生活中,同样有一些现象按照一定规律周而复始,不断重复出现,我们把这种特殊的规律问题称为周期问题。

一:生活中的周期有哪些?问生:在我们日常生活中,有哪些是按照一定规律周而复始,不断重复出现的现像?
提示:如一周有七天,一年有12 个月,一年有春夏秋冬四季,人的十二生肖,钟表上的时针、分针、秒针:每转一圈都会重复继续等等,都是周期问题。

设置悬念:刚才同学们举的这些现象中,一年当中的12个月的12,12 生肖中的12,一个星期7 天中的7 在我们的周期问题当中是什么意思
呢? ------- 周期。

归纳定义:在日常生活中,有许多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象,而重复出现一次的个数叫做周期。

通过归纳的定义让同学们找出刚刚举例的周期。

一周七天:重复体是哪些?说明周期是几?一年四季:春夏秋冬春夏秋冬春夏…重复体是哪些?说明周期是几?
判断是否属于周期现象后怎样快速寻找周期?
说明:周期问题中我们首先去找重复体,重复体中有几个数,那说明周期就
是几。

二、讲解例题
例1.今年是羊年,那么2055年是是什么年?3000呢?
鼠牛虎兔龙蛇马羊猴鸡狗猪
周期:12
解:(2055 —2015+1)+ 12= 3 .............................. 5 2055 年是猪年
(3000 —2015+1) - 12= 82 ........................... 2 3000 年为猴年例2.把O□△三种图形按一定的规则排列:00厶厶厶厶口口00厶厶厶△ □口……,问第100个图形是什么?其中有多少△?
解:100-8=12 .................................... 4 第100个图形为
又因一个周期中有4个厶,12个周期有12 X4=48个△,最后余4个中有2 个△,共有48 + 2=50个
讲完可做一个简单的方法总结:总数宁周期数二组余数
引导学生解决以下问题:例3. 小朋把节省下来的硬币先按4 个“一分”,再按
3 个“二分”,后按2 个“五分”的顺序往下排问:
⑴他排的第111 个是几分硬币?
⑵这111 个硬币共多少钱?
周期为9 111 - 9=12 (3)
解:⑴第111个是一分硬币
⑵111个硬币:12组有12 X 13=156分,余3分别是3个一分共有3分,则111 个硬币有156 +3=159分
例4、2011 年6 月1 日是星期三
⑴该月的23号是星期几?
⑵ 2011 年10 月10 日是星期几?
⑶2012年6月1日是星期几?
解:⑴23 - 7=3……2余2,则为星期四
⑵132 -7=18…… 6 余6,则为星期一
⑶366 - 7=52……2余2,则为星期四
三、总结归纳方法
总数:周期数-组............ •余数
整除:周期最后一个。

有余数:从周期第一个开始数余数第几个。

四、巩固练习
1、2012年3月2 日是星期五,问:2012年8月18日星期几?
解:3月2日到8月18日
共30+30+31+30+31 + 18=17天。

170 - 7=24 (2)
则2012年8月18为星期六
2、有一列数按“……”排列,那么前100个数字之和是多少?
解:周期为6,每组数之和是:4+1+3+9+7+6=30
100 - 6=16 (4)
30 X16+4+1+3+9=497.
挑战:
A,
下表中每列上,中,下的汉字,字母,数字组成一组,例如第一组是(学,。

相关文档
最新文档