机电一体化基础知识考试复习总结
机电一体化复习资料整理总结

第一章1、机电一体化系统的构成要素与功能特征五大功能构成要素:机械系统(机构)、信息处理系统(计算机)、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电动机)五个子系统组成。
·2、机电一体化系统(产品)设计的考虑方法:1) 机电互补法机电互补法又称取代法。
该方法的特点是利用通用或专用电子部件取代传统机械产品(系统)中的复杂机械功能部件或功能子系统,以弥补其不足。
例如:用PLC或计算机取代机械式的变速器、凸轮机构、离合器等。
可简化机械结构、提高性能。
2) 结合(融合)法它是将各组成要素有机结合为一体构成专用或通用的功能部件(子系统),其要素之间机电参数的有机匹配比较充分。
例如:将电机的转子轴作为扫描镜的转轴。
3) 组合法它是将结合法制成的功能部件(子系统)、功能模块,像积木那样组合成各种机电一体化系统(产品),故称组合法。
3、机电一体化系统的设计类型1)开发性设计它是没有参照产品的设计,仅仅是根据抽象的设计原理和要求,设计出在质量和性能方面满足目的要求的产品或系统。
2)适应性设计它是在总的方案原理基本保持不变的情况下,对现有产品进行局部更改,或用微电子技术代替原有的机械结构或为了进行微电子控制对机械结构进行局部适应性设计,以使产品的性能和质量增加某些附加价值。
3)变异性设计它是在设计方案和功能结构不变的情况下,仅改变现有产品的规格尺寸使之适应于量的方面有所变更的要求。
第二章1.机电一体化的机械系统与一般机械系统相比,具有一定的特殊要求:(1)较高的定位精度。
(2)良好的动态响应特性。
——响应快、稳定性好。
(3)无间隙、低摩擦、低惯量、大刚度。
(4)高的谐振频率、合理的阻尼比。
2.滚珠丝杠副特点具有传动阻力小;传动效率高(92%~98%);轴向刚度高;传动平稳;传动精度高;不易磨损、使用寿命长等优点;缺点:但不能自锁;因而用于高精度传动和升降传动时,需制动定位装置。
3.消除和减小丝杠轴向间隙的主要方法:双螺母螺纹预紧调整特点:结构简单,刚性好,预紧可靠,使用中调整方便; 但不能精确定量调整。
机电一体化复习内容

机电一体化复习内容第一篇:机电一体化复习内容第一章绪论1、机电一体化系统的基本功能要素有哪些?功能各是什么?(1)、机械本体其主要功能是使构造系统的各子系统,零部件按照一定的空间和时间关系安置在一定位置上,并保持特定的关系。
(2)、动力单元按照机电一体化系统控制要求,为系统提供能量和动力,以保证系统正常运行。
(3)、传感检测单元对系统运行中所需要的本身和外界环境的各种参数及状态进行检测,并转换成可识别信号,传输到控制信息处理单元,经过分析处理产生相应的控制信息。
(4)、执行单元根据控制信息和指令完成所要求的动作。
(5)、驱动单元在控制信息作用下,驱动各执行机构完成各种动作和功能。
(6)、控制与信息处理单元将来自各传感器的检测信息和外部输入命令进行集中、储存、分析、加工,根据信息处理结果,按照一定的程序发出相应的控制信号,通过输出接口送往执行机构,控制整个系统有目的的运行,并达到预期的性能。
(7)、接口将各要素或子系统连接成一个有机整体。
2、机电一体化的相关技术有哪些?①机械技术②检测传感技术③信息处理技术④自动控制技术⑤伺服驱动技术⑥系统总体技术第二章机械系统设计1、分析各种机械特性对系统性能是如何影响的。
答:摩擦(稳态精度、低速爬行原因)、阻尼(欠阻尼、阻尼比不同时的影响)、间隙(G1—G4)、转动惯量(过大、过小)。
Ⅰ、摩擦特性对性能的影响分析(1)引起动态滞后和稳态误差,如果系统开始处于静止状态,当输入轴以一的角速度转动时,由于静摩擦力矩T的作用,在一定的转角θi范围内, 输出轴将不会运动,θi值即为静摩擦引起的传动死区。
在传动死区内,系统将在一段时间内对输入信号无响应,从而造成误差。
(2)引起低速抖动或爬行—导致系统运行不稳定当输入轴以恒速ω继续运动后,输出轴也以恒速ω运动, 但始终滞后输入轴一个角度θss,(θss为系统的稳态误差)。
Ⅱ阻尼(1)当阻尼比ξ=0时,系统处于等幅持续振荡状态,因此系统不能无阻尼。
机电一体化_复习资料附答案

一、名词解释机电一体化的目的是什么?其关键技术主要有哪些?主要目的:增加机械系统或产品的附加值和自动化程度其包含的技术:(1)检测传感技术(2)信息处理技术(3)自动控制技术(4)伺服驱动技术(5)精密机械技术(6)系统总体技术机电一体化系统包括哪五个子系统?机电一体化系统由机械系统(机构)信息处理技术(计算机)动力系统(动力源)传感检测系统(传感器)执行元件系统(如动力机)五个子系统组成。
滚珠丝杠副基本结构由哪几个部分组成?按循环分为哪两种方式?丝杠,螺母,滚珠,反向器四部分组成,.内外两种滚珠丝杠副按支撑方式分为哪四种?单推-单推式,双推-双推式,双推-简支式,双推-自由式谐波齿轮由哪几个部分组成?其基本传动动比计算公式是什么?波发生器,刚性轮,柔性轮组成,间歇传动机构有哪几种?棘轮传动,槽轮传动,蜗形凸轮传动导轨副按截面形状分为哪几种?各自的特点是什么?(1)三角形导轨:磨损自动补偿,精度高,制造检修困难(2)矩形导轨:制造检修容易,承载大,刚度高,安装方便,磨损不能自动补偿(3)燕尾形导轨:高度小,刚度差,摩擦力大,制造检修困难,磨损不能自动补偿(4)圆形导轨:制造方便,精度高,磨损后难调整补偿,承载低三角形导轨副的特点。
导向性和精度保持性高,接触刚度好,工艺性差,对导轨四个表面难以完全接触铸造机座的设计为保证自身的刚度采取的措施有哪些?1合理选择截面形状和尺寸2合理布置筋板和加强筋3合理的开孔和加盖简述直流伺服电动机PWM控制方式的基本原理是什么?P99脉宽调制PWM直流调速系统原理,输入一个直流控制电压V就可得到一定宽度与V成比例的脉冲方波给伺服电枢回路供电,通过改变脉冲宽度来改变电枢回路的平均电压,从而得到不同大小的电压值Va,使直流电机平滑调速。
简述步进电动机的工作原理。
步距角的计算方法。
P105原理:将电脉冲信号转换为机械角位移的执行元件。
α=360°/(zm) z:转子齿数m:运行拍数简述MCS-51单片机引脚分类及封装形式。
机电考试知识点总结

机电考试知识点总结在机电一体化技术的学习和应用中,需要了解并掌握包括机械原理、电气电子技术、传感器与测量技术、自动控制技术、机器人技术等多个领域的知识。
下面就这些知识领域的主要内容进行总结,以备考试所需。
一、机械原理1. 刚体静力学刚体的平衡条件(力的平衡和力矩的平衡)、平面结构的稳定条件等。
2. 刚体动力学刚体的运动学基本概念(位移、速度、加速度)、牛顿运动定律、角动量守恒、机械能守恒、动量守恒等。
3. 力学受力分析、力的合成与分解、弹簧力与弹簧组合、摩擦力、工作与能量、功与机械效率等。
4. 动力学牛顿第二定律、功、能量和动能定理、动量和冲量、动能与动能定理、动量守恒定律等。
5. 运动学匀速直线运动、变速直线运动、平抛运动、圆周运动等。
机械原理的学习是机械工程的核心,它为机电一体化技术的设计和应用提供了基础理论支持。
二、电气电子技术1. 电路基础基本电路元件(电阻、电容、电感)、基本电路定律(基尔霍夫定律、欧姆定律、节点电压法、网孔电流法等)、交流电路分析(交流电路和直流电路的区别、交流电路的频率、交流电路的幅值和相位、有效值、视在功率等)等。
2. 电子元器件二极管、晶体管、场效应管、集成电路等常见电子元件的工作原理和特性。
3. 电力系统电源系统的结构、变压器、电机等主要设备的原理、用途和特点。
4. 控制技术开关控制、PID控制、自动控制系统的组成、传感器和执行器等。
5. 电子技术应用数字电路、模拟电路、信号处理、嵌入式系统等。
电气电子技术是机电一体化技术中重要的一部分,它为自动控制系统和智能化设备的设计和应用提供了基础。
三、传感器与测量技术1. 传感器基础传感器的分类、传感器的工作原理、传感器的特性和性能参数等。
2. 传感器的应用温度传感器、压力传感器、位移传感器、流量传感器、光电传感器等传感器在自动控制和监测领域的应用。
3. 测量技术原理测量系统的误差分析、测量系统的灵敏度和分辨率、模拟信号处理技术、数字信号处理技术等。
《机电一体化系统设计基础》期末复习小结

一、判断题系统论、信息论、控制论是机电一体化技术的理论基础,是机电一体化技术的方法论。
(√)PLC采用扫描工作方式,扫描周期的长短决定了PLC的工作速度。
(√)PLC完善的自诊断功能,能及时诊断出PLC系统的软件、硬件故障,并能保护故障现场,保证了PLC控制系统的工作安全性。
(√)传动机构的转动惯量取决于机构中各部件的质量和转速。
(×)传感器在使用前、使用中或修理后,必须对其主要技术指标标定或校准,以确保传感器的性能指标达到要求。
(√)电液伺服系统的过载能力强,在强力驱动和高精度定位时性能好,适合于重载的高加减速驱动。
(√)对直流伺服电动机来说,其机械特性越硬越好。
(√)感应同步器是一种应用电磁感应原理制造的高精度检测元件,有直线和圆盘式两种,分别用作检测直线位移和转角。
(√)工业机器人驱动部分在控制信息作用下提供动力,包括电动、气动、液压等各种类型的传动方式。
(√)滚珠丝杠垂直传动时,必须在系统中附加自锁或制动装置。
(√)机电一体化系统的机械系统与一般的机械系统相比,应具有高精度、良好的稳定性、快速响应性的特性。
(√)计算机控制系统的采样周期越小,其控制精度就越高。
(√)计算机控制系统设计完成后,首先需要对整个系统进行系统调试,然后分别进行硬件和软件的调试。
(×)进行机械系统结构设计时,由于阻尼对系统的精度和快速响应性均产生不利的影响,因此机械系统的阻尼比ξ取值越小越好。
(×)绿色设计是对已有的产品或技术进行分析研究,进而对该系统(产品)进行剖析、重构、再创造的设计。
(×)脉冲分配器的作用是使电动机绕组的通电顺序按一定规律变化。
(√)目前,大部分硬件接口和软件接口都已标准化或正在逐步标准化,设计时可以根据需要选择适当的接口,再配合接口编写相应的程序。
(√)气压式伺服驱动系统常用在定位精度较高的场合使用。
(×)驱动部分在控制信息作用下提供动力,伺服驱动包括电动、气动、液压等各种类型的驱动装置。
机电一体化知识点考点总结

机电一体化知识点考点总结机电一体化是指将机械、电子、控制等多学科的知识整合在一起,形成一个综合性、复合型的技术体系,实现各种设备与系统之间的高效互动。
在工程技术领域中,机电一体化已经成为了日益重要的发展趋势,其所涉及的知识点非常广泛。
在机电一体化的学习和工作中,掌握相关的知识点是非常重要的,因此对相关知识点进行总结和考点的整理具有重要的指导意义。
一、机电一体化的基本概念和原理1. 机电一体化的定义和发展历程机电一体化是指在工程技术领域中,将机械、电子、控制等多学科的知识有机地整合在一起,形成一个综合性、复合型的技术体系。
机电一体化的概念最早起源于20世纪60年代,随着科学技术的发展,尤其是计算机和信息技术的广泛应用,机电一体化逐渐成为了工程技术领域的一个重要发展方向。
2. 机电一体化的基本原理机电一体化的基本原理是在整合机械、电子、控制等多学科知识的基础上,通过技术手段实现各种设备和系统之间的高效互动。
通过整合和优化不同领域的技术资源,实现多种技术手段的协同作用,使得产品的性能和功能得到提升,从而满足不同应用场合的需求。
机电一体化的基本原理是通过技术手段实现机械和电气控制系统的高效互动,提高系统整体的性能和效率。
二、机电一体化的关键技术与应用1. 传感器技术传感器技术是机电一体化中的重要技术,它是通过感知外部环境的信息,并将其转换成电信号的设备。
传感器技术在机电一体化系统中起着至关重要的作用,它可以实现对环境参数的感知和监测,为后续的控制和决策提供准确的数据支持。
在机电一体化的应用中,传感器技术在自动化控制、工业生产、智能建筑和环境监测等方面均有广泛的应用。
2. 控制系统技术控制系统技术是机电一体化中的核心技术,它主要包括了控制算法、控制器硬件、以及控制器软件等方面的内容。
控制系统技术的发展与进步直接影响着机电一体化系统的性能和稳定性。
在机电一体化应用中,控制系统技术可以实现对各种设备和系统的精确控制,例如工业机器人、自动化生产线、智能交通系统等。
机电一体化考试知识点总结

机电一体化考试知识点总结一、机电一体化基础知识1. 机电一体化的概念和发展历程机电一体化是指在产品或系统的设计、制造、使用和维护过程中,完全将机械、电子、传感器、控制技术和信息技术无缝集成为一个整体。
机电一体化技术是近年来在制造业中迅速发展起来的一种先进生产技术,它结合了机械、电子、信息技术等多种技术,以实现生产过程的全面自动化和智能化。
机电一体化的发展历程可以追溯到20世纪60年代,在那个时候,自动化生产线一度兴起,为生产过程带来了很大的改善。
随着信息技术和电子技术的不断发展,机电一体化技术逐渐成为制造业的主流技术,被广泛应用于汽车制造、电子设备制造、航空航天等领域。
2. 机电一体化的特点机电一体化技术的特点主要包括:集成性、智能化、基于网络、高精度、高速度、高可靠性等。
机电一体化技术通过将机械、电子、信息技术有机结合,实现了产品生产的智能化、自动化和网络化,能够大大提高生产效率和产品质量。
3. 机电一体化的应用领域机电一体化技术被广泛应用于工业机械、汽车制造、工程机械、电子设备制造、医疗器械、航空航天、高速铁路等领域。
在这些领域,机电一体化技术可以实现设备的智能化控制、自动化生产、信息化管理等,为企业提供了更高效的生产方式。
4. 机电一体化技术的发展趋势随着信息技术和电子技术的快速发展,机电一体化技术也在不断地向智能化、网络化、高可靠性、低能耗等方向发展。
未来,机电一体化技术将更加普及,带来更多的应用和创新。
二、传感器技术1. 传感器的基本概念和分类传感器是一种可以感知和采集物理量或化学量的变化并将其转换为可用电信号的设备。
按照测量物理量分类,传感器可分为:力传感器、位移传感器、速度传感器、加速度传感器、压力传感器、温度传感器、湿度传感器、光电传感器等。
2. 传感器的工作原理传感器的工作原理主要取决于其测量物理量的不同。
常见的传感器工作原理有:电压、电流、电阻、电容、电磁感应等。
3. 传感器的特性和性能指标传感器的特性和性能指标包括:静态特性(灵敏度、线性度、分辨率、稳定性)、动态特性(响应时间、过载能力、动态误差)以及环境适应能力(温度、湿度、抗干扰能力)等。
机电一体化复习重点,期末考试

1、机电一体化是在机械的主功能、动力功能、信息与控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
2、机电一体化基本结构要素:机械本体,动力源,检测与传感装置,控制与信息处理装置,执行机构,接口。
3、机电一体化共性关键技术:机械技术,计算机与信息处理技术,检测与传感技术,自动控制技术,伺服驱动技术,系统总体技术4、机电一体化对机械系统的基本要求高精度 快速响应 良好的稳定性5、工业三要素:物质,能源,信息6、机电一体化机械系统(组成)应包括以下三大部分机构。
● 传动机构:不仅变换转速和转矩。
其目的是使执行元件与负载之间在转矩与转速方面得到最佳匹配。
● 导向机构:支承和导向。
● 执行机构:用以完成操作任务。
7、常用传动机构:转动型:齿轮(齿条)传动,涡轮蜗杆传动,同步齿形带传动,行星轮减速器,谐波减速器, 直线型:齿轮(齿条)传动,丝杆螺母(螺杆)传动,同步齿形带实现的移动传动,8、传动机构的性能要求:● 质量和转动惯量应尽量减小<将转动惯量折算到电动机轴上的折算方法>: 1)圆柱体:J = (m —质量d —直径) 2)直线运动物体: 3)齿轮齿条: ● 刚度大:机械系统产生振动时,系统的阻尼越大,其最大振幅就越小且衰减也越快,但大阻尼也会使系统的稳态误差增大、精度降低● 阻尼合适:机械系统产生振动时,系统的阻尼越大,其最大振幅就越小且衰减也越快,但大阻尼也会使系统的稳态误差增大、精度降低● 摩擦小:1)系统误差 2)爬行(低速运动时的一种现象,内因是摩擦的非线性) ● 间隙小:9、影响机械传动链动力学性能的主要因素有:1) 负载的变化:2) 惯性的大小:3) 固有频率的高低:4) 摩擦、间隙、温升、润滑等因素10、直齿圆柱齿轮传动机构(偏心轴套调整法,双片薄齿轮错齿调整法)11、斜齿轮传动机构(垫片调整法,轴向压簧调整法)12、齿轮传动比分配。
● 最小等效转动惯量原则(前小后大)● 重量最轻原则(前大后小)● 输出轴转角误差最小原则(前小后大)13、滚珠丝杆的组成及特点:● 组成:螺母,滚珠,回程引导装置,丝杆● 特点:1)传动效率高——效率高达90%~95%,耗费的能量仅为滑动丝杠的1/3。
机电一体化考试重点汇总(知识点复习考点归纳总结参考)

1、机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
2、机电一体化包含机电一体化技术和机电一体化产品(系统)两层含义。
3、4、广义的接口功能有两种,一种是输入/输出;另一种是变换、调整。
5、接口性能就成为综合系统性能好坏的决定性因素。
6、根据接口的变换、调整功能,可将接口分成以下四种:零接口、无源接口、有源接口、智能接口。
7、根据接口的输入/输出功能,可将接口分成以下四种:机械接口、物理接口、信息接口、环境接口。
8、机电一体化系统(产品)的主要特征是自动化操作。
9、现代计算机设计方法:计算机辅助设计与并行工程、虚拟设计、快速响应设计、绿色设计、反求设计等。
10、与一般机械系统相比机电一体化系统要求:响应要快、稳定性要好。
11、为确保机械系统的传动精度和工作稳定性,主要从以下几个方面采取措施:1) 采用低摩擦阻力的传动部件和导向支承部件、2) 缩短传动链、3) 选用最佳传动比、4) 缩小反向死区误差、5) 改进支承及架体的结构设计以提高刚性。
12、常用的机械传动部件:螺旋传动、齿轮传动、同步带传动、高速带传动、各种非线性传动部件等;主要功能:传递转矩和转速。
特点:传动间隙小、精度高、体积小、重量轻、运动平稳、传递转矩大。
13、丝杠螺母机构分为:滑动摩擦机构和滚动摩擦机构。
其中滑动摩擦机构具有自锁功能,但其摩擦阻力矩大、传动效率低(30%~40%);而滚动摩擦机构摩擦阻力矩小、传动效率高(92%~98%)。
14、我国生产的滚珠丝杠副的螺纹滚道有单圆弧型和双圆弧型。
15、滚珠丝杠副的特点:轴向刚度高、运动平稳、传动精度高、不易磨损、使用寿命长等优点,但不能自锁,具有传动的可逆性。
16、接触角一般为45度,并随载荷大小的变化而变化,且滚道圆弧半径R稍大于滚珠圆弧半径rb,成型简单,加工精度较高。
17、滚珠丝杠副中滚珠的循环方式有内循环和外循环两种。
机电一体化 知识点总结

机电一体化知识点总结第一章绪论A.机电一体化:是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
※B.机电一体化系统:按照机电一体化方法设计出来的机械与电子紧密结合的产品或制造的系统。
包括三大要素:物质、能量、信息,具有三大“目的功能”即主功能①变换(加工、处理)功能②传递(移动、输送)功能③储存(保持、积蓄、记录)功能。
※C.机电一体化的3个五:机电一体化的五大功能机电一体化的五大要素机电一体化的五大系统操作功能(主功能):驱动执行元件执行元件系统动力功能:提供动力动力源动力系统计测功能:信息的收集、计算与转换传感器传感检测系统控制功能:信息的存储、处理、传送计算机电子信息处理系统构造功能:维持特点的时空上的相互联系机构机械系统首先我们需要什么机床或机器的执行元件(肌肉)相当于决定我们要做什么、用什么做,然后我们以机构(骨骼)为基础并长期保持对系统及其子系统相互稳定联系的以实现所需的功能机理,即确定机电一体化系统要实现所需的功能,并对这些物质、能量、信息进行变换、传递和储存。
之后必须由动力功能(心脏)为整个系统提供动力,再由检测功能(感官、传感器)和控制功能(头脑、计算机)根据系统的内部和外部信息对整个系统进行控制,使系统正常、准确的实现“目的功能”即心脏为人提供动力,人有了结实的肌肉和骨骼在感官和大脑的感受和控制下,去完成所需的功能。
D.机电一体化系统构成要素相互联系的联系条件——接口技术两大接口功能:实现三大要素的传递与转换,达到目的功能1.变换、调整2.输入、输出①零接口:仅起连接作用(接插座、联轴器、接头)①机械接口(联轴器、法兰盘、插头、插座)②无源接口:只用无源要素的接口(齿轮减速器、变阻器)②物理接口(电压、电容约束接口)③有源接口:含有有源要素的接口(电磁离合器)③信息接口(GB、ISO、C++)④智能接口:可编程和可改变接口条件④环境接口(防尘、水连接器、防爆开关)E.机电一体化系统设计的三大目的:省能源、省资源、智能化、提高机电产品的附加值和自动化程度。
机电一体化复习重点(1)

第五章
1) 量化单位 q 定义:
计算机控制技术
M:被转换的模拟量满量程;N:转换成二进制的位数 量化误差:
N 越大,量化误差越小,但 N 过大会导致计算机有效字长的增加 2) 计算机控制系统典型结构
计算机控制系统由硬件和软件两部分组成。 3) 计算机控制系统的类型 (1) 操作指导控制系统 计算机只起数据采集和处理的作用,它不参与对系统的控制
R3,R5 的阻值,使 Ub3<0,那么 VT1 管就截止,A 相绕组就断电。当输入信号为高电平时, Ub3>0,VT3 管饱和导通,步进电机的 A 相绕组通电。 (2) 高低双电压驱动电路
工
作
原
理
:
4) 步进电机的单片机控制: 为了加强系统的抗干扰能力, 驱动电路和单片机的接口部分使
用了光电隔离(只用于数电,不用于模电) 5) 直流电机的调速方式:广泛采用调节电枢电压方式,也有调节电枢电阻方式,调磁调速 方式
B. 功等效
建立系统的数学模型
2) 平均效应原理 应用平均效应作用可使误差得到均化从而提高机构的运动精度或定位精 度。采用平均效应原理使机械精度均化,应满足以下三个条件: a.参与工作的滚动体或其他中间元件要易于产生弹性变形; b.滚动体或中间元件的制造误差要小于或等于弹性变形误差; c.在工作时负载力能自动消除间隙。 3) 变形最小原则 要求零部件因受自重、外载、温度变化、工艺内应力以及振动等因素的 影响而产生的变形误差最小。采取措施如下: a.提高零部件结构刚度 b.减小温度的影响(此处有一个计算题)
4、 机电一体化的功能构成要素
5、 机电一体化系统设计的步骤
建立四大功能技术矩阵:主功能、动力功能、信息处理、控制功能、结构功能
机电一体化知识点总结

1.机电(jīdiàn)一体化的基本功能要素:机械本体(běntǐ),动力单元,传感检测单元,执行单元,驱动单元,控制及信息处理单元2.机电(jīdiàn)一体化相关技术:机械技术,传感检测技术,信息处理技术,自动(zìdòng)控制技术,伺服驱动技术和系统总体技术3.上线信息处理的主要(zhǔyào)工具是计算机:计算机技术包括计算机的软件技术硬件技术,网络与通讯技术和数据技术。
机电一体化系统中主要采用工业控制机(包括可编程控制器,单,多回路调节器,单片微控制器,总线式工业控制机,分布计算机测控系统)进行信息处理。
4.伺服驱动包括电动,气动,液压,等各种类型的传动装置。
常见的伺服驱动系统主要有电器伺服(步进电机,直流伺服电动机,交流伺服电动机)和液压伺服(液压马达,脉冲液压缸等)5.机电一体化系统设计方案的方法有:1.取代法2.整体设计法3.组合法6.为满足机电一体化机械系统的良好伺服性能,不仅要求接卸传动部件满足转动冠梁小,摩擦小阻尼合理,刚度大,抗振动性能好,间隙小的要求:P11要求机械部分的动态性能与电机速度环的动态特性相匹配。
7.齿轮传动齿侧间隙的消除:1刚性消隙法2柔性消隙法8.丝杠螺母间隙的调整:1垫片式调隙机构2螺纹式调隙机构3齿差式调隙机构9.齿轮副级数的确定和各级传动比的分配按一下原则进行:1最小等效转动惯量原则2质量最小原则3输出轴的转角误差最小原则。
在减速(jiǎn sù)齿轮传动链中,从输入端到输出端的各级传动比按“前小后大”原则排列,则总转角误差较小,且低速级的转角误差占的比重恒大,因此,为了(wèi le)提高齿轮传动精度应该减少传动级数,并使末级齿轮的传动比,尽可能大,制造精度尽量高。
10.传感器的静态(jìngtài)性能指标:1线性度2灵敏度3迟滞(chízhì)性4重复性11.常用直线(zhíxiàn)位移测量传感器:电传感器,电容传感器,感应同步器,光栅传感器常用角位移传感器:电容传感器,光电编码盘等12.速度加速度传感器:直流测速器,光电式转速传感器,接近式位置传感器(原理分:超声波式电磁式光电式静电容式气压式)13.传感器前期信号处理放大方法:1测量放大器2程控增益放大器3隔离放大器数字量斐线性矫正框图被测量→传感器→放大器→A/D→数字量非线性矫正电路→数字处理或显示15.电机控制方式:开环,半闭环,闭环种类:步进电机直流伺服电机交流伺服电机16.驱动电源由环形脉冲分配器,功率放大器组成17.步进电动机的选用:首先根据机械结构草图计算机机械传动装置及负载折算到电动机轴上的等效转动惯量然后分别计算各种工况下所需要的等级力矩,再根据步进电机最大静转矩和起动运行矩频特性,选择合适的步进电动机18.直流伺服电动机如下特点;1稳定性号2可控性号3相应迅速4控制功率低损耗小5转矩大19.交频调速控制(kòngzhì):交流(jiāoliú)感应电动机的铁性:n=60f(1-s)/p “n电动机转速(zhuàn sù)(r/min) f 外加电源频率(Hz)p电动机极对数 s 滑差率要改变交流电动机的转速,采用改变电机极对数p,滑差率s,或电机的外加电源频率f三种(sān zhǒnɡ)方法20.变频(biàn pín)调速方法:1交--直--交变频 2 交--交变频3脉宽调制变频21.工业控制计算机系统的基本要求:1具有完善的过程输出、输出功能2具有实施控制功能3具有可靠性4具有较强的欢迎适应性和抗干扰能力5具有丰富的软件22.工业计算机分:1可编程序控制器2总线型工业控制计算机 3单片机23.变频器氛围:1通用变频器2纺织专用变频器4机床专用变频器5电梯专用矢量变换控制变频器6高频变频器24.变频器选择:基本依据:1电动机的容量2负载特性25.步进电动机功率驱动接口包含环形脉冲分配器和功率放大器两部分26.常用的功率放大电路有单电压,双电压,斩波型,调频调压型,和细分型等。
机电一体化技术复习要点

机电一体化技术复习要点机电一体化技术是指将机械与电气系统有机地结合起来,通过运用现代微电子技术、计算机技术、传感器与执行器等先进技术,实现机电装置之间的信息交换与协调,以提高机械系统的自动化水平和工作效率。
下面是机电一体化技术的复习要点:1.机电一体化系统的基本组成机电一体化系统包括机械结构、传感器与执行器、控制系统和人机界面等四个主要部分。
机械结构是机电系统的物理载体,传感器与执行器用于感知和执行物理量,控制系统负责数据的处理与控制指令的发出,人机界面用于与用户进行交互。
2.机械结构的设计原则机械结构的设计应考虑结构强度、刚度、重量、可靠性等因素。
常见的机械结构形式有刚性结构、柔性结构和变形结构等。
3.传感器与执行器的原理与应用传感器用于将机械系统的物理量转换成电信号,执行器则用于将电信号转换成机械运动。
常见的传感器有压力传感器、温度传感器、加速度传感器等,常见的执行器有电机、气缸等。
4.控制系统的基本原理控制系统是机电一体化系统的核心部分,负责数据的处理与控制指令的发出。
控制系统通常包括感知系统、决策系统和执行系统等三个组成部分,其中感知系统用于感知物理量,决策系统用于处理数据和生成控制指令,执行系统用于执行控制指令。
5.嵌入式控制系统的设计与应用嵌入式控制系统是一种集成了计算机技术和控制技术的控制系统,具有体积小、功耗低、性能高等特点。
嵌入式控制系统的设计应考虑硬件平台选择、软件开发等方面的内容。
6.人机界面的设计与优化人机界面是机电一体化系统与用户之间的交互界面,通常包括显示器、键盘、触摸屏和声音等多种形式。
人机界面的设计应考虑用户的需求和习惯,尽可能简洁直观,减少用户的认知负担。
7.机电一体化系统的应用领域8.机电一体化系统的发展趋势随着科技的不断发展,机电一体化技术将更加趋于智能化、高效化、柔性化和可靠化。
机电一体化系统将更加注重自主学习和适应环境的能力,实现人、机、物的深度融合。
以上是机电一体化技术的复习要点,涵盖了机械结构、传感器与执行器、控制系统、人机界面等方面的基本知识。
机电一体化复习提纲(1)汇总

机电一体化复习提纲1、什么是机电一体化产品?机电一体化系统的基本结构要素有哪些?机电一体化系统中的机械系统通常由哪些部分组成?机电一体化系统的基本组成?机电一体化系统的信息特征、动力特征、结构特征分别是什么?机电一体化的技术基础有哪些?答:机械系统和微电子系统有机结合,从而产生新功能和新性能的新产品是机电一体化产品。
机电一体化系统的基本结构要素有机械本体、执行与驱动、检测传感器、信息处理、动力。
机电一体化系统中的机械系统通常由由传动机构、支承与导向机构、执行机构与机架等组成。
机电一体化系统的基本组成是能量流、物料流、信息流。
机电一体化系统的信息特征(微型化、嵌入式、实时性、分布化)、动力特征(结构分散化、功能智能化)、结构特征(模块化、简单化、高刚度、高精度)。
机电一体化的技术基础有机械设计与制造技术、微电子技术、传感器技术、软件技术、通信技术、驱动技术、自动控制技术、系统技术。
2、机电一体化对机械系统的基本要求是什么?为确保机械系统的传动精度和工作稳定性,在设计中常提出无间隙、低摩擦、低惯量、高刚度、高谐振频率、适当的阻尼比等要求。
为达到上述要求,主要从那几个方面采取措施?机电一体化系统中的机械系统通常由哪几个部分组成?答:机电一体化对机械系统的基本要求是(快、准、稳):快速响应、高精度、良好的稳定性。
为确保机械系统的传动精度和工作稳定性,在设计中常提出无间隙、低摩擦、低惯量、高刚度、高谐振频率、适当的阻尼比等要求。
为达到上述要求,主要从a、采用低摩擦阻力的传动部件和导向支承部件;b、缩短传动链,简化主传动系统的机械结构;c、提高传动与支撑刚度;d、选用最佳传动比,尽可能提高加速能力;e、缩小反向死区误差;f、改进支承及架体的结构设计以提高刚性、减少振动、降低噪声这几个方面采取措施。
机电一体化系统中的机械系统通常由传动机构、支承与导向机构、执行机构与机架等几个部分组成。
3、机电一体化系统中的传动系统应满足哪些性能要求?为确保机械系统的传动精度和工作稳定性,在设计中需满足哪些要求,为达到这些要求,主要采取哪些措施?答:机电一体化系统中的传动系统应满足足够的刚度、惯性小、阻尼适中等性能要求。
机电一体化技术复习要点

机电一体化技术一、书本知识点1、机电一体化是综合应用机械技术、微电子技术、信息处理技术、自动控制技术、检测技术、接口技术及系统总体技术等,实现多种技术复合的最佳功能价值的系统工程技术。
2、机电一体化基本构成要素:机械本体、动力源、传感装置、驱动执行机构、控制器以及各要素和环节之间的接口等。
3、机电一体化相关技术:机械技术、信息处理技术、自动控制技术、传感检测技术、伺服驱动技术以及系统总体技术。
4、系统建模的意义:机械系统的数学模型分析的是输入和输出之间的相对关系,等效折算过程是将复杂结构关系的机械系统的惯量、弹性模量和阻尼(或阻尼比)登机械性能参数归一处理,从而通过数学模型来反映各环节的机械参数对系统整体的影响。
5、机械传动系统的特性:转动惯量、摩擦、阻尼、刚度、谐振频率、间隙。
6、间隙的主要形式:齿轮传动的齿侧间隙、丝杠螺母的传动间隙、丝杠轴承的轴向间隙等;齿轮传动齿侧间隙的消除措施:刚性消隙法、柔性消隙法;消除直齿圆柱齿轮的齿侧间隙方法:偏心轴套调整法、双片薄齿轮错齿调整法。
7、滚珠丝杠螺母传动的轴向间隙(主要间隙)对系统影响:滚珠螺旋副中有轴向间隙或在载荷作用下滚珠与滚道接触处有弹性形变,则当螺杆反向转动时,将产生空回误差;处理方法:双螺母预紧调隙式、双螺母齿差预紧调隙式、双螺母垫片预紧调隙式、弹簧自动调整预紧式。
8、机械传动装置:齿轮传动、滚珠花键、谐波齿轮减速器(特点:传动比大、承载能力大、传动精度高、齿侧间隙小、传动平稳、结构简单、体力小、重量轻)。
9、齿轮传动总传动比的选择原则:采用负载角加速度最大原则选择总传动比,以提高伺服系统的响应速度。
10、支承部件:回转运动支承、直线运动支承。
11、光栅:光栅是一种新型的位移检测原件;特点:测量精度高(可达±1微米)、响应速度快、量程范围大;由标尺光栅和指示光栅组成,莫尔条纹宽度W≈P/θ,(P为栅距,θ为光栅条纹间的夹角)。
12、光电式转速传感器:根据测量时间t内的脉冲数N,则可测出转速为:n=60N/Zt,(Z 圆盘上的缝隙数)。
机电一体化期末考试整理复习资料

一、绪论1、机电一体化的定义及其主要作用:在机械的主功能、动力功能、信息功能、控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。
机电一体化一般包含机电一体化产品(系统)和机电一体化技术两层含义。
2、机电一体化的组成及其功能:(1)执行器(执行功能)(2)机械本体(构造功能):起着支撑系统中其他功能单元、传递运动和动力的作用。
(3)动力源(动力功能):为系统提供能量和动力,使系统正常运行。
(4)传感检测单元(计测功能):对系统运行中所需要的本身和外界环境的各种参数及状态进行检测。
(5)控制与信息处理单元(控制功能):按照一定的程序和节奏发出相应的指令,控制整个系统有目的地运行。
3、机电一体化的接口:将各组成单元或子系统连接成一有机的整体。
接口包括:电气接口—实现系统间电信号的连接。
机械接口—完成机械与机械部分、机械与电气装置部分的连接。
人机接口—提供人与系统间的交互界面。
4、机电一体化的主功能:(1)变换(加工、处理)功能;(2)传递(移动、输送)功能;(3)储存(保存、存储、记录)功能。
主功能是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
第二章1、机械系统的组成及作用:(1)传动结构:主要功能是传递能量和运动,是一种力、速度变换器。
(2)导向机构:支撑和限制运动部件按给定的运动要求和给定的运动方向运动,为机械系统中各运动装置安全、准确地完成其特定方向的运动提供保障。
(3)支承件:机座或机架是支承其他零部件的基础部件。
它既承受其它零部件的重量和工作载荷,又起保证零件相对位置的基准作用。
三者功能总结:实现传递运动和动力,支撑和导向,联系机电一体化系统各部件并实现其构造功能。
2、丝杠类型、分类、支撑方式、间隙消除和预紧方式:丝杠螺母传动的类型与特点:1)螺母固定、丝杆转动并移动如图a所示,该传动形式因螺母本身起着支承作用,消除了丝杆轴承可能产生的附加轴向窜动,结构较简单,可获得较高的传动精度。
机电一体化技术考试总结

机电T本化技术考试总结机电一体化技术考试总结1.机电一体化的定义:机电一体化技术是将机械技术、电工电子技术、微电子技术、信息机电一体化技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。
2.机电一体化的几个要素:机械本体、动力与驱动部分、执行机构、传感器检测部分、控制及信息处理部分。
3.机电一体化系统的组成:机械本体、动力与驱动、传感器检测部分、执行机构、控制及信息单元、接口耦合与能量转换、信息控制、运动传递。
4.机电一体化关键技术:机械技术、计算机与信息处理技术、自动控制技术、传感与检测技术、伺服传动技术、系统总体技术。
5.机电一体化技术与其它技术的区别:1)与传统机电技术的区别:传统机电技术的操作控制主要通过具有电磁特性的各种电器来实现,在设计中不考虑或很少考虑彼此间的内在联系;机械本体和电气驱动界限分明,整个装置是刚性的,不涉及软件和计算机控制。
机电一体化技术以计算机为控制中心,在设计过程中强调机械部件和电器部件间的相互作用和影响,整个装置在计算机控制下具有一定的智能性。
2)与并行工程的区别:机电一体化技术将机械技术、微电子技术、控制技术和检测技术在设计和制造阶段就有结合在一起,十分注意机械和其他部件之间的相互作用。
而并行工程将上述各种技术尽量在各自范围内齐头并进,只在不同技术内部进行设计制造,最后通过简单叠加完成整体装置。
3)与自动控制技术的区别:自动控制技术的侧重点是讨论控制原理、控制规律、分析方法和自动系统的构造等。
机电一体化技术将自动控制原理及方法作为重要支撑技术,将自控部件作为重要控制部件应用自控原理和方法,对机电一体化装置进行系统分析和性能测算。
4)与计算机应用技术的区别:机电一体化技术只是将计算机作为核心部件应用,目的是提高和改善系统性能。
计算机在机电一体化系统中的应用仅仅是计算机应用技术的一部分,它还在办公、管理及图像处理等方面得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论●机电一体化是指机械装置和电子设备适当地组合起来,构成机械产品或机电一体与机信一体的新趋势。
●机电一体化是把机械学和电子学有机地结合起来,提供更加优越技术的一种技术。
●机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
机电一体化的目的是使产品具有多功能、高效率、高智能、高可靠性,同时又能节省材料、省能源,使产品向轻、薄、细、小、巧的方向发展,以不断满足人们生活的多样化要求和生产的省力化,自动化需求。
机电一体化基本结构要素:1.机械本体包括机身、框架机械联接等在内的产品支持结构属于基础部分,实现产品的构造功能。
2.动力源向系统提供能量,并将输入的能量转换成需要的形式,实现动力功能。
3.检测与传感装置包括各种传感器及其信号检测路,用于对产品运行时的内部状态和外部环境进行检测,提供运行控制所需的各种信息,实现计测功能。
4.控制与信息处理装置主要是指由计算机及其相应硬、软件所构成的控制系统。
5.执行机构包括机械传动与操作机构,在控制信息作用下完成要求的动作,实现产品的主功能。
是机电一体化产品中最重要的组成要素之一。
机电一体化产品可划分为功能附加型、功能替代型和机电融合型三类。
1.功能附加型产品:主要特征是在原有机械产品基础上,采用微电子技术,使产品功能增加和增强,性能得到适当的提高。
经济型数控机床、电子秤、数显量具、全自动洗衣机等都属于这一类机电一体化产品。
2.功能替代型产品:主要特征是采用电子技术及装置取代原产品中的机械控制功能、信息处理功能或主功能,使产品结构简化,性能提高。
柔性增加,如电子缝纫机、自动照相机等用微电于装置取代了原来复杂的机械控制机构;线切割加工机床、激光手术器等则用因微电子技术的应用而产生的新功能,取代了原来机械的主功能。
3.机电融合型产品:主要特征是根据产品的功能和性能要求及技术规范,采用专门设计的或具有特定用途的集成电路来实现产品中的控制和信息处理等功能,因而使产品结构更加紧凑、设计更灵活、成本进一步降低。
传真机、复印机、摄象机、磁盘驱动器、CNC数控机床等都是这一类机电一体产品。
机电一体化共性关键技术一、机械技术机械技术是机电一体化的基础。
机电一体化产品中的主功能和构造功能,它主要是以机械技术为主实现的。
二、计算机与信息处理技术实现信息处理的主要工具是计算机。
计算机技术包括计算机硬件技术和软件技术、网络与通信技术、数据库技术等。
在机电一体化产品中,计算机与信息处理装置指挥整个产品的运行。
计算机应用及信息处理技术已成为促进机电一体化技术和产品发展的最活跃的因素。
三、检测与传感技术检测与传感技术的研究对象是传感器及其信号检测装置。
机电一体化产品中,传感器作为感受器官,将各种内、外部信息通过相应的信号检测装置反馈给控制及信息处理装置。
因此检测与传感是实现自动控制的关键环节。
四、自动控制技术自动控制技术范围很广,包括自动控制理论、控制系统设计、系统仿真、现场调试、可靠运行等从理论到实践的整个过程。
自动控制技术的难点在于自动控制理论的工程化与实用化。
五、伺服驱动技术伺服驱动技术的主要研究对象是执行元件及其驱动装置。
执行元件有电动、气动、液压等多种类型,因此伺服驱动技术是直接执行操作的技术,对机电一体化产品的动态性能、稳态精度、控制质量等具有决定性的影响。
六、系统总体技术系统总体技术是一种从整体目标出发,用系统工程的观点和方法,将系统总体分解成相互有机联系的若干功能单元,然后再把功功能和技术方案组合成方案组进行分析、评价和优选的综合应用技术。
机电一体化设计突出体现在两个方面:一方面,当产品的某一功能单靠某一种技术无法实现时,必须进行机械与电子及其它多种技术有机结合的一体化设计;另一方面,当产品某一功能的实现有多种可行的技术方案时,也必须应用机电了体化技术对各种技术方案进行分析和评价,选择最优的技术方案。
因此,机电一体化设计必须充分考虑各种技术方案的等效性、互补性及可比性。
机电一体化产品设计一般可分为三种类型:(1)开发性设计一个从无到有的创造过程,是在没有任何样板可供参考的情况下,根据功能和性能要求所进行的设计。
开发性设计要求设计者具备敏锐的市场洞察力、丰富的想象力和广泛而扎实的基础理论知识。
(2)适应性设计在原有产品总的方案基本不变的情况下,对产品的某些局部加以变动或改进,以增加功能、提高性能和质量或降低成本为目的生所进行的设计。
适应性设计要求设计者对原有产品及相关的市场需求变化和技术进步有充分的了解和掌握。
(3)变异性设计在设计方案和功能结构不变的情况下,通过改变改变尺寸、速度、力或功率等参数,以满足市场对产吕规格方面的需求进行的系列化设计。
变异性设计比较容易,但设计中必须注意采取措施防止因参数变化可能对产品性能产生的影响。
第二章机械系统设计一、机电一体化对机械系统的基本要求.1.高精度精度直接影响产品的质量,如果机械系统的精度不能满足要求,则无论机电一体化产品其它系统工作再精确,也无法完成其预定的机械操作。
2.快速响应要求机械系统从接到指令到开始执行指令指定的任务之间的时间间隔短。
3.良好的稳定性要求机械系统的工作性能不受外界环境的影响,抗干扰能力强。
二.机械系统的组成1.传动机构以满足整个机械系统良好的伺服性能。
要满足传动精度的要求。
2.导向机构其作用是支承和导向。
3.执行机构具有较高的灵敏度、精确度,良好的重复性和可靠性。
一、传动机构性能要求1.转动惯量小转动惯量大会对系统造成不良影响,机械负载增大;系统响应速度降低,灵敏度下降;系统固有频率减小,容易产生谐振,在设计传动机构时应尽量减小转动惯量。
2.刚度大刚度是使弹性体产生单位变形量所需的作用力。
大刚度对机械系统而言是有利的。
3.阻尼合适要求摩擦小、抗振性好、间隙小。
二、无侧隙齿轮传动机构(一)直齿圆柱齿轮传动机构1.偏心轴套调整法2.双片薄齿轮错齿调整法(二) 斜齿轮传动机构1.垫片调整法 2.轴向压簧调整法(三)锥齿轮传动机构1.轴向压簧调整法2.周向弹簧调整法(四)齿轮齿条传动机构1双片薄齿轮错齿调整法2双齿轮调整法三、滚珠丝杠副传动机构(一)滚珠丝杠副的特点1.传动效率高2.运动具有可逆性3.系统刚度好4.传动精度高5.使用寿命长6.不能自锁7.制造工艺复杂(二)滚珠丝杠副轴向间隙的调整和施加预紧力的方法滚珠丝杠副对其轴向间隙有严格要求,以比保证其反向传动精度,通常采用双螺母预紧的方法,减小或消除轴向间隙,提高滚珠丝杠副的刚度。
常用的双螺母消除轴向间隙的结构形式有三种:(1)垫片调隙式(图2-9) (2)螺纹调隙式(图2-10)(3)齿差调隙式(图2-11)(四)滚珠丝杠副的安装1.支承方式的选择(如表2-5)(1)一端固定、一端自由(F—O)(如图2-13)(2)一端固定、一端游动(F—S)(如图2-14)(3)两端固定(F-F)(如图2-15)2.制动装置由于滚动丝杠副的传动效率高,又无自锁能力,故需要安装制动装置以满足其传动要求,特别是当其处于垂直传动时。
四、锥环无键联轴器:该机构利用锥环之间的摩擦实现轴与毂之间的无间隙联接传递转矩,且可任意调节两联接件之间的角度位置。
通过选择所用锥环的对数,可传递不同大小的转矩。
这种联轴器定心性好,承载能力高,传递功率大,转速高,寿命长,具有过载保护能力,能在受振动和冲击载荷等恶劣条件下连续工作。
五、其它传动机构(一)软轴传动机构(二)同步齿形带传动机构同步齿形带传动机构利用齿形带的齿形与带轮的轮齿依次相啮合传递运动和动力。
它兼有带传动齿轮传动及链传动的优点,能方便地实现较远中心距的传动,传动过程无相对滑动,平均传动准确.,传动精度高,传动效率高,因此在数控机床、工业机器人等伺服传动中得到广泛应用。
(三)谐波齿轮减速器柔轮的齿数少于刚轮。
一、导轨的功用机电一体化产品的导向机构是导轨,其作用是支承和导向。
二、导轨的基本要求1.导向精度导向精度主要是指动导轨沿支承导轨运动的直线度或圆度。
影响它的因素有:导轨的几何精度、接触精度、结构形式、刚度、热变形、装配质量以及液体动压和静压导轨的油膜厚度、油膜刚度等。
2.耐磨性是指导轨在长期使用过程中能否保持一定的导向精度。
3.疲劳和压溃导轨面由于过载或接触应力不均匀而使导轨表面产生弹性变形,反复运行多次后就会形成疲劳点,呈塑性变形,表面形成龟裂、剥落而出现凹坑这种现象就是压溃。
4.刚度导轨受力变形会影响导轨的导向精度及部件之间的相对位置,因此要求导轨应有足够的刚度。
5.低速运动平稳性低速运动时,作为运动部件的动导轨易产生爬行现象。
6.结构工艺性三、导轨的分类和特点导轨主要由两部分组成,在工作时一部分固定不动,称为支承导轨,另一部分相对支承导轨作直线或回转运动,称为动导轨。
根据导轨副(简称导轨)之间的摩擦情况,导轨分为:1:滑动导轨两导轨工作面的磨擦性质为滑动摩擦。
2.滚动导轨两导轨表面之间为滚动摩擦,导向面之间放置滚珠、滚柱或滚针等滚动体来实现两导轨无滑动地相对运动。
这种导轨磨损小,寿命长,定位精度高,运动平稳可靠,但结构复杂,制造困难,成本高。
在高精密的机电一体化产品中应用广范。
(一)滚动直线导轨的特点1.承载能力大其滚道采用圆弧形式,增大了滚动体与圆弧滚道接触面积,从而大大地提高了导轨的承载能力,可达到平面滚道形式的13倍。
2.刚性强预加载荷,能承受较大的冲击和振动3.寿命长由于是纯滚动,摩擦系数为滑动导轨的1/50左右(二)滚动直线导轨的分类1.按滚动体的形状分有钢珠式和滚柱式两种2.按导轨截面形状分有矩形和梯形两种3.按滚道沟槽形状分有单圆弧和双圆弧二种,四、塑料导轨近年来各种塑料导轨制品已纷纷涌现,并形成各种系列,这不仅降低了导轨的生产成本,而且提高了导轨的抗振性、耐磨性、低速运动平稳性。
(一)塑料导轨软带(如图2-34)(1)摩擦系数低而稳定(2)动静摩擦系数相近(3)吸收振动(4)耐磨性好(二)金属塑料复合导轨板该导轨板分为三层,内层钢背保证导轨板的机械强度和承载能力。
钢背上镀铜烧结球形青铜粉或者铜丝网形成多孔中间层,以提高导轨板的导热性。
表面自润滑塑料层——外层。
金属塑料导轨板的特点是摩擦特性优良,耐磨损。
一、执行机构的特点及要求机电一体化产品的执行机构是实现其主功能的重要环节,它应能快速地完成预期的动作,并具有响应速度快、动态特性好、动静态精度高、动作灵敏度高等特点。
为实现不同的目的功能,需采用不同形式的执行机构,其中有电动的、机械的、电子的、激光的二、微动机构微动机构是一种能在一定范围内精确、微量地移动到给定位置或实现特定的进给运动的机构。
微动机构的基本要求:1灵敏度高,最小移动量达到使用要求2传动灵活,平稳,无空程与爬行,制动后能保持稳定位置3抗干扰能力强,快速响应性好4良好的结构工艺性能。