X射线衍射与电子衍射比较
电子衍射原理
三、结构因子
结构因子F(hkl)是描述晶胞类型和衍射强度之间关系的一个函数。结构因子的数学表达
式为
N
F(hkl) f j exp[2i(hx j kyj lz j )]
j 1
fj 是单胞中位于(x j , y j , z j )的第j个原子对电子的散射振幅(或叫散射因子),它的大小与原 子序数有关。
c
c*
a
c*
b
0
a*
a
b*
b
c*
c
1
2、在倒易空间中,任意矢量的大小和方向可以用倒易矢量g来表示。
g
ha
*
kb *
lc*
1)ghkl垂直于(hkl)晶面。平行与(hkl)晶面的 法线N(hkl)。 2)倒易点阵中的一个点代表的是正点阵中的一组晶面。
微束选区衍射 ----用微细的入射束直接在样品上 选择感兴趣部位获得该微区衍射像。电子束可聚焦 很细,所选微区可小于0.5m 。可用于研究微小析 出相和单个晶体缺陷等。目前已发展成为微束衍射 技术。
一、电子衍射原理 透射电镜 单晶体
ቤተ መጻሕፍቲ ባይዱ多晶体
非晶体
二、布拉格定律 样品对入射电子的散射
• 晶体物质是由原子、离子或原子团在三维空间按一定 规律周期性排列构成的。当具有一定波长的单色平面 电子波射入晶体时,这些规则排列的质点将对入射电 子束中与其靠近的电子产生散射,由于散射强度较大 ,于是各个质点作为新波源发射次级波.
• 计算结构因子时要把晶胞中的所有原子考虑在内。
第十一章 X射线衍射及电子衍射基础(二)
衍射花样
NiFe多晶纳米薄膜的电子衍射
非晶态材料电子衍射图的特 征
电子衍射和X射线衍射 不同之处
由于电子波与X射线相比有其本身的特性,因此电 子衍射和X射线衍射相比较时,具有下列不同之处: 首先,电子波的波长比X射线短得多,在同样满足 布拉格条件时,它的衍射角θ很小,约为10-2rad。 而X射线产生衍射时,其衍射角最大可接近。 其次,在进行电子衍射操作时采用薄晶样品,薄 样品的倒易阵点会沿着样品厚度方向延伸成杆状, 因此,增加了倒易阵点和爱瓦尔德球相交截的机 会,结果使略为偏离布格条件的电子束也能发生 衍射。
此外,反射面有正、反两面,有hkl斑点,必有斑 点 。即电子束是电子衍图的二次旋转对称轴。 这样,一个斑点即可标定为hkl,也可标定为 。 这就是所谓的180°不唯一性。在作取向分析时, 若晶体没有二次旋转对称性(指晶带轴不是二次 旋转对称轴),那么,经这种操作后,晶体不能 复原。故所确定的两种空间关系只有一种是正确 的 。 所 以 当 [uvw] 不 是 二 次 旋 转 轴 时 , 要 考 虑 180° 不 唯 一 性 。 不 作 取 向 分 析 时 , 无 须 考 虑 180°不唯一性。 分析两个相近晶带的重迭电子衍射图或倾转试样 前后的两张电子衍射图,可以解决180°不唯一性。
单晶电子衍射花样的标定
电子衍射花样几何图形 可能所属晶系 平行四边形 矩形 有心矩形 正方形
三斜、单斜、正交、四方、六方、三方、立方
单斜、正交、四方、六方、三方、立方 同上 四方、立方
正六角形
六方、三方、立方
标定前的预先缩小范围
根据斑点的规律性判断: 1.平行四边形---7大晶系都有可能 2.矩形---不可能是三斜晶系 3.有心矩形---不可能是三斜晶系 4.正方形---只可能是四方或立方晶系 5.正六角---只可能是六角、三角或立方晶系
TEM,SEM,EDS,WDS 比较
TEM,SEM,EDS,WDS 比较tem,sem,eds,wds比较透射电子显微镜、扫描电子显微镜、电子探针显微分析等以电子束为光源的分析仪器,利用电子与物质相互作用产生的各种信息,揭示物质的形态、结构和组成弹性(相干)散射:原子核的正电荷对电子的吸引作用所致,电子改变方向,能量无变化。
(相干)散射波在结晶物质中可以产生相干干涉――电子衍射。
非弹性(非相干)散射:核和核外电子与入射电子相互作用,导致能量损失,导致连续X射线光谱、特征X射线光谱、俄歇电子、二次电子、阴极荧光等。
要利用tem分析材料的显微组织,首先需要制备对电子束“透明”的样品,电子束穿透固体样品的能力,主要取决于加速电压u(电子能量e)和样品原子序数z,一般u越高、z越低,电子穿透的厚度越大。
聚焦和成像电子束的装置——电子透镜改变透镜电流、F和放大率电磁透镜具有景深大、焦点长的特点:景深大:观察粗糙表面很有利,立体感强。
长焦距:便于图像观察和记录荧光屏上清晰的图像,荧光屏下摄影胶片上记录的图像也清晰。
透射电镜主要由三部分组成:电子光学系统、真空系统、电源系统。
真空系统的功能:防止电子束与气体分子碰撞,改变轨道;防止灯丝(W灯丝)氧化;减少样品污染;防止电极之间的高压放电(确保电子枪中电极之间的绝缘)。
制样技术① 复制技术(只能提供表面形态信息)塑料一次复制、碳一次复制和提取复制②薄膜样品的制备(研究材料内部结构和晶体缺陷)切片、机械研磨或化学抛光、双射流电解或离子束轰击细化③粉末样品的制备电子衍射与x射线衍射的比较电子衍射和X射线衍射在几何原理上有许多相似之处。
利用布拉格方程、倒易晶格、厄瓦尔德球和结构因子对衍射图像进行了讨论和分析。
两种方法得到的晶体衍射图在几何特征上也大致相似。
差异:① 显微图像与微区晶体结构分析相结合。
由于电子束可以聚焦,人们可以在数十万倍放大的条件下,借助TEM显微图像,选择微区或微纳米大小的晶粒进行晶体结构分析。
x射线衍射、电子衍射、中子衍射
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。
希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了!首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。
最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。
前面已经明确本文的动机,所以这里着重分析它们的差异。
i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。
ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。
正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。
当然,物质波在运动速度接近光速的时候其dispersion会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。
X射线衍射与电子衍射比较讲解学习
X射线衍射与电子衍射比较采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。
1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。
当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。
电子衍射虽电子衍射与X射线衍射有相同的几何原理。
但它们的物理内容不同。
在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。
除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。
2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。
由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。
此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。
会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
判断晶体类型的方法
判断晶体类型的方法一、引言晶体是由原子、离子或分子按照一定的规律排列而成的固体,具有高度的有序性和周期性。
晶体类型的判断是材料科学和化学领域中非常重要的问题,因为不同的晶体类型具有不同的物理和化学性质,对于材料制备和应用具有重要意义。
本文将介绍几种判断晶体类型的方法,包括X射线衍射法、电子衍射法、红外光谱法等。
二、X射线衍射法X射线衍射法是目前最常用的判断晶体类型的方法之一。
其基本原理是利用X射线与晶体中原子排列产生相互作用时所发生的干涉现象来确定晶胞结构和原子位置。
具体步骤如下:1. 制备样品:将待测样品制成粉末状,并均匀地撒在玻片上。
2. 测量样品:将玻片放入X射线衍射仪中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的晶胞结构和原子位置等信息。
三、电子衍射法电子衍射法是一种利用电子束与晶体中原子排列产生相互作用时所发生的干涉现象来确定晶胞结构和原子位置的方法。
其基本步骤如下:1. 制备样品:将待测样品制成薄膜状,并放置在透明的网格上。
2. 测量样品:将网格放入电子显微镜中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的晶胞结构和原子位置等信息。
四、红外光谱法红外光谱法是一种通过分析物质对不同波长红外辐射的吸收情况来确定物质分子结构和化学键类型的方法。
其基本步骤如下:1. 制备样品:将待测样品制成薄片状,并放置在透明的盘中。
2. 测量样品:将盘放入红外光谱仪中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的分子结构和化学键类型等信息。
五、总结以上介绍了三种判断晶体类型的方法,它们分别是X射线衍射法、电子衍射法和红外光谱法。
这些方法在材料科学和化学领域中具有广泛的应用,能够为材料制备和应用提供重要的帮助。
第九章 电子衍射
第九章 电子衍射1、 分析电子衍射与 X 射线衍射有何异同?(**)电子衍射原理与X 射线相似相同之处:都是满足布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射花样在几何特征上是大致相似的。
不同之处:1)电子波的波长比X 射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10e -2rad 。
而X 射线产生衍射时其衍射角最大可接近π/2。
(这是电子衍射花样特征不同与x 射线衍射的主要原因)2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着厚度方向延伸成杆状,因此,增加了倒易点阵与爱瓦德球相交截的机点,结果使略微偏离布拉格条件的电子束可能发生衍射。
3)因为电子波的波长短,采用爱瓦德球图解式,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似的看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内,这个结果使晶体产生的衍射花样能比较直接地反映晶体内各晶面的位向,给分析带来不少方便。
4)原子对电子的散射能力远高于对X 射线的散射能力(约高四个数量级),故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。
2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?(**)答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间(倒易空间)点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相应晶面的衍射结果,可以认为电子衍射斑点就是就是与晶体相对应的倒易点阵中某一倒易面上阵点排列的像。
关系:1)倒易矢量ghkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向Nhkl2)倒易点阵中的一个点代表正点阵中的一组晶面3)倒易矢量的长度等于正点阵中的相应晶面间距的倒数,即ghkl=1/dhkl 。
4)对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c5)只有在立方点阵中,晶面法向和同指数的晶向市重合的,即倒易矢量ghkl 是与相应指数的晶向[hkl]平行6)某一倒易基矢垂直于正交点阵中和自己3、 何为零层倒易截面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。
《材料分析测试技术》试卷(答案) (1)
《材料分析测试技术》试卷(答案)一、填空题:(20分,每空一分)1. X射线管主要由阳极、阴极、和窗口构成。
2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。
3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。
4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。
5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。
6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。
7. 电子探针包括波谱仪和能谱仪成分分析仪器。
8. 扫描电子显微镜常用的信号是二次电子和背散射电子。
二、选择题:(8分,每题一分)1. X射线衍射方法中最常用的方法是( b )。
a.劳厄法;b.粉末多晶法;c.周转晶体法。
2. 已知X光管是铜靶,应选择的滤波片材料是(b)。
a.Co ;b. Ni ;c. Fe。
3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。
a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。
4. 能提高透射电镜成像衬度的可动光阑是(b)。
a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。
5. 透射电子显微镜中可以消除的像差是( b )。
a.球差;b. 像散;c. 色差。
6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。
a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。
7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。
a.背散射电子;b.俄歇电子;c. 特征X射线。
8. 中心暗场像的成像操作方法是(c)。
a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。
三、问答题:(24分,每题8分)1.X射线衍射仪法中对粉末多晶样品的要求是什么?答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个最佳厚度(t =2.分析型透射电子显微镜的主要组成部分是哪些?它有哪些功能?在材料科学中有什么应用?答:透射电子显微镜的主要组成部分是:照明系统,成像系统和观察记录系统。
电子衍射
需要指出的是,电子衍射基本公 式的导出运用了近似处理,因而 应用此公式及其相关结论时具有 一定的误差或近似性。
三、高能电子衍射的应用
高能电子衍射主要适用于薄层样品的或者薄膜 的分析。 其主要应用在以下几个方面: 1、微区晶体结构分析和物象鉴定,如第二相 在晶体中析出过程分析、晶界沉淀物分析、弥 散离子物象鉴定等; 2、晶体取向分析,如析出物与晶体取向关系、 惯习面指数等; 3、晶体缺陷分析。
(1)公式的导出过程
左图中:tan2θ=R/L 由于电子衍射2θ很小, 所以 cosθ≈1, cos2θ≈1, ∴ tan2θ=2sinθcosθ/cos2θ ≈2sinθ=R/L 又∵布拉格方程:2dsinθ=λ 即 2sinθ = λ/d 由(2)(3)式得 R/L= λ/d 即 Rd=λL (4)式即为电子衍射(几何分析) 的基本公式。 (1)
低能电子衍射
低能电子衍射以能量为10~500eV的电子束照射样 品表面,产生电子衍射。由于入射电子能量低, 因而低能电子衍射给出的是样品表面1~5个电子 层的结构信息,故低能电子衍射是分析晶体表面 结构的重要方法。
单晶电子衍射花样的标定:
如上图所示,表达衍射花样周期性的基本单元(可称特征平行四 边形)的形状与大小可由花样中最短和次最短衍射斑点(连接)矢 量R1与R2描述,平行四边形中3个衍射斑点连接矢量满足矢量运 2 算法则:R3=R1+R2,且有R3 = R1²+ R2²+2R1R2cos (为R1与R2之 夹角)。设 R1 、 R2 与 R3 终点(衍射斑点)指数为H1K1L1 、H2K2L2 和 H3K3L3,则有H3=H1+H2、K3=K1+K2和L3=L1+L3。立方晶系多晶体电 子衍射标定时应用的关系式:R1²:R2²:…:Rn²=N1:N2:…:Nn 在立 方晶系单晶电子衍射标定时仍适用,此时R=R。
X射线衍射与电子衍射比较
采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。
1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。
当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。
电子衍射虽电子衍射与X射线衍射有相同的几何原理。
但它们的物理内容不同。
在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。
除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。
2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。
由于电子衍射强度远强于X 射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。
此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。
会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
电子显微分析3-电子衍射
目 录
• 电子衍射原理 • 电子衍射的应用 • 电子衍射实验技术 • 电子衍射在材料科学中的应用 • 电子衍射在纳米科技中的应用 • 电子衍射在考古学和文物鉴定中的应用
01
电子衍射原理
电子衍射与X射线衍射的异同
01
02
03
相同点
电子衍射和X射线衍射都 是通过测量衍射方向来分 析物质结构的方法。
05
电子衍射在纳米科技中 的应用
纳米颗粒的形貌和结构分析
形貌分析
电子衍射可以用于研究纳米颗粒的表 面形貌,通过分析衍射花样可以推断 出颗粒的形状、大小以及表面粗糙度 等信息。
结构分析
电子衍射可以揭示纳米颗粒的内部结 构,包括晶格常数、晶体取向、晶体 缺陷等,有助于理解材料的物理和化 学性质。
纳米薄膜的晶体结构和相组成
晶体结构分析
电子衍射可以用于研究纳米薄膜的晶体结构,包括晶格常数、晶面间距等,有助于了解材料的力学、电学和热学 等性能。
相组成分析
通过电子衍射可以确定纳米薄膜中存在的不同相的成分和分布,有助于优化材料性能和开发新材料。
纳米材料的应力分析
应变分析
电子衍射可以用于研究纳米材料在受力作用下的应变分布,有助于了解材料的力学行为 和稳定性。
花样性
通过电子衍射可以观察到晶体的 对称性,从而确定晶体的空间群。
测定晶格常数
电子衍射可以精确测定晶体的晶格 常数,了解晶体结构的基本单元。
观察晶体缺陷
电子衍射可以观察晶体中的缺陷和 错位,研究晶体缺陷对材料性能的 影响。
非晶体和准晶体的分析
确定非晶态结构
无机非金属材料
晶体结构和晶体缺
陷
电子衍射可以用于研究无机非金 属材料的晶体结构和晶体缺陷, 有助于了解材料的物理和化学性 质。
现代测试分析技术SEM、TEM、表面分析技术、热分析技术
现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。
电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。
物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。
电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。
此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。
2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。
扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。
扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。
2、扫描电镜的特点分辨本领较⾼。
⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。
电子衍射与X射线衍射的异同
二、不同之处——之五
X射线衍射
得到的是样品的宏观 平均信息 表层和内部不可区分
点阵参数测量准确
电子衍射
微区形貌和结构同 位测量 表层结构分析
点阵参数不可靠
Thanks for your attention!
入射X 射线
周转晶体法
二、不同之处——之二
2. 电子束与晶带轴严格重 合对称入射,仍可发生衍射 。
rO k
r O* g hkl
(uvw)*0
薄片试样的倒易阵点扩展
2/d
d
D
2/D
l
2/l
2/t
t
二、不同之处——之三
3. 电子衍射花样是零层倒易
截面的放大像,能直观地反
O
映晶体内各晶面的位向。
r
L
kr g hkl
θ
k ? k?? 1
Or
?
k? θ
kr D
[uvw] O* 000
G
r hkl g hkl
晶 带的零层 倒易截面
g hkl ?
1 d hkl
g
sin ?
? DG = OG
2 k?
? 2 d sin ? ? ?
rr k ?- k
?
gr
二、不同之处——之二
爱瓦尔德球图解衍射必要条件
rO k
O*
r g hkl
G
(uvw)*0
电子波ห้องสมุดไป่ตู้波长很短 反射球半径k=1/λ很大,θ很小
O*
ΔOO*G∽ΔOO'G
O'
R
G'
k? g LR
R ? gL ? ? Lg
k
二、不同之处——之四
浅析X射线衍射、中子衍射和电子衍射技术差异
浅析X射线衍射、中子衍射和电子衍射技术差异Handsomeland(大陆)物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。
希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了!首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。
最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。
前面已经明确本文的动机,所以这里着重分析它们的差异。
i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。
ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion 呈现平方项。
正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。
X射线衍射与电子衍射比较
采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。
1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。
当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。
电子衍射虽电子衍射与X射线衍射有相同的几何原理。
但它们的物理内容不同。
在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。
除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。
2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。
由于电子衍射强度远强于X 射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。
此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。
会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
测量晶体结构的物理实验技术详解
测量晶体结构的物理实验技术详解晶体结构是物质内部排列的有序几何体,对于理解物质的性质和应用具有重要意义。
为了揭示和研究晶体结构,科学家们发展出了多种物理实验技术,包括X 射线衍射、电子衍射和中子衍射等。
本文将对这些技术进行详细的介绍。
一、X射线衍射技术X射线衍射技术是最常用的测量晶体结构的方法之一。
它利用X射线的波动性和探测器记录的衍射图案来推断晶体的周期性排列。
通过测量不同入射角度下探测到的衍射峰的位置和强度,可以推导出晶体中原子的相对位置和晶胞参数。
X射线衍射实验中,通常使用X射线发生器产生X射线束,然后将此束照射到样品上。
当X射线束穿过晶体时,由于晶体的周期性结构,出射的X射线将以特定的角度散射,形成衍射图案。
这些衍射峰的位置和强度与晶体结构的特征参数相关联。
二、电子衍射技术电子衍射技术是通过电子束与晶体相互作用产生的衍射现象来研究晶体结构的方法。
相比于X射线衍射技术,电子衍射技术能够研究更小尺寸的晶体,在无需复杂处理的情况下就能得到高分辨率的衍射图案。
电子衍射实验一般使用电子束枪产生电子束,然后通过透射电子显微镜照射在样品上。
样品中的晶体会散射入射电子束,形成衍射图案。
通过分析衍射图案的形状和强度分布,可以确定晶体的结构以及一些晶胞参数。
三、中子衍射技术中子衍射技术是利用中子与晶体相互作用产生的衍射现象来测量晶体结构的方法。
与X射线和电子相比,中子与晶体的相互作用更复杂,因此中子衍射技术在一些特定的研究领域中具有独特的优势。
中子衍射实验通常使用中子源产生中子束,然后通过样品中的晶体,中子将被晶体进行散射,形成衍射图案。
通过研究衍射图案的特征,我们可以了解晶体的结构、晶格常数以及原子间的相对位置。
总结测量晶体结构的物理实验技术包括X射线衍射、电子衍射和中子衍射等。
这些技术基于衍射现象,通过分析衍射图案的形状和强度来推导晶体的结构和特征参数。
每种技术都有其独特的优势和适用范围。
X射线衍射技术广泛应用于晶体结构研究中,其高分辨率和可靠性使其成为非常重要的工具。
电子衍射
电子衍射 2.1 概述电子衍射与X-射线衍射的基本原理是完全一样的,两种技能所得到的晶体衍射花样在几何特征上也大致相似,都遵循劳厄方程或布拉格方程所规定的衍射条件和几何关系。
电子衍射与X-射线衍射的主要区别在于:(1) 电子波的波长短,则受物质散射强(原子对电子的散射能比X-射线约高一万倍)。
电子波长短,决定了电子衍射的几何特点,使单晶的电子衍射谱和晶体的倒易点阵的二维截面完全相似,从而使晶体集合关系的研究变得简单多了。
(2) 衍射束强度有时几乎与透射束相当,因此就有必要考虑它们之间的相互作用,使电子衍射花样分析,特别是强度分析变得复杂,不能像X-射线那样从测量强度来广泛地测定晶体结构。
(3) 由于散射强度高导致电子穿透能力有限,因而比较适用研究微晶、表面和薄膜晶体。
(4) 许多材料和矿物中得晶粒只有几微米大小,有时小到几千埃,不能用X-射线进行单个晶体的衍射,但却可以用电子显微镜在放大几万倍下,有目的地选择这些晶体,用选区电子衍射和微束电子衍射来确定其物相或其结构。
2.2 预备知识 2.2.1 布拉格定律入射波矢量:k ;衍射波矢量:k ¢;对于弹性碰撞:1/k k l ¢==**1;;2sin K k k r r K k dq ¢=-===当波长为l 的单色平面电子波以掠射角q (入射角方向与晶面的夹角)照射到晶面间距为hkl d 的平行晶面组(hkl )时,若满足:2sin hkl d n q l =为了简便起见,把式改为:2()sin hkld nq l =考虑到,可以把任意晶面组的n 级衍射都看成是与之平行但晶面间距小于n 倍的(nh nk nl )晶面组的一级衍射,使布拉格定律表达为:2sin d q l = 2.2.2倒易点阵和Ewald 球作图法 (1)倒易点阵所谓倒易点阵,是指量纲为[L]-1的倒易空间内的另一个点阵,它与正空间内某一点特定的点阵相对应。
材料分析技术作业题(含答案)
1、名词解释:(1)物相:在体系内部物理性质和化学性质完全均匀的一部分称为“相”。
在这里,更明白的表述是:成分和结构完全相同的部分才称为同一个相。
(2)K系辐射:处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。
原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。
当K电子被打出K层时,原子处于K激发状态,此时外层如L、M、N……层的电子将填充K层空位,产生K系辐射。
(3)相干散射:由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件(4)非相干散射:X射线经束缚力不大的电子(如轻原子中的电子)或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。
(5)荧光辐射:处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射岀被照物质的特征X射线,这种由入射X射线激发出的特征X射线称为二次特征X射线即荧光辐射。
(6)吸收限:激发K系光电效应时,入射光子的能量必须等于或大于将K电子从K层移至无穷远时所作的功WK,即将激发限波长入K和激发电压VK联系起来。
从X射线被物质吸收的角度,则称入K为吸收限。
(7) ^俄歇效应:原子中K层的一个电子被打出后,它就处于K激发状态,其能量为EK如果一个L层电子来填充这个空位,K电离就变成L电离,其能量由EK变成EL,此时将释放EK-EL的能量。
释放出的能量,可能产生荧光X 射线,也可能给予L层的电子,使其脱离原子产生二次电离。
即K层的一个空位被L层的两个空位所代替,这种现象称俄歇效应.2、特征X射线谱与连续谱的发射机制之主要区别?特征X射线谱是高能级电子回跳到低能级时多余能量转换成电磁波。
连续谱:高速运动的粒子能量转换成电磁波。
3、计算0.071nm(MoKQ和0.154nm(CuK a的X射线的振动频率和能量4、x射线实验室用防护铅屏,若其厚度为1mm,试计算其对Cuk a Mok a辐射的透射因子(I透射/I入射)各为多少?第二章1. 名词解释:晶面指数:用于表示一组晶面的方向,量出待定晶体在三个晶轴的截距并用点阵周期a,b,c度量它们,取三个截距的倒数,把它们简化为最简的整数h,k,l,就构成了该晶面的晶面指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。
1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。
当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。
电子衍射虽
电子衍射
与X射线衍射有相同的几何原理。
但它们的物理内容不同。
在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。
除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。
2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。
由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。
此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。
会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力为什么在对这些问题展开讨论之后,小结在最后将会被给出。
希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了!
首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。
最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):
2d*sinθ=nλ(n是自然数)。
前面已经明确本文的动机,所以这里着重分析它们的差异。
i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。
ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。
正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。
当然,物质波在运动速度接近光速的时候其dispersion会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。
下面进入正题,分别讨论X射线衍射、中子衍射和电子衍射具有哪些其他技术所不能匹敌的优势,在最后综合比较时兼谈相应的不足。
1、XRD具有其他两种技术所不能比拟的地方是它能最准确的测定晶胞参数。
如图2所示,在精确确定晶胞参数这点上,中子衍射最不可取,一方面因为中子衍射波长practically相对较长,另一方面中子衍射波长的校准很难做的很理想,所以中子衍射的结果容易偏离真实值而且分散较大。
电子衍射之选区衍射技术,角度(这里通过相机常数转化成distance)探测的精密性受限制(比不上XRD的成熟技术),况且多数时候靠人眼去分辨,加上相机长度、标尺的误差,很难得到精确标定;电子衍射之会聚束电子衍射(CBED),在精密性上相对选区要高,但CBED存在的不足,CBED测定一个微区晶格参数,而这个晶格参数很大程度上受到strain的影响,以至于不容易获得标准晶格参数。
而XRD,尤其是高能同步辐射XRD,在精密确定晶胞参数上,具有着不可替代的优势,以至于当今的晶体结构信息库中的晶格参数大多采用XRD的结果。
为了给读者增加一些感性认识,举例说明如下:如果拿标准Si粉(比如 SRM640, a = 5.4307 A,at .),我们使用以下几种技术定量来比较标准差(standard error,σ):
i)SR_XRD (同步辐射XRD,比如 100 MeV, 波长0.0001A),σ原则上可以非常小,但实际标准样品本身的a 值误差约在0.001A,所以practically,σ~0.001A;
ii)Cu-alpha_XRD (8 keV, 波长1.54 A),波长相对较长,但利用宽角度细扫(2θ:1~100deg, step, 2万个数据点),充分利用多个衍射峰信息,使用全谱拟合,practically, σ~0.01A 的精度;
iii)电镜--哪怕是你提到的xstem--多晶选区衍射环(300 keV, 波长约0.02A),波长相对Cu-a较小,但是衍射角很小,在当前现有技术下,在~ 1deg之间我们能探测的最多点数是很受限制的,况且多数时候靠人眼去分辨,加上相机长度、标尺的误差,我没有见过通过电镜衍射得到σ小于0.1A的标定。
iv)如果是中子衍射的晶胞参数存在0.5A的差异也是不稀奇的。
图2 不同衍射技术测定晶格常数的"精"&"准"性对照图(本人制作): 三者相对而言,ND 既不精也不准;ED-SAED准而不精,ED-CBED精而不准;XRD既精又准。
2、中子衍射具有的其他技术不可比拟的优势有原子核敏感和磁性结构敏感两点。
i)轻原子及同位素相对敏感,如图3所示,中子对于较轻的C,H,O及其同位素的散射显然比XRD更强,电子由于核内电子的库伦屏蔽效应,对较轻原子核及其同位素散射的敏感性也不如中子。
这里举个典型的应用是通过中子衍射谱的拟合准确确定氧化物结构中氧原子位置,如图4中石榴石晶体中子衍射谱的拟合结果。
图3 中子和X射线对不同原子散射能力对照示意图(文后附参考阅读iii)
图4 石榴石的中子衍射谱拟合(本人拟合的GSAS Tutorial的实验数据)
ii)磁性结构的精确确定,对于磁性材料,中子衍射谱中包含磁性离子及磁性结构信息,通过中子衍射特定峰位使用一定的模型拟合,可以,得到特定的磁性周期结构,比如图5所示通过中子衍射技术得到反铁磁氧化物BiFeO3的自旋波周期结构约为62nm,而这个信息通过XRD或电子衍射是难以获得的。
图5 BiFeO3的磁性结构周期的中子衍射确定(from J. Phys. C: Solid State , 15, 4835-46)
3、电子衍射是微区结构测量的优势技术。
这里主要基于透射电镜(TEM)讨论,而反射高能电子衍射(RHEED)、低能电子衍射(LEED)、扫描电镜中的电子背散射衍射(EBSD in SEM)等等由于本人不熟,不敢妄论,如有这方面的专家,欢迎补充!尽管XRD和中子衍射在微观区域结构成像上也有类似电子衍射的进展,但实际应用中在以下几个方面上远远不能和电子衍射技术比拟:
i)微观结构细节,如应变分布、取向分布、成分分布、界面结构等等。
ii)原子柱成像的高分辨显微技术(HRTEM)。
总的来说,本文要传达的一个信息是,XRD, ED(electron diffraction), ND(neutron diffraction) 三种衍射技术中没有一种可以胜任其他技术的所有工作,
结构分析者在具体的问题分析中中有必要通过下面的建议选择最合适最有说服力的技术。
1、XRD简易高效,晶胞参数能定准,但得到的是宏观平均信息,而且细节结构尤其是轻原子不能准确确定;
2、中子衍射在确定轻原子、同位素和磁性原子的细节信息上功能最强,但晶胞参数最不靠谱,而且使用不便,因为全世界能做中子衍射的单位屈指可数;
3、电子衍射总能在微区细节上显神通,但晶胞参数等定量结果不能作为标准,而且电子衍射的制样困难,好的制样技术甚至比电镜操作本身更难以掌握。
附相关参考书几本:
i)Fundamentals of Powder Diffraction and Structural Characterization of Materials, by . Pecharsky and . Zavalij
ii)《电子衍射分析》by 黄孝瑛
iii)Solid-state spectroscopy-an introduction, by H. Kuzmany。