小学数学知识点汇总
小学数学知识点总结大全(非常全面)
小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
(完整版)非常全的小学数学知识点汇总
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学数学知识点汇总
小学数学知识点汇总一.整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:小数有限小数无限循环小数无限小数 {无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二.数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有“4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
(完整版)小学数学必背知识点汇总汇总
小学数学必背知识点汇总基本性质※小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。
※分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
※比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值不变。
※比例的基本性质:在比例里,两个外项的积等于两个内项的积。
※比例尺=图上距离÷实际距离(单位要相同)※商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。
一.公式长方体有12条棱:4条长,4条宽,4条高,六个面;正方本有12条棱:每条棱都相等,有六个面,每个面都相等。
长立方体体积=长×宽×高正方体体积=棱长×棱长×棱长圆柱体体积=半径2× ×高圆锥体体积=半径2× ×高×税后利息=本金×存款时间×利率×(1-20%)二.运算意义三.运算定律及性质加法交换律:a +b =b +a 加法结合律:a +b +c =a +(b+c加减法的速算法:a -b =a -c -d 、 a+b =a +c +d减法的性质:a -b -c =a -(b +c )乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c 乘法分配律:(a+b ×c=a×c+b×c积不变的性质:a×b=(a×c×( b÷c 除法的性质:a÷b÷c=a÷(b×c商不变的性质:a÷b=(a÷c ÷(b÷c、a÷b=(a×c ÷(b×c四.数的整除1.约数和倍数:如果数 a 能被数 b 整除,a 就叫做 b 的倍数,b 就叫做 a 的约数。
小学知识点总结数学(必备8篇)
小学知识点总结数学(必备8篇)小学知识点总结数学第1篇整百、整千数加减法1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算把数看做它的近似数再计算。
第八单元:克和千克克和千克是国际上通用的质量单位。
计量较轻的物品的质量时,通常用“克”;计量较重的物品质量时,通常用“千克”作单位。
1千克=1010克、(了解1千克=1公斤、1公斤=2斤、1斤=500克、 1斤=10两、1两=50克)估计物品有多重,要结合物品的大小、质地等因素。
第九单元:数学广角推理时,先根据条件确定必然情况,再用排除法确定其他情况。
小学知识点总结数学第2篇1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要元钱,买同样的铅笔16支,需要多少钱?例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?例3、5辆汽车4次可以运送101吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米。
原来做791套衣服的布,现在可以做多少套?例2、小华每天读24页书,12天读完了《红岩》一书。
小学数学知识点大汇总
小学数学知识点大汇总一、整数1.整数的概念和运算法则2.正整数、负整数和零3.整数的比较和排序4.整数的加法和减法运算5.整数的乘法和除法运算6.整数的互质和公约数、公倍数7.整数的约分、化简和化整8.分数、真分数和假分数的概念9.分数的加法和减法运算10.分数的乘法和除法运算二、小数1.小数的概念和表示方法2.小数的比较和大小关系3.小数的加法和减法运算4.小数的乘法和除法运算5.小数的四舍五入和精确到其中一位6.百分数和百分数的运算法则7.分数与小数的转换三、几何图形1.点、线、线段和射线的概念2.平面图形的分类和性质3.立体图形的名称和特点4.直线对称和旋转对称5.几何图形的相似和全等6.几何图形的面积和周长7.几何图形的体积和表面积8.几何图形的放大和缩小四、代数1.代数式的概念和性质2.代数式的运算法则3.一元一次方程的概念和解法4.一元一次不等式的概念和解法5.数据的收集、整理和展示6.统计图表的分析和应用7.数据的平均数和中位数五、逻辑推理与思维训练1.逻辑推理的基本规律和方法2.推理判断、判断说法的真假3.快速计算和心算技巧的培养4.算式的解法和变形5.数的性质和规律的总结和归纳6.数学思维、创造力和问题解决能力的培养这些是小学数学的主要知识点,涵盖了整数、小数、几何图形、代数和逻辑推理等方面的内容。
小学数学教学的目标是培养学生的数学思维能力、推理能力和解决问题的能力,帮助学生建立数学概念、掌握数学方法和技巧,培养学生的数学兴趣和创造力。
希望以上内容对您有所帮助!。
小学数学知识点总结大全(完整版)
小学数学知识点大全第一章 数和数的运算一、概念(一 )整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示。
0也是自然数.3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.其中“一"是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万"或“亿"作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法. 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
小学数学知识点总结大全(完整版)
小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
小学数学知识点归纳汇总(完整版)
小学数学知识点归纳汇总(完整版)学校数学总复习资料常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时光=路程路程÷速度=时光路程÷时光=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时光=工作总量工作总量÷工作效率=工作时光工作总量÷工作时光=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数学校数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)8、圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 15、相遇问题相遇路程=速度和×相遇时光相遇时光=相遇路程÷速度和速度和=相遇路程÷相遇时光16、浓度问题溶质的分量+溶剂的分量=溶液的分量溶质的分量÷溶液的分量×100%=浓度溶液的分量×浓度=溶质的分量溶质的分量÷浓度=溶液的分量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时光税后利息=本金×利率×时光×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升分量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时光单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学数学知识点(通用15篇)
小学数学知识点(通用15篇)小学数学知识点1知识点:1、估算。
(先求出多位数的近似数,再进行计算。
如497×7≈3500)2、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数5、(关于“大约)应用题:①条件中出现“大约”,而问题中没有“大约”,求准确数。
→(=)②条件中没有,而问题中出现“大约”。
求近似数,用估算。
→(≈)③条件和问题中都有“大约”,求近似数,用估算。
→(≈)练习题:一、填空题。
1、计算300×2,可以算()个百乘2得()个百,也就是()。
2、计算13×3,可以先算()×3=(),再算()×3=(),最后算()+()=(),所以13×3=()。
3、40×5=()。
4、14×2=()。
二、判断题。
1、200×5的积的末尾有2个0。
()2、33×2=66。
()3、因为3×5=15,所以300×5=1500。
()4、13×2和2×13的积相等。
()三、计算题。
(口算)41×2=12×4=300×6=13×3=400×5=×4=40×4+8=300×3+75=四、解答题。
1、学校买来20个羽毛球,每个羽毛球2元,一共花了多少钱?2、一个工程的修一条水渠,每天修70米,修了9天修完。
这条水渠长多少米?3、我有24元钱,姐姐的钱是我的2倍,姐姐有多少元钱?小学数学知识点21、上、下(1)在具体场景中理解上、下的含义及其相对性。
(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。
小学数学知识点大汇总
小学数学知识点大汇总一、整数1.整数及其概念2.整数的加法运算3.整数的减法运算4.整数的乘法运算5.整数的除法运算6.整数的绝对值7.整数的大小比较8.整数的相反数二、分数1.分数的概念2.分数的加法运算3.分数的减法运算4.分数的乘法运算5.分数的除法运算6.分数的比较7.分数的化简8.分数的约分9.假分数和带分数的相互转化10.分数的相反数三、小数1.小数的概念2.小数的加法运算3.小数的减法运算4.小数的乘法运算5.小数的除法运算6.小数与整数的相互转化7.小数的大小比较四、几何1.平面图形的认识(点、线、面的概念)2.正方形、长方形、三角形、圆形的性质3.多边形的性质(三角形、四边形、五边形、六边形等)4.三角形的分类(等边三角形、等腰三角形、直角三角形等)5.平行线、垂直线的概念及判定方法6.正立体的认识(长方体、正方体、圆柱体、圆锥体、球体等)五、数的认识1.数的概念及表示方法2.数的读法和写法3.数的大小比较4.数的顺序排列5.数的相反数和绝对值六、正整数的运算1.加法的概念和运算2.减法的概念和运算3.乘法的概念和运算4.除法的概念和运算5.综合运用四则运算七、约数和倍数1.约数的概念和判定方法2.最大公约数的求法3.最小公倍数的求法八、整数的运算1.整数的加法运算2.整数的减法运算3.整数的乘法运算4.整数的除法运算5.综合运用整数的四则运算九、数的整体认识1.一元运算符和二元运算符2.加减混合运算3.二步运算和多步运算4.组件运算5.简便算术十、长度、面积和体积1.长度的计量和单位换算2.长度的比较和排序3.长度的四则运算4.面积的计算和单位换算5.面积的比较和排序6.面积的四则运算7.体积的计算和单位换算8.体积的比较和排序9.体积的四则运算十一、数的应用1.分数和小数的应用2.整数和正数的应用3.长度、面积和体积的应用4.图形的应用5.生活中的数学计算。
(完整版)小学数学必背知识点汇总汇总
(完整版)小学数学必背知识点汇总汇总小学数学必背知识点汇总基本性质※小数的基本性质:在小数末尾添上零或者去掉零,小数的大小别变。
※分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小别变。
※比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值别变。
※比例的基本性质:在比例里,两个外项的积等于两个内项的积。
※比例尺=图上距离÷实际距离(单位要相同)※商别变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小别变。
一.公式长方体有12条棱:4条长,4条宽,4条高,六个面;正方本有12条棱:每条棱都相等,有六个面,每个面都相等。
长立方体体积=长×宽×高正方体体积=棱长×棱长×棱长圆柱体体积=半径2× ×高圆锥体体积=半径2× ×高×税后利息=本金×存款时刻×利率×(1-20%)二.运算意义三.运算定律及性质加法交换律:a +b =b +a 加法结合律:a +b +c =a +(b+c加减法的速算法:a -b =a -c -d 、 a+b =a +c +d减法的性质:a -b -c =a -(b +c )乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c 乘法分配律:(a+b ×c=a×c+b×c 积别变的性质:a×b=(a×c×( b÷c 除法的性质:a÷b÷c=a÷(b×c 商别变的性质:a÷b=(a÷c ÷(b÷c、a÷b=(a×c ÷(b×c四.数的整除1.约数和倍数:假如数 a 能被数 b 整除,a 就叫做 b 的倍数,b 就叫做a 的约数。
小学数学知识点汇总
第一单元《小数乘法》1、因数与积的变化规律:(1)一个因数不变,另一个因数扩大或缩小多少倍,积就扩大或缩小多少倍。
例如:两数乘积为4.56,一个因数不变,另一个因数扩大10倍,则乘积变为45.6(2)一个因数扩大10倍,另一个因数缩小101,积不变。
例如:两数乘积为4.56,一个因数缩小101,另一个因数扩大10倍,则乘积不变。
2、计算小数乘法时,从右边起,非0数字对齐。
例如:0.16×30,列竖式为 3016.0⨯3、一个数乘比1小的数,结果小于原数。
例如: 3.9×0.9 <3.9 一个数乘比1大的数,结果大于原数。
例如: 3.9×2.9 > 3.9 一个数乘1,结果等于原数。
例如: 3.9×1 = 3.94、小数四则混合运算顺序:先算乘除,后算加减;同级运算,从左往右依次计算;有括号的先算括号里。
5、常用运算律:(1)加法交换律:a+b=b+a(2)加法结合律:a+b+c=a+( b+c) 例如: 18.9+56.4+43.6=18.9+(56.4+43.6)(3)乘法交换律:a ×b=b ×a(4)乘法结合律:a ×b ×c=a ×( b ×c) 例如:18.9×0.25×4=18.9×(0.25×4)(5)乘法分配律1:a ×b ±a ×c = a ×( b ±c)例如:18.9×0.9+18.9×0.1=18.9×(0.9+0.1)乘法分配律2:a ×( b ±c) = a ×b ±a ×c例如:12.5×(8 - 0.8)=12.5×8 - 12.5×0.8(6)减法性质:a - b - c=a - ( b+c) 例如:56.4-3.7-6.3=56.4-(3.7+6.3)897-399=897-(400-1)=897-400+1=497+1=498(7)除法性质:a ÷b ÷c=a ÷( b ×c) 例如:56.4÷2.5÷0.4=56.4÷(2.5×0.4)6、计算钱数时,通常最多保留两位小数。
小学数学知识点汇总
小学数学知识点汇总1、小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。
2、分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
3、比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值不变。
4、比例的基本性质:在比例里,两个外项的积等于两个内项的积。
5、商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。
6、等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
一、公式(必须牢记并会应用)1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、植树问题A、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)B、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数11、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数12、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间13、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间14、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷215、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)当赚钱时:卖价=成本×(1+赚率)求赚了多少=成本×赚率成本=卖价÷(1+赚率)赚率=[(卖价-成本)÷成本]×100%当赔钱时:卖价=成本×(1-赔率)求赔了多少=成本×赔率成本=卖价÷(1-赔率)赔率=[(成本-卖价)÷成本]×100%打折时:卖价=原价×折扣率减价=原价×(1-折扣率)原价=卖价÷折扣率折扣率=卖价/原价×100%17、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数18、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 19、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)二、小学数学图形计算公式 (必背)1、正方形: C=周长、 S=面积、 a=边长周长=边长×4 用字母表示: C=4a面积=边长×边长用字母表示: S=a×a2、正方体: V=体积、 a=棱长表面积=棱长×棱长×6 用字母表示: S表=a×a×6体积=棱长×棱长×棱长用字母表示: V=a×a×a3、长方形: C=周长、 S=面积、 a=边长周长=(长+宽)×2 用字母表示:C=2(a+b)面积=长×宽用字母表示: S=ab4、长方体: V=体积、 s=面积、 a=长、 b=宽、 h=高表面积=(长×宽+长×高+宽×高)×2用字母表示:S=2(ab+ah+bh)体积=长×宽×高用字母表示: V=abh5、三角形: s=面积、 a=底、 h=高面积=底×高÷2 用字母表示: s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形: s=面积、 a=底、 h=高面积=底×高用字母表示:s=ah7、梯形: s=面积、 a=上底、 b=下底、 h=高面积=(上底+下底)×高÷2 用字母表示: s=(a+b)× h÷2 -8 、圆形: S=面积、 C=周长、∏、d=直径、 r=半径周长=直径×∏=2×∏×半径用字母表示: C=d∏=2r∏面积=半径×半径×∏用字母表示:S=∏r29、圆柱体: v=体积、 h=高、 s=底面积、r=底面半径、 c=底面周长 J侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10、圆锥体: v=体积、 h=高、 s=底面积、 r=底面半径体积=底面积×高÷3三、五大运算定律及两个性质五大运算定律1、加法交换律:两数相加交换加数的位置,和不变。
小学数学各类知识点汇总
小学数学各类知识点汇总一、整数和小数1.最小的自然数是0,最小的一位数是1。
2.小数的意义:把整体“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……3.小数点左边是整数部分,依次是个位、十位、百位、千位……;小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:有限小数无限小数无限不循环小数(如:π=3.1415926……)5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数就扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数就缩小10倍、100倍、1000倍……二、数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.根据一个数能否被2整除,非0的自然数可分成“偶数和奇数”两类;能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
(最小的奇数是1,最小的偶数是2。
)5.根据一个数含有的约数个数的多少,非0的自然数可分为“1、质数、合数”三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数只有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
(最小的质数是2,最小的合数是4。
)1—20以内的质数有:2、3、5、7、11、13、17、191—20以内的合数有:4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✍整数加法计算法则
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
✍整数减法计算法则
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
✍整数乘法计算法则
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
计算方法:5x7=35 +1 =36
5+7=12(写2进1)1x1=1
61 x81=4941
计算方法:6x8=48+1=49
6+8=14(写4进1)1x1=1
✎口诀
末位皆一者,首位之积接着首位之和(满十进位),尾数之积后面接。
6
一百零几乘一百零几
✎例题
101X102=10302
计算方法:101+2=103
2
中数组
凡是被除数含有除数4、5、6倍时、其方法为:
被除数含商4倍:前位加补数一半,本位减补数一次。
被除数含商5倍:前位加补数一半,本位不动。
被除数含商6倍:前位加补数一半,本位加补数一次。
✎例题
35568÷78=456(78的补数是22)
✎算序
355中含有除数4倍,所以前位加11,本位减22,得4-4368;
✍分数除法的计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
运算顺序
小数四则运算的运算顺序和整数四则运算顺序相同。
分数四则运算的运算顺序和整数四则运算顺序相同。
✍没有括号的混合运算:
同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
✍有括号的混合运算:
先算小括号里面的,再算中括号里面的,最后算括号外面的。
1X2=02两数相接即为乘积10302
103X104=10712
计算方法:103+4=107
3X4=12
两数相接即为乘积10712
同理:求101、102、103......109的平方,也可以采用上述方法。如107的平方=107+7=114, 7x7=49,两数相接11449即为107的平方
✎口诀
一数加上另数尾,尾数之积后面接(未满10的,前面补零)。
✍整数除法计算法则
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
✍小数乘法法则
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
第一级运算:加法和减法叫做第一级运算。
第二级运算:乘法和除法叫做第二级运算。
速算技巧
掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。
加法的神奇速算法
1
加大减差法
✎口诀
前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
小学数学知识点汇总
运算定律
✍加法交换律
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
✍加法结合律
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
✍乘法交换律
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
436中含除数5倍,前位加11,本位不动,得45-468;
468中含除数6倍,前位加11,本位加22,得456(商)。
3
大数组
凡是被除数含有除数7、8、9倍时、其方法为:
被除数含商9倍:前位加补数一次,本位减补数一次。
被除数含商8倍:前位加补数一次,本位减补数二次。
被除数含商7倍:前位加补数一次,本位减补数三次。
✍同分母分数加减法计算方法
同分母分数相加减,只把分子相加减,分母不变。
✍异分母分数加减法计算方法
先通分,然后按照同分母分数加减法的的法则进行计算。
✍带分数加减法的计算方法
整数部分和分数部分分别相加减,再把所得的数合并起来。
✍分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
✎例题
37x66=2442
计算方法:(3+1)x6=24
7x6=42写在24的后面,即乘积2442
44x28=1232
计算方法:(2+1)x4=12
4x8=32写在12的后面,即乘积1232
✎总结
互补数十位加个1,和另一个十位乘得积,后写两个个位积,即为所求最终积
4
十几与十几相乘的运算
✎例题
13x12=156
✍乘法结合律
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
✍乘法分配律
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
✍减法的性质
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
✍除数是整数的小数除法计算法则
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
✍除数是小数的除法计算法则
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
✎例题
884352÷896=987(896的补数是104)
✎算序
8843中含除数9倍,前位加104,本位减104,得9-77952;
7795中含除数8倍前位加104,本位减208,得98-6272;
6272含除数7倍,前位加补数一次104,本位减补数三次(104×3=312(得986(商)。
计算方法:(13+2)x10=150
3x2=6 150+6=156
15x17=255
计算方法:(15+7)x10=220
5x7=35 220+35=255
✎口诀
一数加上另数尾,乘10再加尾数积。
5
个位数都是1的乘法运算
✎例题
31x21=651
计算方法:3x2=6 2+3=5 1x1=1
51 x71=3621
3
求互补两个数的差
✎例题
73-27=46
计算方法:(73-50)x2=46
613-387=226
计算方法:(613-500)x2=226
8112-1888=6224
计算方法:(8112-5000)x2=6224
✎总结
两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2;以此类推......
✎总结
被减数减去减数的整数,再加上减数与整数的差,等于差。
2
求只是数字位置颠倒两个两位数的差
✎例题
74-47=27
计算方法:(7-4)x9=27
83-38=45
计算方法:(8-3)x9=45
92-29=63
计算方法:(9-2)x9=63
✎总结
被减数的十位数减去它的个位数乘以9,等于差。
三求只是首尾换位,中间数相同的两个三位数的差
✎例题
936-639=297
计算方法:(9-6)x9=27
注意!27中间必须加9,即为差297
723-327=396
计算方法:(7-3)x9=36
注意!36中间必须加9,即为差396
873-378=495
计算方法:(8-3)x9=45
注意!45中间必须加9,即为差495
✎总结
被减数的百位数减去它的个位数乘以9,(差的中间必须写9)等于差。
除法的神奇速算法
除法的目的是求商,但从被除数中突然看不出含有多少商时,可用试商,估商的办法,看被乘数最高几位数含有几个除数(即含商几倍),就由本位加补数几次,其得数就是商。
1
小数组Байду номын сангаас
凡是被除数含有除数1、2、3倍时、其方法为:
被除数含商1倍:由本位加补数一次。
被除数含商2倍:由本位加补数二次。
被除数含商3倍:由本位加补数三次。
76x 36=2736
计算方法:7x3+6=27
6x6= 36写在27的后面,即乘积2736
68x 48=3264
计算方法:6x4+8=32
8x8=64写在32的后面,即为乘积3264
同理,56的平方是5x5+6+6x6=3136
57的平方是5x5+7+7x7=3249
........
3
一个数的十位和个位互补,另一个数相同乘法运算
乘法的神奇速算法
1
十位数相同,个位数互补的两位数乘法
✎口诀
十位加一乘十位,个位相乘写后边(未满10补零)。
✎例题
67x 63= 4221
计算方法:(6+1)x6=42
7x3=21写在42的后面,即为乘积4221
38x32=1216
计算方法:(3+1)x3=12
8x2=16写在12的后面,即为乘积1216
✎例题
7995÷65=123,(65的补数是35)