24.1.2垂直于弦的直径 垂径定理三种语言
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:此中直角三角形AOD中只有A D是已知量,但可以通过弦心距、半径、 拱高的关系来设未知数,利用勾股定理列 出方程。利用垂径定理进行的几何证明
7.2m
37.4m
C A
D
B
O
关于弦的问题,常 常需要过圆心作弦 的垂线段,这是一 条非常重要的辅助 线。 圆心到弦的距离、 半径、弦构成直角 三角形,便将问题 转化为直角三角形 的问题。
2.画AB的中点C;
B
A
C
3.过点C画AB的垂线 MN,交AB于点D; ∴点D就平分AB。
M
讨 论
分别作线段AC、BC的中垂线,与 AB 分别交于点E、F。则E、F分别是 AD、 BD 的中点吗?
E
N D
F B
不是
A
C
M
变式.你能找到原来车轮的圆心吗?
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的 货船要经过拱桥,此货船能否顺利通过这座拱桥?
C M H A E D F B O N
③AM=BM,
可推得
⌒ ⌒ ④AC=BC,
⌒ ⌒ ⑤AD=BD.
②CD⊥AB,
推论:
由 ① CD是直径
③ AM=BM
可推得
⌒ ⌒ ④AC=BC,
⌒ ⌒ ⑤AD=BD.
你知道赵州桥吗?
它是1300多年前我国隋代建造的石拱桥, 是我国 古代人民勤劳与智慧的结晶.它的主桥是圆弧形, 它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的 中点到弦的距离)为7.2m, 你能求出赵州桥主桥拱的半径吗?
垂径定理三种语言
• 1.定理 垂直于弦的直径平分弦,并且平分弦所的两条弧
C
A
M└
●
如图∵ CD是直径, CD⊥AB, B
O
∴AM=BM,
⌒ =BC, ⌒ AC
老师提示: 垂径定理是圆中一个重要的结论,三种语言要 相互转化,形成整体,才能运用自如.
D
⌒ ⌒ AD=BD.
C
O
A M B
D
由 ① CD是直径 ② CD⊥AB
2 2百度文库2
O
∴ r 18.7 r 7.2
2 2
2
解得r=27.9(m) 即主桥拱半径约为27.9m.
方法总结
对于一个圆中的弦长a、圆心到弦的 距离d、圆半径r、弓形高h,这四个量 中,只要已知其中任意两个量,就可 以求出另外两个量,如图有:
⑴d + h = r
a 2 ⑵ r d ( ) 2
解:如图,用AB表示主桥拱,设AB 所在的圆的圆心为O,半径为r.
C
D B
A ⌒ 经过圆心O作弦AB的垂线OC垂足为
D,与AB交于点C,则D是AB的中 点,C是⌒ AB的中点,CD就是拱高.
∴ AB=37.4m,CD=7.2m
∴ AD=1/2 AB=18.7m,OD=OC-CD=r-7.2 ∵ OA OD AD
2 2
如图所示,一座圆弧形的拱桥,它所 在圆的半径为10米,某天通过拱桥的 水面宽度AB为16米,现有一小帆船高 出水面的高度是3.5米,问小船能否从 拱桥下通过?
1.已知弧AB,用直尺和圆规求作这条弧的中点。 2. 已知弧AB,用直尺和圆规求作这条弧的四等 分点。
N D
1.作 法 1.连接AB;