初中数学四川省自贡市中考模拟数学考试题(含解析).docx

合集下载

四川省自贡市2019-2020学年第三次中考模拟考试数学试卷含解析

四川省自贡市2019-2020学年第三次中考模拟考试数学试卷含解析

四川省自贡市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x62.下列计算正确的是()A.a2+a2=a4B.a5•a2=a7C.(a2)3=a5D.2a2﹣a2=23.已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则m+3n的值是()A.4 B.6 C.7 D.84.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限5.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×10 8元B.3.122×10 3元C.3122×10 11元D.3.122×10 11元6.如图,立体图形的俯视图是()A.B.C.D.7.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤38.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<19.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA 5,那么点C的位置可以在()A .点C 1处B .点C 2处 C .点C 3处D .点C 4处10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132C .82432D .8813211.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为()A .8B .8-C .4D .4-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为______m .(精确到0.1m ,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)14.化简1111x x -+-的结果是_______________. 15.如图,半圆O 的直径AB=7,两弦AC 、BD 相交于点E ,弦CD=72,且BD=5,则DE=_____.16.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________17.在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23,则a 的值是_____.18.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )20.(6分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数my x=的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.21.(6分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?22.(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.23.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: 分 组频数 频率 第一组(0≤x <15) 3 0.15 第二组(15≤x <30) 6 a 第三组(30≤x <45)70.35第四组(45≤x<60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?24.(10分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.25.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.26.(12分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.27.(12分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C 不符合题意; ∵(-2x 2)3=-8x 6, ∴选项D 符合题意. 故选D . 【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握. 2.B 【解析】 【分析】根据整式的加减乘除乘方运算法则逐一运算即可。

2019-2020学年四川省自贡市中考数学模拟试卷(word版,有标准答案)

2019-2020学年四川省自贡市中考数学模拟试卷(word版,有标准答案)

四川省自贡市中考数学试卷一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣22.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4C.2.5×10﹣4D.25×10﹣53.下列根式中,不是最简二次根式的是()A. B.C.D.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2) D.(a﹣2)2﹣45.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.27.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤18.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm210.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是.12.若n边形内角和为900°,则边数n= .13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值= ,tan∠APD的值= .三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:;(2)解不等式②,得:;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.六、解答题:本题12分22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.七、解答题23.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.四川省自贡市中考数学试卷参考答案与试题解析一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:1﹣(﹣1),=1+1,=2.故选A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4C.2.5×10﹣4D.25×10﹣5【考点】科学记数法—表示较小的数.【分析】根据用科学记数法表示较小的数的方法解答即可.【解答】解:0.00025=2.5×10﹣4,故选:C.【点评】本题考查的是用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列根式中,不是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2) D.(a﹣2)2﹣4【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°【考点】圆周角定理;三角形的外角性质.【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD﹣∠A=75°﹣45°=30°,∴∠B=∠C=30°,故选C.【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键.6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的和为零,可得a、b的值,根据有理数的乘法,可得答案.【解答】解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.【点评】本题考查了非负数的性质,利用非负数的和为零得出a、b的值是解题关键.7.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.8.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【解答】解:主视图,如图所示:.故选:B.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.10.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.【考点】二次函数的性质;正比例函数的图象;反比例函数的图象.【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【解答】解:由y=ax2+bx+c的图象开口向下,得a<0.由图象,得﹣>0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选:C.【点评】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为:x≥1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.若n边形内角和为900°,则边数n= 7 .【考点】多边形内角与外角.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【考点】列表法与树状图法.【分析】根据树状图判断出蚂蚁一共有多少种路可以选择,有几种可能可以获取食物即可解决问题.【解答】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.【点评】本题考查树状图、概率等知识,记住概率的定义是解决问题的关键,考虑问题要全面,属于中考常考题型.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为16 cm2.【考点】一次函数综合题.【专题】压轴题.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得 x=5.即OA′=5.∴CC′=5﹣1=4.∴S=4×4=16 (cm2).▱BCC′B′即线段BC扫过的面积为16cm2.故答案为16.【点评】此题考查平移的性质及一次函数的综合应用,难度中等.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值= 3 ,tan∠APD的值= 2 .【考点】锐角三角函数的定义;相似三角形的判定与性质.【专题】网格型.【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【解答】解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据负整数指数幂,零指数幂,特殊角的三角函数值,绝对值的定义化简即可.【解答】解:原式=2+1﹣+﹣1=2.【点评】本题考查负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等知识,熟练掌握这些知识是解决问题的关键,记住a﹣p=(a≠0),a0=1(a≠0),|a|=,属于中考常考题型.17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:x<3 ;(2)解不等式②,得:x≥2;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:2≤x<3 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)不等式①,得x<3;(2)不等式②,得x≥2;(3)把不等式①和②的解集在数轴上表示出来,4)原不等式组的解集为2≤x<3.故答案分别为:x<3,x≥2,2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)【考点】解直角三角形的应用.【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.【考点】众数;扇形统计图;条形统计图;中位数.【专题】计算题;数据的收集与整理.【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.【点评】此题考查了众数,扇形统计图,条形统计图,以及中位数,弄清题中的数据是解本题的关键.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.【考点】三角形的外接圆与外心;圆周角定理;切线的判定.【分析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;【解答】证明:(1)∵BD=BA,∴∠BDA=∠BAD,∵∠1=∠BDA,∴∠1=∠BAD;(2)连接BO,∵∠ABC=90°,又∵∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°,∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.六、解答题:本题12分22.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b ﹣=0的解;(3)求△AOB 的面积;(4)观察图象,直接写出不等式kx+b ﹣<0的解集.【考点】反比例函数与一次函数的交点问题;反比例函数的性质.【分析】(1)把B (2,﹣4)代入反比例函数y=得出m 的值,再把A (﹣4,n )代入一次函数的解析式y=kx+b ,运用待定系数法分别求其解析式;(2)经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;(3)先求出直线y=﹣x ﹣2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(4)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,即使kx+b ﹣<0.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A (﹣4,n )在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴.解得:.∴一次函数的解析式为y=﹣x ﹣2.(2):∵A(﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象和反比例函数y=的图象的两个交点,∴方程kx+b ﹣=0的解是x 1=﹣4,x 2=2.(3)∵当x=0时,y=﹣2.∴点C (0,﹣2).∴OC=2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6;(4)不等式kx+b ﹣<0的解集为﹣4<x <0或x >2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.七、解答题23.已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处(Ⅰ)如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .若△OCP 与△PDA 的面积比为1:4,求边CD 的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO 、线段OP ,连接BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN=PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问当动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF 的长度.【考点】几何变换综合题.【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS).∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.【考点】二次函数的性质;轴对称的性质.【分析】(1)根据抛物线经过原点b=0,把a=、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△PCB∽△APM,得=,列出方程即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+4ax+b(a>0)经过原点O,∴b=0,∵a=,∴抛物线解析式为y=﹣x2+6x,∵x=2时,y=8,∴点B坐标(2,8),∵对称轴x=3,B、C关于对称轴对称,∴点C坐标(4,8),∴BC=2.(2)∵AP⊥PC,∴∠APC=90°,∵∠CPB+∠APM=90°,∠APM+∠PAM=90°,∴∠CPB=∠PAM,∵∠PBC=∠PMA=90°,∴△PCB∽△APM,∴=,∴=,整理得a2﹣4a+2=0,解得a=2±,∵a>0,∴a=2+.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.。

2024届四川省自贡市中考四模数学试题含解析

2024届四川省自贡市中考四模数学试题含解析

2024届四川省自贡市中考四模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元3.下列命题正确的是( )A.内错角相等B.-1是无理数C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等43m-中,m的取值范围是()A.m≤3B.m≠0C.m≥3D.m≤3且m≠0 5.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)6.在同一平面直角坐标系中,函数y=x+k与kyx=(k为常数,k≠0)的图象大致是()A.B.C.D.7.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率8.19的值为()A.19B.-19C.9 D.-99.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:3,则AB的长为A.12米B.3C.3米D.310.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5二、填空题(共7小题,每小题3分,满分21分)11.分解因式x2﹣x=_______________________12.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.13.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.14.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.15.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.mn+6mn+9m=_________________.16.因式分解:217.分解因式:a2b−8ab+16b=_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.(1)求证:AO=EO;(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.19.(5分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20.(8﹣|﹣2|+(13)﹣1﹣2cos45° 21.(10分)先化简,再求值:22111211a a a a a a ---÷----,其中1a =.22.(10分)(1)计算:﹣14sin61°+(12)﹣2﹣(π1. (2)解不等式组3(1)72513x x x x --≤⎧⎪⎨--⎪⎩①②,并把它的解集在数轴上表示出来. 23.(12分)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k =1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.24.(14分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【题目详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【题目点拨】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.2、C【解题分析】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=1.∴该商品的进价为1元/件.故选C.3、D【解题分析】解:A.两直线平行,内错角相等,故A错误;B.-1是有理数,故B错误;C.1的立方根是1,故C错误;D.两角及一边对应相等的两个三角形全等,正确.故选D.4、D【解题分析】根据二次根式有意义的条件即可求出答案.【题目详解】由题意可知:30mm-≥⎧⎨≠⎩解得:m≤3且m≠0故选D.【题目点拨】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.5、D【解题分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【题目详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【题目点拨】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6、B选项A 中,由一次函数y=x+k 的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A 错误;选项B 中,由一次函数y=x+k 的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B 正确;由一次函数y=x+k 的图象知,函数图象从左到右上升,所以选项C 、D 错误.故选B.7、C【解题分析】解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确; D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C .8、A【解题分析】【分析】根据绝对值的意义进行求解即可得. 【题目详解】19-表示的是19-的绝对值, 数轴上表示19-的点到原点的距离是19,即19-的绝对值是19, 所以19-的值为 19, 故选A.【题目点拨】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.9、A【解题分析】试题分析:在Rt △ABC 中,BC=6米,BC AC 3=,∴AC=BC×33. ∴()2222AB AC BC 63612=+=+=(米).故选A.请在此输入详解!10、B【解题分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【题目详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【题目点拨】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、x(x-1)【解题分析】x2﹣x= x(x-1).故答案是:x(x-1).12、1【解题分析】根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题. 【题目详解】解:由题可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,∴a+b=1.【题目点拨】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键. 13、4m【解题分析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.【题目详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.14、1【解题分析】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF 的面积=正方形的面积=1.15、45【解题分析】由四边形ABCD 为正方形及半径相等得到AB =AF =AD ,∠ABD =∠ADB =45°,利用等边对等角得到两对角相等,由四边形ABFD 的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF +∠ADF =135°,进而确定出∠1+∠2=45°,由∠EFD 为三角形DEF 的外角,利用外角性质即可求出∠EFD 的度数.【题目详解】∵正方形ABCD ,AF ,AB ,AD 为圆A 半径,∴AB =AF =AD ,∠ABD =∠ADB =45°,∴∠ABF =∠AFB ,∠AFD =∠ADF ,∵四边形ABFD 内角和为360°,∠BAD =90°,∴∠ABF +∠AFB +∠AFD +∠ADF =270°,∴∠ABF +∠ADF =135°,∵∠ABD =∠ADB =45°,即∠ABD +∠ADB =90°,∴∠1+∠2=135°−90°=45°,∵∠EFD 为△DEF 的外角,∴∠EFD =∠1+∠2=45°.故答案为45【题目点拨】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键. 16、()23m n +【解题分析】提公因式法和应用公式法因式分解.【题目详解】解: ()()222mn +6mn+9m=m n +6n+9=m n+3. 故答案为:()23m n +【题目点拨】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.17、b (a ﹣4)1【解题分析】先提公因式,再用完全平方公式进行因式分解.【题目详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【题目点拨】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)平行四边形.【解题分析】(1)由“三线合一”定理即可得到结论;(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.【题目详解】证明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四边形,证明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四边形AECD是平行四边形.【题目点拨】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.19、(1)答案见解析;(2)1 4【解题分析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.202+1【解题分析】分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.详解:原式2﹣2+3﹣2×22+122+1.点睛:本题主要考查了实数运算,正确化简各数是解题的关键.21、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可. 【题目详解】原式=2a1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a=2+1代入得,原式=12+11-=12=22,故答案为22.【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.22、(1)5;(2)﹣2≤x<﹣12.【解题分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【题目详解】(1)原式312341,2=-+⨯+-1341,=-++-=5;(2)解不等式①得,x≥﹣2,解不等式②得,12x<-,所以不等式组的解集是122x-≤<-.用数轴表示为:【题目点拨】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.23、(2)证明见解析;(2)k2=2,k2=2.【解题分析】(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【题目详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【题目点拨】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k 的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.24、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解题分析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数÷总人数×100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【题目详解】(1)∵频数之和=3+6+7+9+10+5=40,∴所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=1540×100%=37.5%;(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.【题目点拨】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.。

四川省自贡市2019-2020学年中考数学一模试卷含解析

四川省自贡市2019-2020学年中考数学一模试卷含解析

四川省自贡市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 22.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是()A.4 B.5 C.6 D.73.在数轴上表示不等式组10240xx+≥⎧⎨-<⎩的解集,正确的是()A.B.C.D.4.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.325.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1086.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C .向左平移4个单位D .向右平移4个单位7.一元二次方程x 2-2x=0的解是( ) A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-28.在平面直角坐标系中,有两条抛物线关于x 轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x +6x+m ,则m 的值是 ( ) A .-4或-14B .-4或14C .4或-14D .4或149.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )A .B .C .D .10.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万B .420510⨯C .62.0510⨯D .72.0510⨯11.下列四个命题中,真命题是( ) A .相等的圆心角所对的两条弦相等 B .圆既是中心对称图形也是轴对称图形 C .平分弦的直径一定垂直于这条弦D .相切两圆的圆心距等于这两圆的半径之和12.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .正五边形 B .平行四边形 C .矩形 D .等边三角形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______. 14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.15.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________. 16.已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于________厘米.17.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1 y2的值为______.18.有一组数据:3,5,5,6,7,这组数据的众数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.(1)求证:.(2)若,求的长.20.(6分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.21.(6分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,322.(8分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元. (1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶)201523.(8分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A 、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC ﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒. (1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标. (3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.24.(10分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a 元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A 点的左边为(2,10),请你结合表格和图象,回答问题:购买量x (千克) 1 1.5 2 2.5 3付款金额y (元) a 7.5 10 12 b(1)由表格得:a= ; b= ; (2)求y 关于x 的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?25.(10分)如图,在 Rt △ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC 于点 D ,延长 BD 至点 E ,且BD=2DE ,连接 AE.(1)求线段 CD 的长;(2)求△ADE 的面积.26.(12分)已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图1,连接BC . (1)填空:OBC ∠= ︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?27.(12分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321⨯=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.2.C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.3.C【解析】【分析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.4.A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDS A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍),故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 5.A 【解析】 【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x ),第二次后的价格是168(1-x )2,据此即可列方程求解. 【详解】设每次降价的百分率为x , 根据题意得:168(1-x )2=1. 故选A . 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可. 6.A 【解析】将抛物线()214y x =-++平移,使平移后所得抛物线经过原点,若左右平移n 个单位得到,则平移后的解析式为:()214y x n =-+++,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m 个单位得到,则平移后的解析式为:()214m y x =-+++,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点, 故选A. 7.A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.8.D【解析】【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【详解】∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(-3,m-9),∴关于x轴对称的抛物线的顶点(-3,9-m),∵它们的顶点相距10个单位长度.∴|m-9-(9-m)|=10,∴2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m的值是4或1.故选D.【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.9.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.10.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.12.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 或0【解析】【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m 或 m . 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得:m=12.故答案为1 或 0 . 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1. 【点睛】本题考查了二元一次方程组的应用.15.1 2【解析】【分析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可. 【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=61= 122;故答案为:1 2 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.1【解析】【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】∵线段c是线段a和线段b的比例中项,∴249c=⨯,解得6c=±(线段是正数,负值舍去),∴6cmc=,故答案为:1.【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.17.﹣1.【解析】【分析】 根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y y x x x x =⋅===-- 故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.18.1【解析】【分析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1.【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)【解析】【分析】(1)由题意推出再结合,可得△BHE ~△BCO. (2)结合△BHE ~△BCO ,推出带入数值即可. 【详解】(1)证明:∵为圆的半径,是的中点,∴,,∵,∴,∴,∴,∵,∴,∴,又∵,∴∽.(2)∵∽,∴,∵,,∴得,解得,∴.【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.20.(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;【解析】【分析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C 的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴点C坐标为(﹣4,20),∴n=xy=﹣80.∴反比例函数解析式为:y=﹣,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函数解析式为:y=﹣2x+1,(2)当﹣=﹣2x+1时,解得,x1=10,x2=﹣4,当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,∴由图象得,x≥10,或﹣4≤x<0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式. 21.工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在Rt △BAE 中,∠BAE=680,BE=162米,∴(米). 在Rt △DEC 中,∠DGE=600,DE=176.6米,∴DE CE 102.08tan DGE 3==≈∠(米). ∴AC CE AE 102.0864.8037.2837.3=-≈-=≈(米).∴工程完工后背水坡底端水平方向增加的宽度AC 约为37.3米.在Rt △BAE 和Rt △DEC 中,应用正切函数分别求出AE 和CE 的长即可求得AC 的长.22.(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元.【解析】试题分析:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;利润=A 种品牌白酒瓶数×A 种品牌白酒一瓶的利润+B 种品牌白酒瓶数×B 种品牌白酒一瓶的利润,列出函数关系式; (2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;成本=A 种品牌白酒瓶数×A 种品牌白酒一瓶的成本+B 种品牌白酒瓶数×B 种品牌白酒一瓶的成本,列出不等式,求x 的值,再代入(1)求利润. (3)列出y 与x 的关系式,求y 的最大值时,x 的值.试题解析:(1)y=20x+15(600-x) =5x+9000,∴y 关于x 的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y 随x 的增大而增大,∴当x=360时,y 有最小值为10800,∴每天至少获利10800元;(3)()2015600100x y x x ⎛⎫=-+- ⎪⎝⎭ ()212509625100x =--+, ∵10100-<,∴当x=250时,y 有最大值9625, ∴每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元. 23.(1)y=43x+2;(2)y=43x+2;(2)①S=﹣2t+16,②点P 的坐标是(103,1);(3)存在,满足题意的P 坐标为(6,6)或(6,7+2)或(6,1﹣7.【解析】分析:(1)设直线DP 解析式为y=kx+b ,将D 与B 坐标代入求出k 与b 的值,即可确定出解析式; (2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD为固定值,表示出高,即可列出S 与t 的关系式;②设P (m ,1),则PB=PB′=m ,根据勾股定理求出m 的值,求出此时P 坐标即可;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.详解:(1)如图1,∵OA=6,OB=1,四边形OACB 为长方形,∴C (6,1).设此时直线DP 解析式为y=kx+b ,把(0,2),C (6,1)分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)①当点P 在线段AC 上时,OD=2,高为6,S=6; 当点P 在线段BC 上时,OD=2,高为6+1﹣2t=16﹣2t ,S=12×2×(16﹣2t )=﹣2t+16; ②设P (m ,1),则PB=PB′=m ,如图2,∵OB′=OB=1,OA=6,∴22OB OA '-,∴B′C=1﹣8=2,∵PC=6﹣m ,∴m 2=22+(6﹣m )2,解得m=103则此时点P的坐标是(103,1);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP12286-7,∴AP1=1﹣7P1(6,1﹣7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P32286-7,∴AP3=AE+EP37+2,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7)或(6,1﹣7).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.24.(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.【解析】【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;(3)代入(2)的解析式即可解答.【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,∵10÷2=5,∴a =5,b =2×5+5×0.8=1.故答案为a =5,b =1.(2)当0≤x≤2时,设线段OA 的解析式为y =kx ,∵y =kx 的图象经过(2,10),∴2k =10,解得k =5,∴y =5x ;当x >2时,设y 与x 的函数关系式为:y =1k x +b∵y =kx+b 的图象经过点(2,10),且x =3时,y =1,11210314k b k b +⎧⎨+⎩== ,解得142k b =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y =4x +2.∴y 关于x 的函数解析式为:()50242(2)x x y x x ⎧≤≤=⎨+>⎩; (3)甲农户将8元钱全部用于购买该玉米种子,即5x =8,解得x =1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y =4×5.6+2=24.4元. (8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元.【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x ,y 的值就可以;而求一次函数y =kx +b ,则需要两组x ,y 的值.25.(1);(2).【解析】分析:(1)过点D 作DH ⊥AB ,根据角平分线的性质得到DH=DC 根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算.详解:(1)过点D 作DH ⊥AB ,垂足为点H .∵BD 平分∠ABC ,∠C=90°,∴DH=DC=x ,则AD=3﹣x .∵∠C=90°,AC=3,BC=4,∴AB=1. ∵,即CD=;(2).∵BD=2DE,∴.点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.26.(1)1;(2)2217;(3)x83=时,y有最大值,最大值833=.【解析】【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当83<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【详解】(1)由旋转性质可知:OB=OC,∠BOC=1°,∴△OBC是等边三角形,∴∠OBC=1°.故答案为1.(2)如图1中.∵OB=4,∠ABO=30°,∴OA12=OB=2,AB3==3∴S△AOC12=•OA•AB12=⨯2×33=∵△BOC是等边三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC2227AB BC=+=,∴OP243221727AOCSAC===V.(3)①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin1°3=x,∴S△OMN12=•OM•NE12=⨯1.5x3⨯x,∴y33=x2,∴x83=时,y有最大值,最大值833=.②当83<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin1°32=(8﹣1.5x),∴y12=⨯ON×MH338=-x23.当x83=时,y取最大值,y83③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=3∴y12=•MN•OG=533x,当x=4时,y有最大值,最大值=3综上所述:y 83.【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.27.(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M、点N重合,则,3x-2=2x,解得x=2.所以经过2秒或2秒,点M、点N分别到原点O的距离相等.。

初中数学四川省自贡市中考模拟数学考试题及答案word版.docx

初中数学四川省自贡市中考模拟数学考试题及答案word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:与的差为0的数是()A. 3 B. 3 C. D.试题2:我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A . B. C . D.试题3:某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7试题4:在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B. C. D.试题5:如图,在平面直角坐标系中,A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则A 的半径为()A.3 B.4 C.5 D.8试题6:如图,在平行四边形ABCD中,AB=6,AD=9,的平分线交BC于E,交DC的延长线于F,于G,,则的周长为()A.11 B.10 C.9 D.8试题7:某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8 B.9 C.10 D.11试题8:如图,将一张边长为3的正方形纸片按虚线裁剪后恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A. B.9 C. D.试题9:如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4 B.5 C.6 D.7试题10:如图,已知A、B是反比例函数上的两点,轴,交y轴于C,动点P从坐标原点O出发,沿匀速运动,终点为C,过运动路线上任意一点P作轴于M,轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()试题11:多项式与多项式的公因式是___________.试题12:计算:°______.试题13:如图,边长为1的小正方形网格中,的圆心在格点上,则的余弦值是__________.试题14:已知关于x的方程,、是此方程的两个实数根,现给出三个结论:①;②;③.则正确结论的序号是_________.(填上你认为正确结论的所有序号)试题15:如图,在函数的图象上有点、、……、、,点的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点、、……、、分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为、、……、,则=________,=________.(用含n的代数式表示)试题16:解不等式组:并写出它的所有的整数解.试题17:先化简,然后从1、、中选取一个你认为合适的数作为a的值代入求值.试题18:用配方法解关于x的一元二次方程.试题19:某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?试题20:为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.试题21:如图,点B、C、D都在上,过点C作交OB延长线于点A,连接CD,且°,DB=cm.(1)求证:AC是的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留)试题22:如图,在东西方向的海岸线l上有一长为1km的码头MN,在码头西端M的正西19.5km处有一观察站A,某时刻测得一艘匀速直线航行的轮船位于A处的北偏西30°且与A相距40km的B处,经过1小时20分钟,又测得该轮船位于A处的北偏东60°且与A处相距km的C处.(1)求轮船航行的速度;(保留精确结果)(2)如果该轮船不改变航向继续航行,那么轮船能否正好至码头MN靠岸?请说明理由.试题23:将两块全等的三角板如图①摆放,其中°,°.(1)将图①中的顺时针旋转45°得图②,点是与的交点,点Q是与BC的交点,求证:;(2)在图②中,若,则等于多少?(3)如图③,在上取一点E,连接、,设,当时,求面积的最大值.试题24:如图,已知抛物线与轴交于A、B两点,与轴交于C点,直线BD交抛物线于点D,并且(2,3),.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,为半径且与直线AC相切的圆,若存在,求出圆心Q的坐标,若不存在,请说明理由.试题1答案:B试题2答案:A试题3答案:C试题4答案:D试题5答案:C试题6答案:D试题7答案:B试题8答案:A试题9答案:B试题10答案:A试题11答案:试题12答案:1试题13答案:试题14答案:①②试题15答案:4,试题16答案:解:解不等式①得解不等式②得不等式组的解集是不等式组的所有的整数解是1、2、3 试题17答案:解:原式当时原式试题18答案:解:当,,当,方程无实根试题19答案:解:(1)设:该校大寝室每间住x人,小寝室每间住y人可得方程组解方程组得答:该校大寝室每间住8人,小寝室每间住6人(2)设应安排小寝室z间解不等式得z为自然数答:共有6种安排住宿方案试题20答案:解:(1) (个)(个)答:该年级平均每班有4名文明行为劝导志愿者.补充条形图正确(2)解法一解法二(同一班级)(同一班级)试题21答案:(1)证明:连接CO,交DB于E,°∴∠O=2∠D=60°又∵∠OBE=30°∴∠BEO=180°-60°-30°=90°∵∴∠ACO=∠BEO=90°∴AC是的切线(2)解:∴在Rt△EOB中,°∴又∵∠D=∠DBO,DE=BE,∠CED=∠OEB ∴试题22答案:解:由题可得°∴轮船航行速度为.(2)解法一:作于D,于,延长BC交l于F 在中在中∽设轮船不改变航向继续航行正好能与码头MN靠岸.解法二:作于D,于,延长BC交l于F在中(6′)在中设直线BC的解析式为:,把B,C代入得 (9′) BC的解析式为:,令轮船不改变航向继续航行正好能与码头MN靠岸.试题23答案:(1)证明:°,°°又,(ASA)(2)作于,°,°°又,(3)解:°,°°由旋转的性质可知∽设在中,°时试题24答案:解:(1)过D作于N,D(2,3),,B(-4,0)把B(-4,0),D(2,3)代入得,抛物线的解析式为(2)过M作于,设当时,S有最大值9(3)如右图设AC所在直线的解析式为A(1,0)所在直线的解析式为设直线AC与HM交于F,F(-2,-6)设与直线AC相切于P 则设Q(-2,n),∽即化简得:或满足条件的点Q存在,其坐标为Q(2,1)或(2,4)。

四川省自贡市中考数学试卷含答案解析word版.docx

四川省自贡市中考数学试卷含答案解析word版.docx

2018年四川省自贡市中考数学试卷一、选择题(本大题共12小题,共48分)1.计算−3+1的结果是()A. −2B. −4C. 4D. 2【答案】A【解析】解:−3+1=−2;故选:A.利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.本题考查了有理数的加法,比较简单,属于基础题.2.下列计算正确的是()A. (a−b)2=a2−b2B. x+2y=3xyC. √18−3√2=0D. (−a3)2=−a6【答案】C【解析】解:(A)原式=a2−2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.根据相关的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3.2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为()A. 44.58×107B. 4.458×108C. 4.458×109D. 0.4458×1010【答案】B【解析】解:445800000=4.458×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55∘,则∠2的度数是()A. 50∘B. 45∘C. 40∘D. 35∘【答案】D【解析】解:由题意可得:∠1=∠3=55∘,∠2=∠4=90∘−55∘=35∘.故选:D.直接利用平行线的性质结合已知直角得出∠2的度数.此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.5.下面几何的主视图是()A. B. C.D.【答案】B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.6.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A. 8B. 12C. 14D. 16【答案】D【解析】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE//BC,DE=12BC,∴△ADE∽△ABC,∵DEBC =12,∴S△ADES△ABC =14,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.直接利用三角形中位线定理得出DE//BC,DE=12BC,再利用相似三角形的判定与性质得出答案.此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.7.在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A. 众数是98B. 平均数是90C. 中位数是91D. 方差是56【答案】D【解析】解:98出现的次数最多,∴这组数据的众数是98,A说法正确;x=15(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=15[(80−90)2+(98−90)2+(98−90)2+(83−90)2+(91−90)2]=15×278=55.6,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式s12=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]是解题的关键.8.回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A. 数形结合B. 类比C. 演绎D. 公理化【答案】A【解析】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.9.如图,若△ABC内接于半径为R的⊙O,且∠A=60∘,连接OB、OC,则边BC的长为()A. √2RB. √32RC. √22RD. √3R【答案】D【解析】解:延长BO交⊙O于D,连接CD,则∠BCD=90∘,∠D=∠A=60∘,∴∠CBD=30∘,∵BD=2R,∴DC=R,∴BC=√3R,故选:D.延长BO交圆于D,连接CD,则∠BCD=90∘,∠D=∠A=60∘;又BD=2R,根据锐角三角函数的定义得BC=√3R.此题综合运用了圆周角定理、直角三角形30∘角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.10.从−1、2、3、−6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=6x图象的概率是()A. 12B. 13C. 14D. 18【答案】B【解析】解:∵点(m,n)在函数y=6x的图象上,∴mn=6.列表如下:m−1−1−1222333−6−6−6 n23−6−13−6−12−6−123 mn−2−36−26−12−36−186−12−18mn的值为6的概率是412=13.故选:B.根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.11.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A. B. C. D.【答案】A【解析】解:由题意得,12lR=8π,则R=8πl,故选:A.根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.12.如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60∘,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A. √3−12a2B. √2−12a2C. √3−14a2D. √2−14a2【答案】C【解析】解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB//MG//CD,∴AM=MN,∵MH⊥CD,∠D=90∘,∴MH//AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,由题意得,∠MCD=30∘,∴MH=12MC=12a,CH=√32a,∴DH=a−√32a,∴CN=CH−NH=√32a−(a−√32a)=(√3−1)a,∴△MNC的面积=12×a2×(√3−1)a=√3−14a2,故选:C.作MG⊥BC于G,MH⊥CD于H,根据旋转变换的性质得到△MBC是等边三角形,根据直角三角形的性质和勾股定理分别求出MH、CH,根据三角形的面积公式计算即可.本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.二、填空题(本大题共6小题,共24分)13.分解因式:ax2+2axy+ay2=______.【答案】a(x+y)2【解析】解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a+b)2=a2+ 2ab+b2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.14.化简1x+1+2x2−1结果是______.【答案】1x−1【解析】解:原式=x−1(x+1)(x−1)+2x2−1=1x−1故答案为:1x−1根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.15. 若函数y =x 2+2x −m 的图象与x 轴有且只有一个交点,则m 的值为______.【答案】−1【解析】解:∵函数y =x 2+2x −m 的图象与x 轴有且只有一个交点,∴△=22−4×1×(−m)=0,解得:m =−1.故答案为:−1.由抛物线与x 轴只有一个交点,即可得出关于m 的一元一次方程,解之即可得出m 的值.本题考查了抛物线与x 轴的交点,牢记“当△=b 2−4ac =0时,抛物线与x 轴有1个交点”是解题的关键.16. 六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为______、______个.【答案】10;20【解析】解:设甲玩具购买x 个,乙玩具购买y 个,由题意,得{2x +4y =100x+y=30,解得{y =20x=10,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.根据二元一次方程组,可得答案.本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.17. 观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有______个○.【答案】6055【解析】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n 个图形共有:1+3n ,∴第2018个图形共有1+3×2018=6055,故答案为:6055.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.18.如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是______形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是______.【答案】菱;√154【解析】解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,此时PE+PF=ME,过点A作AN⊥BC,∵AD//BC,∴ME=AN,作CH⊥AB,∵AC=BC,∴AH=1,2,由勾股定理可得,CH=√152∵12×AB×CH=12×BC×AN,可得,AN=√154,∴ME=AN=√154,∴PE+PF最小为√154,故答案为√154.根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,求出ME即可.此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.三、解答题(本大题共8小题,共78分)19.计算:|−√2|+(12)−1−2cos45∘.【答案】解:原式=√2+2−2×√22=√2+2−√2=2.故答案为2.【解析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.20.解不等式组:{3x−5≤1①13−x3<4x②,并在数轴上表示其解集.【答案】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.【解析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.21.某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有______人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是______.【答案】100;600;25【解析】解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100−40−20−10=30,补全条形统计图,如图所示,(3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600(4)爱好阅读的学生人数所占的百分比40%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为25故答案为:(1)100;(3)600;(4)25(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.22.如图,在△ABC中,BC=12,tanA=3,∠B=30∘;4求AC和AB的长.【答案】解:如图作CH ⊥AB 于H .在Rt △BCH 中,∵BC =12,∠B =30∘,∴CH =12BC =6,BH =√BC 2−CH 2=6√3, 在Rt △ACH 中,tanA =34=CH AH ,∴AH =8,∴AC =√AH 2+CH 2=10,∴AB =AH +BH =8+6√3.【解析】如图作CH ⊥AB 于H.在Rt △求出CH 、BH ,这种Rt △ACH 中求出AH 、AC 即可解决问题;本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23. 如图,在△ABC 中,∠ACB =90∘.(1)作出经过点B ,圆心O 在斜边AB 上且与边AC相切于点E 的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC =4;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【答案】解:(1)⊙O 如图所示;(2)作OH ⊥BC 于H .∵AC 是⊙O 的切线,∴OE ⊥AC ,∴∠C =∠CEO =∠OHC =90∘,∴四边形ECHO 是矩形,∴OE =CH =52,BH =BC −CH =32,在Rt △OBH 中,OH =√(52)2−(32)2=2, ∴EC =OH =2,BE =√EC 2+BC 2=2√5,∵∠EBC =∠EBD ,∠BED =∠C =90∘,∴△BCE∽△BED ,∴DEEC =BDBE,∴DE2=2√5,∴DE=√5.【解析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得DEEC =BDBE,解决问题;本题考查作图−复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550−1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707−1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a> 0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式______;(2)证明log a MN=log a M−log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36−log34=______.【答案】3=log464;1【解析】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma=a m−n,由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N(a>0,a≠1,M>0,N>0);(3)log32+log36−log34,=log3(2×6÷4),=log33,=1,故答案为:1.(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.25.如图,已知∠AOB=60∘,在∠AOB的平分线OM上有一点C,将一个120∘角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【答案】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=12∠AOB=30∘,∵CD⊥OA,∴∠ODC=90∘,∴∠OCD=60∘,∴∠OCE=∠DCE−∠OCD=60∘,在Rt△OCD中,OD=OE⋅cos30∘=√32OC,同理:OE=√32OC,∴OD+OD=√3OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90∘,∵∠AOB=60∘,∴∠FCG=120∘,同(1)的方法得,OF=√32OC,OG=√32OC,∴OF+OG=√3OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120∘,∠FCG=120∘,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE−EG,∴OF+OG=OD+EG+OE−EG=OD+OE,∴OD+OE=√3OC;(3)(1)中结论不成立,结论为:OE−OD=√3OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90∘,∵∠AOB=60∘,∴∠FCG=120∘,同(1)的方法得,OF=√32OC,OG=√32OC,∴OF+OG=√3OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120∘,∠FCG=120∘,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF−OD=EG−OD,OG=OE−EG,∴OF+OG=EG−OD+OE−EG=OE−OD,∴OE−OD=√3OC.【解析】(1)先判断出∠OCE=60∘,再利用特殊角的三角函数得出OD=√32OC,同OE=√32OC,即可得出结论;(2)同(1)的方法得OF+OG=√3OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.26.如图,抛物线y=ax2+bx−3过A(1,0)、B(−3,0),直线AD交抛物线于点D,点D的横坐标为−2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R ,使得P 、Q 、D 、R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.【答案】解:(1)把(1,0),(−3,0)代入函数解析式,得{9a −3b −3=0a+b−3=0,解得{b =2a=1,抛物线的解析式为y =x 2+2x −3;当x =−2时,y =(−2)2+2×(−2)−3,解得y =−3,即D(−2,−3).设AD 的解析式为y =kx +b ,将A(1,0),D(−2,−3)代入,得{−2k +b =−3k+b=0,解得{b =−1k=1,直线AD 的解析式为y =x −1;(2)设P 点坐标为(m,m −1),Q(m,m 2+2m −3),l =(m −1)−(m 2+2m −3)化简,得l =−m 2−m +2配方,得l =−(m +12)2+94,当m =−12时,l 最大=94;(3)DR//PQ 且DR =PQ 时,PQDR 是平行四边形,由(2)得0<PQ ≤92,又PQ 是正整数,∴PQ =1,或PQ =2.当PQ =1时,DR =1,−3+1=−2,即R(−2,−2),−3−1=−4,即R(−2,−4);当PQ =2时,DR =2,−3+2=−1,即R(−2,−1),−3−2=−5,即R(−2,−5),综上所述:R 点的坐标为(−2,−2),(−2,−4),(−2,−1)(−2,−5),使得P 、Q 、D 、R 为顶点的四边形是平行四边形.【解析】(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D 点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(3)根据PQ 的长是正整数,可得PQ ,根据平行四边形的性质,对边平行且相等,可得DR 的长,根据点的坐标表示方法,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用二次函数的性质;解(3)的关键是利用DR =PQ 且是正整数得出DR 的长.。

【最新】四川省自贡市中考数学模拟试卷(及答案解析)

【最新】四川省自贡市中考数学模拟试卷(及答案解析)

四川省自贡市中考数学模拟试卷(含答案)(考试时间:120分钟分数:150分)一.选择题(共10小题,满分30分,每小题3分)1.在,,,sin30°,tan30°,(﹣)0,,这八个数中,整数和无理数分别有()A.3个,2个B.2个,2个C.2个,3个D.3个,3个2.下列运算正确的是()A.π0=1B.=C.(2A2)3=6A6D.(a+b)2=a2+b23.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形,正四边形,正六边形,则另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形4.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的()A.众数B.方差C.平均数D.频数5.下列x的值不是不等式﹣2x+4<0的解,答案是()A.﹣2B.3C.3.5D.106.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB 的关系为()A.∠AIB=∠AOB B.∠AIB≠∠AOBC.4∠AIB﹣∠AOB=360°D.2∠AOB﹣∠AIB=180°7.已知AB是圆O的直径,AC是弦,若AB=4,AC=2,则sin ∠C等于()A.B.C.D.8.如图,已知直线MN:y=kx+2交x轴负半轴于点A,交y轴于点B,∠BAO=30°,点C是x轴上的一点,且OC=2,则∠MBC的度数为()A.75°B.165°C.75°或45°D.75°或165°9.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③8a+c >0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题,满分30分,每小题3分)11.64的立方根为.12.函数y=的自变量x的取值范围是.13.已知x2+y2=10,xy=3,则x+y=.14.若,则(b﹣a)2015=.15.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集.16.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=17.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为,面积为.18.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于.19.在实数范围内分解因式:x2y﹣3y=.20.如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是度.三.解答题(共11小题,满分90分)21.计算:4sin60°﹣|﹣1|+(﹣1)0+22.(7分)已知关于x的一元二次方程x2+ax+a﹣2=0.(1)若该方程的一个根为﹣2,求a的值及该方程的另一根;(2)求证:无论a取何实数,该方程都有两个不相等的实数根.23.先化简:(+1)÷+,然后从﹣2≤x≤1的范围内选取一个合适的整数作为x的值代入求值.24.如图,在平行四边形ABCD中,点E在边BC上,点F在边AD 的延长线上,且DF=BE,求证:BD∥EF.25.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于 1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.26.在如图所示的方格中,每个小正方形的边长为1,点A、B、C 在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.27.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?28.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线EF,交AB和AC的延长线于E、F.(1)求证:FE⊥AB;(2)当AE=6,sin∠CFD=时,求EB的长.29.如图,一次函数y=ax+b与反比例函数y=的图象交于A、B 两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.30.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.31.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB 的面积最大,并求出这个最大值.答案一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用无理数是无限不循环小数,得出无理数的个数,利用整数的概念得出整数的个数即可.【解答】解:整数有=7,=1,﹣=﹣3,三个;无理数有tan30°=,=2,三个,故选:D.【点评】此题主要考查了无理数、有理数的定义,无理数、有理数的辨别一直是学生易混淆的难点,关键是根据无理数、整数的定义解答.2.【分析】直接利用实数运算法则以及零指数幂的性质和积的乘方运算法则分别化简得出答案.【解答】解:A、π0=1,正确,符合题意;B、+,无法计算,故此选项错误;C、(2A2)3=8A6,故此选项错误;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:A.【点评】此题主要考查了实数运算以及零指数幂的性质和积的乘方运算,正确掌握运算法则是解题关键.3.【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明才可能进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°﹣60°﹣90°﹣120°=90°,∴另一个为正四边形,故选:B.【点评】本题考查平面密铺的知识,难度一般,解决此类题,可以记住几个常用正多边形的内角,及能够用多种正多边形镶嵌的几个组合.4.【分析】根据众数、平均数、频数、方差的概念分析.【解答】解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:B.【点评】此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】求出不等式的解集,即可作出判断.【解答】解:不等式﹣2x+4<0,解得:x>2,则﹣2不是不等式的解.故选:A.【点评】此题考查了不等式的解集,求出不等式的解集是解本题的关键.6.【分析】根据圆周角定义,以及内心的定义,可以利用∠C表示出∠AIB和∠AOB,即可得到两个角的关系.【解答】解:∵点O是△ABC的外心,∴∠AOB=2∠C,∴∠C=∠AOB,∵点I是△ABC的内心,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠AIB=180°﹣(∠IAB+∠IBA)=180°﹣(∠CAB+∠CBA),=180°﹣(180°﹣∠C)=90°+∠C,∴2∠AIB=180°+∠C,∵∠AOB=2∠C,∴∠AIB=90°+∠AOB,即4∠AIB﹣∠AOB=360°.故选:C.【点评】本题考查了圆周角定理以及三角形的内心的性质,正确利用∠C表示∠AIB的度数是关键.7.【分析】如图,连接BC.求出∠A,再证明∠A=∠ACO即可解决问题.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴cos A==,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴sin∠OCA=sin30°=.故选:B.【点评】本题考查圆周角定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【分析】分两种情况考虑:①C点在x轴正半轴;②C点在x轴负半轴.分别计算出∠MBO、∠OBC度数,两个角的和差即为所求度数.【解答】解:由已知可得∠MBC=120°.如图,分两种情况考虑:①当点C在x轴正半轴上时,∠C1BO=45°,∠MBC1=120°﹣45°=75°;②当点C在x轴负半轴上时,∠MBC2=120°+45°=165°.故选:D.【点评】本题主要考查了一次函数图象的性质以及分类讨论思想.9.【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故选:C.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由对称轴可知:<0,∴ab>0,由抛物线与y轴的交点可知:c<0,∴abc<0,故①正确;②由图象可知:=﹣1,∴b=2a,∴2a﹣b=0,故②正确;③(﹣3,0)关于直线x=﹣1的对称点为(1,0),∴令x=1,y=a+b+c=0,∴c=﹣3a,∵a>0,∴8a+c=5a>0,故④正确;④(﹣5,y1)关于直线x=﹣1的对称点(3,y1),∴若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,故④正确;故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.二.填空题(共10小题,满分30分,每小题3分)11.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.12.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.【点评】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.13.【分析】根据完全平方公式即可求出答案.【解答】解:由完全平方公式可得:(x+y)2=x2+y2+2xy,∵x2+y2=10,xy=3∴(x+y)2=16∴x+y=±4,故答案为:±4【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.14.【分析】根据已知等式,利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵+|2a﹣b+1|=0,∴,①+②得:3a=﹣6,即a=﹣2,把a=﹣2代入①得:b=﹣3,则原式=(﹣3+2)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b>kx﹣1的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为:﹣1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.【分析】根据同弧所对的圆周角相等,求出∠DCB=∠A=32°,再根据直径所对的圆周角为90°,求出∠ABD的度数.【解答】解:∵∠DCB=32°,∴∠A=32°,∵AB为⊙O直径,∴∠ADB=90°,在Rt△ABD中,∠ABD=90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.17.【分析】根据已知可求得菱形的边长及其两内角的度数,根据勾股定理可求得其对角线的长,根据菱形的面积等于两对角线乘积的一半求得其面积.【解答】解:根据已知可得,菱形的边长AB=BC=CD=AD=10cm,∠ABC=60°,∠BAD=120°,∴△ABC为等边三角形,∴AC=AB=10cm,AO=CO=5cm,在Rt△AOB中,根据勾股定理得:BO==5,∴BD=2BO=10(cm),=×AC×BD=×10×10=50(cm2);则S菱形ABCD故答案为:10cm,50cm2.【点评】本题考查的是菱形的面积求法及菱形性质的综合.菱形的面积有两种求法(1)利用底乘以相应底上的高(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.18.【分析】恒星的面积=边长为4的正方形面积﹣半径为2的圆的面积,依此列式计算即可.【解答】解:如图.2+2=4,恒星的面积=4×4﹣4π=16﹣4π.故答案为16﹣4π.【点评】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积﹣半径为2的圆的面积.19.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(x2﹣3)=y(x+)(x﹣),故答案为:y(x+)(x﹣)【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.20.【分析】根据已知可求得∠BEC的度数,根据三角形外角定理可求得∠AGD的度数.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABC=90°,∠ADG=∠CDG,∠ABD=45°,∵GD=GD,∴△ADG≌△CDG,∴∠AGD=∠CGD,∵∠CGD=∠EGB,∴∠AGD=∠EGB,∵△ABE是等边三角形,∴AB=BE,∠ABE=60°,∴BE=BC,∠EBC=150°,∴∠BEC=∠ECB=15°,∴∠BGE=180°﹣∠BEC﹣∠EBG=180°﹣15°﹣60°﹣45°=60°,∴∠AGD=60°故答案为60.【点评】本题考查等边三角形的性质及正方形的性质的运用.三.解答题(共11小题,满分90分)21.【分析】将特殊锐角三角函数值代入、计算绝对值、零指数幂、化简二次根式,再进一步计算可得.【解答】解:原式=4×﹣1+1+4=2+4=6.【点评】本题主要考查实数的运算,解题的关键是掌握特殊锐角三角函数值、绝对值性质、零指数幂、二次根式性质.22.【分析】(1)将x=﹣2代入方程x2+ax+a﹣2=0得到a的值,再解方程求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】解:(1)将x=﹣2代入方程x2+ax+a﹣2=0得,4﹣2a+a﹣2=0,解得,a=2;方程为x2+2x=0,解得x1=0,x2=﹣2,即方程的另一根为0;(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.23.【分析】根据分式的混合运算法则把原式化简,根据条件选择合适的值代入计算即可.【解答】解:原式=(+)÷+=•﹣=﹣=,∵x≠±1,且x≠0,∴可取x=﹣2,则原式==8.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则与分式有意义的条件是解题的关键.24.【分析】只要证明四边形DBEF是平行四边形即可解决问题.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵DF=BE,∴四边形DBEF是平行四边形,∴BD∥EF;【点评】本题考查了平行四边形的判定与性质,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.25.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.26.【分析】(1)利用BC为小方格正方形的对角线,画DF∥BC,MN⊥BC,利用网格特点和旋转的性质画出B、C旋转后的对应点B′、C′,从而得到△AB′C′;(2)利用三角形面积公式计算.【解答】解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.27.【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.28.【分析】(1)先证明OD∥AB,得出∠ODF=∠AEF,再由切线的性质得出∠ODF=90°,证出∠AEF=90°,即可得出结论;(2)设OA=OD=OC=r,先由三角函数求出AF,再证明△ODF∽△AEF,得出对应边成比例求出半径,得出AB,即可求出EB.【解答】(1)证明:连接OD,如图所示:∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠ACB=∠B,∴∠ODC=∠B,∴OD∥AB,∴∠ODF=∠AEF,∵EF与⊙O相切,∴OD⊥EF,∴∠ODF=90°,∴∠AEF=∠ODF=90°,∴EF⊥AB;(2)解:设OA=OD=OC=r,由(1)知:OD∥AB,OD⊥EF,在Rt△AEF中,sin∠CFD==,AE=6,∴AF=10,∵OD∥AB,∴△ODF∽△AEF,∴,∴,解得r=,∴AB=AC=2r=,∴EB=AB﹣AE=﹣6=.【点评】本题考查了切线的性质、相似三角形的判定与性质以及解直角三角形;熟练掌握切线的性质,并能进行有关推理计算是解决问题的关键.29.【分析】(1)根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和,可得答案.【解答】解:(1)如图:,tan∠AOE=,得OE=6,∴A(6,2),y=的图象过A(6,2),∴,即k =12,反比例函数的解析式为 y =, B (﹣4,n )在 y =的图象上,解得n ==﹣3, ∴B (﹣4,﹣3),一次函数y =ax +b 过A 、B 点,,解得,一次函数解析式为y =﹣1;(2)当x =0时,y =﹣1,∴C (0,﹣1),当y =﹣1时,﹣1=,x =﹣12,∴D (﹣12,﹣1),s OCBD =S △ODC +S △BDC=+|﹣12|×|﹣2| =6+12=18.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.30.【分析】在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠ECA =30°,∠FCB =60°,CD =90,EF ∥AB ,CD ⊥AB 于点D .∴∠A =∠ECA =30°,∠B =∠FCB =60°.在Rt △ACD 中,∠CDA =90°,tan A =,∴AD==90×=90.在Rt△BCD中,∠CDB=90°,tan B=,∴DB==30.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.【点评】解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.31.【分析】(1)抛物线的顶点D的横坐标是2,则x=﹣=2,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解;(2)分AB=AC、AB=BC、AC=BC,三种情况求解即可;(3)由S=•PH•x B,即可求解.△PAB【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S=•PH•x B=(﹣m2+12m),△PAB当m=2.5时,S取得最大值为:,△PAB答:△PAB的面积最大值为.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2024届四川省自贡市富顺县九年级中考数学模拟试题(一模)含答案

2024届四川省自贡市富顺县九年级中考数学模拟试题(一模)含答案

80分)的学生人数.21.(8分)如图,点B 在线段AC 上,,,.求证:BD CE ∥AB EC =DB BC =.AD EB =22.(8分)加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某社区为了增强社区居民的文明意识和环境意识,营造干净、整洁、舒适的人居环境,准备购买甲、乙两种分类垃圾桶.通过市场调研得知:乙种分类垃圾桶的单价比甲种分类垃圾桶的单价多40元,且用4800元购买甲种分类垃圾桶的数量与用6000元购买乙种分类垃圾桶的数量相同.(1)求甲、乙两种分类垃圾桶的单价;(2)该社区计划用不超过3600元的资金购买甲、乙两种分类垃圾桶共20个,则最少需要购买甲种分类垃圾桶多少个?23.(10分)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为,楼顶C 点处60︒的俯角为,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大30︒楼的高度BC (结果保留根号)24.(10分)我们规定:方程的变形方程为.例20ax bx c ++=()()2110a x b x c ++++=如,方程的变形方程为22340x x -+=()()2213140x x --++=(1)直接写出方程的变形方程;2250x x +-=数学答案一、选择题1.A 2.C3.B4.D 5.D6.B 7.C 8.C9.D9.D 10.B 11.B 12.A二、填空题13.14.15.7(3)(3)b a a +-3-16. 17.①②④ (备注:答对1个给1分,答对2个给2分,5-答案中有③的不给分) 18. 27三、解答题19.(1)原式(2分)232331=--+-(4分)123=-(2)x 1 = 0 x 2 = -2 (8分)20.解:(1)6012 (2分)(2)B (4分)(3)(人)182490063060+⨯=答:估计其中竞赛成绩达到80分以上(含80分)的学生人数有630人 (8分)21.证明:,//BD CE ,(2分)ABD C ∴∠=∠在和中,ABD ∆ECB ∆,,,AB EC ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩, (6分)()ABD ECB SAS ∴∆≅∆.(8分)AD EB ∴=22.解:(1)设甲种分类垃圾桶的单价是x 元/个;乙种分类垃圾桶的单价是(x +40)元/个,由题意可知:, (2分)4800600040x x =+解得x =160,(3分)经检验x =160是所列方程的根且符合实际(4分)则四边形是矩形,CQHB ∴,QH BC =BH CQ =由题意可得:,80AP =26.解:(1)直线y=∴,(4,0)B (0,8)A 将,代入抛物线表达式得,(4,0)B (0,8)A 2y x bx c =-++解得16408b c c -++=⎧⎨=⎩28b c =⎧⎨=⎩∴抛物线的表达式为: (4分)228y x x =-++(2)i )∵点C 是直线AB 上方抛物线上一点,且轴,轴.CD x ∥CE y ∥∴,∴CDE △∽OBA △CE DE OA AB =设点,,则,2(,28)C t t t -++(04)t <<(),28E t t -+∴()2228284CE t t t t t =-++--+=-+∵,∴OA =8,∵,(0,8)A 38DE AB =∴,∴,解得,,348CE DE OA B ==24388t t -+=11t =23t =∴或;(9分)(1,9)C (3,5)C ii )由i )知:=90°,DCE ∠又∵点M 为线段DE 中点,点C ,M ,O 三点在同一直线上,∴DM =CM =EM∴,,MDC MCD ∠=∠MCE MEC ∠=∠∵轴、轴,CE y ∥CE x ∥∴,,,,MCE MOA ∠=∠MEC MAO ∠=∠MDC MBO ∠=∠MCD MOB ∠=∠∴,,MOA MAO ∠=∠MBO MOB ∠=∠∴AM =OM ,BM =OM ,∴AM =BM ,∴点M 是AB 的中点,∴,∴直线OM 的函数表达式,(2,4)M 2y x =,解得,2228y x y x x =⎧⎨=-++⎩22x =±∵,∴,∴,04t <<22t =24828CE t t =-+=-∵轴,∴,∴,CE y ∥CEM △∽M OA △828218CM CE OM OA -===-故的值为. (14分)CM OM 21-温馨提示:试卷中的解答题中若存在一题多解的情况,请阅卷老师根据学生的答题情况给分,只要方法、过程都对的不扣分。

四川省自贡市中考数学模拟考试试卷

四川省自贡市中考数学模拟考试试卷

四川省自贡市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2017九下·钦州港期中) 反比例函数y=(m+1)x-1中m的取值范围是()A . m≠1B . m≠-1C . m≠±1D . 全体实数2. (2分)(2019·宁波模拟) 如图,平面直角坐标系中,矩形OABC的边与函数y= (x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A . 4B . 6C . 8D . 不能确定3. (2分) (2019·婺城模拟) 已知点(1,y1),(2,y2)(3,y3)均在反比例函数的图象上,则y1 , y2 , y3 ,的大小关系是()A . y3<y2<y1B . y2<y3<y1C . y1<y2<y3D . y1<y3<y24. (2分)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .5. (2分)某体育场计划修建一个容积一定的长方体游泳池,设容积为a(m3),泳池的底面积S(m2)与其深度x(m)之间的函数关系式为S=(x>0),该函数的图象大致是()A .B .C .D .6. (2分) (2020八下·温州期末) 已知A(x1 , y1)、B(x2 , y2)均在反比例函数y=的图象上,若0<x1<x2 ,则y1、y2的大小关系为()A . y1<y2<0B . y2<y1<0C . 0<y1<y2D . 0<y2<y1二、填空题 (共6题;共7分)7. (1分)如图,已知直线y= x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),点C为双曲线y=(k>0)在第一象限内的一点,且位于直线y= x上方,若△AOC的面积为6,则点C的坐标为________.8. (1分)(2017·眉山) 已知反比例函数y= ,当x<﹣1时,y的取值范围为________.9. (1分) (2019八下·江阴月考) 如图,等腰直角△ABC位于第二象限,BC=AC=3,直角顶点C在直线y =﹣x上,且点C的横坐标为﹣4,边BC、AC分别平行于x轴、y轴.若双曲线y=与△ABC的边AB有2个公共点,则k的取值范围为________ 。

四川省自贡市九年级数学中考一模试卷

四川省自贡市九年级数学中考一模试卷

四川省自贡市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) (2019七上·丰宁月考) 4的倒数的相反数是()A . -4B . 4C . -D .2. (2分)从上面看如图所示的几何体,得到的图形是()A .B .C .D .3. (2分)(2014·福州) 下列计算正确的是()A . x4•x4=x16B . (a3)2=a5C . (ab2)3=ab6D . a+2a=3a4. (2分) (2018九上·富顺期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分) (2015九上·福田期末) 抛物线y=2(x﹣1)2+1的顶点坐标是()A . (1,1)B . (1,﹣1)C . (﹣1,1)D . (﹣1,﹣1)6. (2分) (2019八上·靖远月考) 函数的图象一定经过点()A . (3,5)B . (-2,3)C . (2,7)D . (4,10)7. (2分)(2020·温州模拟) 如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E, F分别在边AB,BC上,△GHD的边GD在边AD上,则的值为()A .B .C .D .8. (2分) (2017九上·江门月考) 要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A . x(x+1)=15B . x(x﹣1)=15C . x(x+1)=15D . x(x﹣1)=159. (2分) (2017九上·红山期末) 如图,A、B、C为⊙O上的任意三点,若∠BOC=100°,则∠BAC的度数为()A . 50°B . 80°C . 100°D . 130°10. (2分)(2020·眉山) 如图,正方形中,点F是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点H,连接.以下四个结论:① ;② ;③ ;④ .其中正确的个数为()A . 1个B . 2个C . 3个D . 4个11. (2分) (2019九上·文登期中) 如图,点A(a , 1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A . y=xB . y=x+1C . y=x+2D . y=x+3二、填空题 (共5题;共5分)12. (1分) (2017八下·宁德期末) 因式分解:ax2﹣4a=________.13. (1分)(2018·金华模拟) 二次根式有意义,则x的取值范围是________.14. (1分)(2014·南京) 截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为________.15. (1分) (2017八下·文安期末) 如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是________.16. (1分)已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是________.三、解答题 (共9题;共91分)17. (5分) (2020七下·吉林月考) 解方程组:18. (5分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:AC=AD.19. (5分) (2016九上·黑龙江月考) 先化简,再求代数式÷(m﹣1)的值,其中m= ﹣1.20. (11分)(2017·随州) 某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.21. (10分)(2020·广陵模拟) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)在图中找出一对相似三角形,并说明理由;(2)若AB=8,AD= ,AF= ,求AE的长.22. (10分) (2019七下·昭平期中) 2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)23. (15分)(2018·嘉兴模拟) 如图,已知一次函数y=x﹣2与反比例函数y= 的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;(3)坐标原点为O,求△AOB的面积.24. (15分)(2020·仙居模拟) 如图1,Rt△ABC中,∠BCA=90°,BC=3,AC=4,直线AM⊥CA,点D是AC 上的动点,过A、D、B三点的圆交纸线AM于点E,连DE。

2024年四川省自贡市沿滩区自贡联考中考模拟一模数学试题

2024年四川省自贡市沿滩区自贡联考中考模拟一模数学试题

2024年四川省自贡市沿滩区自贡联考中考模拟一模数学试题一、单选题1.在12,2-中,是无理数的是( )A .2-B .12C D .22.已知132n x y +与4313x y 是同类项,则n 的值是( )A .2B .3C .4D .53.如图,AB CD P ,AC BC ⊥于点C ,165∠=︒,则2∠的度数为( )A .65︒B .25︒C .35︒D .45︒4.如图所示的几何体是由5个完全相同的小正方体搭成的,它的俯视图是( )A .B .C .D .5.不等式组2010x x -≤⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .6.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是( )A .8374x y x y +=⎧⎨-=⎩B .8374x y x y -=⎧⎨+=⎩C .8374x y x y+=⎧⎨+=⎩D .8374x y x y-=⎧⎨-=⎩7.下列计算正确的是( ) A .2()a ab a a b +÷=+ B .22a a a ⋅= C .222()a b a b +=+D .325()a a =8.在ABC V 中,若A ∠,B ∠都是锐角,且1sin 2A =,1cos 2B =,则ABC V 的形状是( ) A .钝角三角形B .等腰三角形C .锐角三角形D .直角三角形9.已知一元二次方程2320x x -+=的两个根为1x 、2x ,则1211+x x 的值为( ) A .-3B .23-C .1D .3210.如图,⊙O 是正五边形ABCDE 的外接圆,点P 是»AE 的一点,则∠CPD 的度数是( )A .30°B .36°C .45°D .72°11.如图所示,在边长为6的正方形ABCD 中,E 为CD 上的点,F 为BC 的中点,过点F 作HF EF ⊥交AB 于点H ,点M ,N 分别是HF 和BF 的中点,若2DE =,则MN 的长为( )A .98B .94C .1D .8912.定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论: ①点()13,8Q ,()22,2Q --都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4; ③抛物线223y x x =--上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB 其中,正确结论的个数是( )A .1B .2C .3D .4二、填空题13.2022年2月4日北京冬奥会开幕,据统计当天约有57000000人次访问了奥林匹克官方网站,这个访问量可以用科学记数法表示为.14.49的算术平方根是, 15.计算2414923x x x ---的结果是.16.把二次函数2y x =的图象向上平移3个单位,再向右平移2个单位,可得抛物线的表达式为.17.如图,AC 为矩形ABCD 的对角线,5AB =,154BC =,把CD 绕点D 旋转,点C 的对应点为点E ,当DE AC ∥时,CE 的长为.18.如图,在Rt ABC △中,90ACB ∠=︒,4BC =,10AC =,点D 是AC 上的一个动点,以CD 为直径作圆O ,连接BD 交圆O 于点E ,则AE 的最小值为.三、解答题19.计算:()022sin 45π4-+︒--;20.如图,在菱形ABCD 中,点E F 、分别在BC CD 、边上,AEB AFD ∠=∠,求证:BE DF =.21.如图,ABC ∆三个顶点的坐标分别为()11A ,,()42B ,,()34C ,.(1)画ABC ∆关于y 轴成轴对称的111A B C ∆,并直接写出顶点1A 的坐标.(2)在x 轴上找一点P ,使PAB ∆的周长最小,在x 轴上标明点P ,并直接写出PAB ∆最小周长.22.某校在课后服务中,成立了以下社团:A .计算机,B .围棋,C .篮球,D .书法.每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D 所占扇形的圆心角为150︒.请结合图中所给信息解答下列问题: (1)这次被调查的学生共有______ 人; (2)请你将条形统计图补充完整;(3)在书法社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,恰好四位同学中有两名是男同学,两名是女同学,现决定从这四人中任选两名参加全市书法大赛,用画树状图求恰好选中一男一女的概率.23.某校兴趣小组同学为测量鼓楼高度,在鼓楼AB 正对面C 处,用高度为1米的测角仪观测鼓楼的最高处A 的仰角为43︒,再向前走了1米到E 处,观测最高处A 的仰角为45︒.请你根据以上信息,求出鼓楼AB 的高度.(结果保留一位小数)参考数据:sin430.68cos430.73tan430.93︒≈︒≈︒≈,,24.如图,一次函数y kx b =+的图象与y 轴交于点()0,1D -,且与反比例函数my x=的图象交于点()2,1A .(1)求反比例函数和一次函数的解析式;(2)根据图象,求使反比例函数的值大于一次函数的值的x 的取值范围. 25.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图,点P 是等边三角形ABC 内一点,1PA =,PB 2PC =.求BPC ∠的度数.为利用已知条件,不妨把BPC ∆绕点C 顺时针旋转60︒得'AP C ∆,连接'PP ,则'PP 的长为_______;在'PAP ∆中,易证'90PAP ∠=︒,且'PP A ∠的度数为________,综上可得BPC ∠的度数为_______;(2)类比迁移如图,点P 是等腰Rt ABC ∆内的一点,90ACB ∠=︒,2PA =,PB 1PC =.求APC ∠的度数;(3)拓展应用如图,在四边形ABCD 中,5BC =,8CD =,12AB AC AD ==,2BAC ADC ∠=∠,请直接写出BD 的长.26.已知抛物线()20y ax bx c a =++≠与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点()0,3C -.(1)求抛物线的表达式;(2)如图1,在对称轴上是否存在点D ,使B C D △是以BC 直角边的直角三角形?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)如图2,点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当PMAM最大时,请直接写出点P 的坐标.。

精选自贡市初三中考数学第一次模拟试卷

精选自贡市初三中考数学第一次模拟试卷

精选自贡市初三中考数学第一次模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,,所以该矩形的周长=4×2+8×2=24.故答案为24.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=2(231 ---+=1(2)()312215 xx x-+⎧⎨+⎩>①<②解①得:x>1解②得:x<3∴不等式组的解集为:1<x<3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x-1),得:2+(x+1)(x-1)=x(x+1),解得:x=1,检验:x=1时,(x+1)(x-1)=0,则x=1是分式方程的增根,所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD:CD=1:3,然后根据AD、CD的长度,然后在△ABD中求出BD的长度,最后BC=CD-BD即可求解.【解答】解:由题意得,AD :CD=1:3, 设AD=x ,CD=3x ,则AC ===, 解得:x=6,则AD=6,CD=18, 在△ABD 中, ∵∠ABD=30°,∴则≈8(m ).答:改动后电梯水平宽度增加部分BC 的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解. 18. 【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得. 【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人), 则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:由树状图知,共有9种等可能结果,其中两个路口都遇到绿灯的结果数为1,所以两个路口都遇到绿灯的概率为19.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 19. 【分析】(1)先将点A 坐标代入反比例函数解析式中求出k2,进而求出点B 坐标,最后将点A ,B 坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n-4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A (-1,4)在反比例函数y=2k x (k2≠0)的图象上,∴k2=-1×(-4)=4,∴反比例函数解析式为y=4x ,将点B (4,m )代入反比例函数y=4x 中,得m=1,∴B (4,1), 将点A (-1,-4),B (4,1)代入一次函数y=k1x+b 中,得11441k b k b -⎨+⎩+-⎧==, ∴113k b ⎩-⎧⎨==, ∴一次函数的解析式为y=x-3;(2)由(1)知,直线AB 解析式为y=x-3, ∴C (0,-3), ∵B (4,1),P (n ,0),∴BC2=32,CP2=n2+9,BP2=(n-4)2+1, ∵△BCP 为等腰三角形, ∴①当BC=CP 时, ∴32=n2+9,∴②当BC=BP 时,32=(n-4)2+1, ∴③当CP=BP 时,n2+9=(n-4)2+1, ∴n=1(舍), 即:满足条件的n 为.【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20. 【分析】(1)连接CD,由BC为直径可知CD⊥AB,根据同角余角相等可知∠A=∠BCD,根据BD BD=,可得∠F=∠BCD,从而证明结论.(2)连接OD、OF,易得∠OBD=∠ODB,由∠BDF=∠FCB=2∠CBA可得∠FDO=∠ODB,进而可证△BOD≌△FOD,即可得到DF=DB.(3)取CH中点M,连接OM,所以OM是△BHC的中位线,OM∥BH,又BH⊥DF,由垂径定理可知FN=DN,设FH=x,则FC=3x,OD=OC=OB=2x,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知x,继而得出tanα,由AD=1,即可计算CD、BD、BF、BG、EF长,再求三角形面积即可.【解答】(1)证明:连接CD,∵BC为直径,∴∠CDB=90°,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A,∵BD BD=,∴∠F=∠BCD,∴∠F=∠A.(2)连接OD、OF,∵OB=OD=OF ,∴∠OBD=∠ODB ;∠ODF=∠OFD , ∵BF BF =,∴∠BDF=∠FCB=2∠CBA ,∴∠OBD=∠ODB=∠ODF=∠OFD , 又∵OD=OD ,∴△BOD ≌△FOD (AAS ), ∴DF=DB .(3)取CH 中点M ,连接OM ,交FD 于N 点,设∠CBA=α,则∠CBD=∠DCA=α,∵HM=MC ,BO=CO ,∴ON ∥BH ,OM=12BH ,∵BH ⊥FD , ∴FN=DN , ∵CD CD =,∴∠DBO=∠DFC ,由(2)得∠OBD=∠ODF , 在△ODN 和△MFN 中,DFC ODF FN DNONM MNF ∠∠∠⎧⎪⎪⎩∠⎨===,△ODN ≌△MFN (ASA ), ∴FM=OD ,设FH=x ,则FC=3x ,OD=OC=OB=2x ,∴在Rt △BFC中,BF =, ∵BH ⊥FD ,∠BFH=90°,∴∠FBH=∠CFD=α,∴tan α==,∴1tan tan DA CD DADCA α===∠∴7tan CD BD FD CBD ====∠,∴BC === ∴x=2, ∴BF=2, ∴BG=,∵OD ∥FC ,∴32FC EF OD ED ==, ∴EF=FD ×35=215,S △BEF=12125=. 【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21. 【分析】根据完全平方公式即可求出答案.【解答】解:∵,∴,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22. 【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.【解答】解:二次函数y=ax2+4ax+5的对称轴为x=-42aa=-2,∴点点P(2,17)关于l的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积-扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:∵S扇形ACB=120443603ππ⨯=,S半圆CBF= 2131,1222ABCSππ⨯==⨯=所以图案面积=S半圆CBF+S△ABC-S扇形ACB=234cm236πππ⎛+=+⎝,故答案为:6π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.24. 【分析】解方程3111mxx x-=--得41xm=+,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程3111mxx x-=--,得:41xm=+,当m=1时,该方程有正整数解,所以使关于x的方程3111mxx x-=--有正整数解的概率为15,故答案为:1 5.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,根据平行线分线段成比例定理表示出A、C、P的坐标,然后S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,列式计算即可.【解答】解:作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,∴PQ∥AM∥CN,∴21,32 AM AB CN OCPQ PB PQ OP====,设PQ=n,∴21,32 AM n CN n==,∵点A、C分别为函数y=kx(x>0)图象上两点,∴3221,,,232k kA n C nn n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴ON=2k n,∴OQ=2ON=4k n,∴P(4kn,n),∵S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,∴12431212311235 23223222224 k k k k k n n n n n nn n n n n⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--+--+⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,整理得,7k=35, 解得k=5. 故答案为5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式. 26. 【分析】(1)利用待定系数法求y1与x 之间满足的函数表达式,并根据图1写出自变量x 的取值范围;(2)利用顶点式求y2与x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值. 【解答】解:(1)设y1=kx+b , ∵直线经过(3,5)、(6,3),3563k b k b ⎨+⎩+⎧==,解得:273k b -⎧⎪⎨⎪⎩==, ∴y1=-23x+7(3≤x≤6,且x 为整中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.下列运算正确的是()A.a2+a3=a5 B.(2a3)2=2a6 C.a3•a4=a12D.a5÷a3=a27.有一组数据:1,2,3,6,这组数据的方差是()A.2.5 B.3 C.3.5 D.48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为()A.9cm2 B.16cm2 C.56cm2 D.24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 B.1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=3,CE=5,则该矩形的周长为 .三、解答题(共54分)15.(1)计算:1120192|3tan 3022018π-︒⎛⎫⎛⎫--++ ⎪⎪⎝⎭⎝⎭; (2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt △ABC 的直角边BC 为直径作⊙O ,交斜边AB 于点D ,作弦DF 交BC 于点E .(1)求证:∠A=∠F ;(2)如图2,连接CF ,若∠FCB=2∠CBA ,求证:DF=DB ;(3)如图3,在(2)的条件下,H 为线段CF 上一点,且12FH HC,连接BH ,恰有BH ⊥DF ,若AD=1,求△BFE 的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P (2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l ,则点P 关于l 的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB=AC=2cm ,∠ABC=30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m ,使关于x 的方程3111mx x x -=--有正整数解的概率为 . 25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x轴的负半轴于点B ,且P0过点C ,12PA AB =,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分)26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围;(2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A (-1,2)、C (1,0)为顶点作Rt △ABC ,且∠ACB=90°,tanA=3,点B 位于第三象限(1)求点B 的坐标;(2)以A 为顶点,且过点C 的抛物线y=ax2+bx+c (a≠0)是否经过点B ,并说明理由;(3)在(2)的条件下(如图2),AB 交x 轴于点D ,点E 为直线AB 上方抛物线上一动点,过点E 作EF ⊥BC 于F ,直线FF 分别交y 轴、AB 于点G 、H ,若以点B 、G 、H 为顶点的三角形与△ADC 相似,求点E 的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大。

四川省自贡市六校2024年九年级中考模拟预测联考数学试题(含答案)

四川省自贡市六校2024年九年级中考模拟预测联考数学试题(含答案)

2024年中考六校联考数学试卷第Ⅰ卷(选择题,共48分)一、选择题(本大题满分48分,每小题4分)1.的相反数是()A.B.C.2023D.2.体育精神就是健康向上,不懈奋斗的精神,下列关于体有运动的图标中是轴对称图形的是()A.B.C.D.3.如右图是一个正方体的展开图,则与“学”字相对的是( )A.核B.心C.数D.养4.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体如图所示的几何体是可以形成“牟合方盖”的一种模型,则它的俯视图是()A.B.C.D.5.下列计算正确的是()A.B.C.D.6.《国务院2024年政府工作报告》中提到,今年发展主要预期目标是:国内生产总值增长5%左右;城镇新增就业1200万人以上,城镇调查失业率5.5%左右;居民消费价格涨幅3%左右;居民收入增长和经济增长同步;国际收支保持基本平衡;粮食产量1.3万亿斤以上;单位国内生产总值能耗降低2.5%左右,生态环境质量持续改善。

其中1200万用科学记数法表示为( )A.1.2×10⁶B.12×10⁶C. 1.2×10⁷D.12×10⁷7.如图是凸透镜成像原理图,已知物AB 和像DC 都与主光轴BC 垂直,∠BAO=63°, 则∠ODC的度数为()A. 27°B.37°C. 53°D.63°8.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7h,7h B.7h,7.5h C.8h,7.5h D.8h,8h9.如图,⊙O的直径AB=8,弦AC=4,过⊙O上一点D作切线DE,交AC的延长线于点E,若DE⊥AC,第16题图DNBMAC第17题则DE 的长为( )A .4B .4C . 2D .310. 如图,已知点在函数位于第二象限的图像上,点在函数位于第一象限的图像上,点在轴的正半轴上,若四边形都是正方形,则正方形的边长为( )A. 1012B.C.D.11. 已知二次函数的图象如图所示,有下列5个结论:(1);(2);(3);(4);(5)(的实数);其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个12.已知在扇形OAB 中,∠AOB =90°,OB =4,C 为弧AB 的中点,D 为半径OB 上一动点,点B 关于直线CD 的对称点为M ,若点M 落在扇形OAB 内(不含边界),则OD 长的取值范围是()A.B .C .D.第Ⅱ卷(非选择题,共102分)二、填空题(本大题满分12分,每小题3 分)13.若,则的值为______.14.若关于x 的方程x 2-x +m =0(m 为常数)有两个相等的实数根,则m =__________.15.一个扇形的圆心角为,面积为,则此扇形的弧长为__________.(结果保留)16.如图,在△ABC 中,按以下步骤作图:①分别以点A 、C 为圆心,大于AC 长为半径作弧,两弧分别相交于点M 、N ;②作直线MN 交BC 于点D . 若AB =5,BD =3,∠C =45°,则△ABC 的面积等于.17.如图,在菱形ABCD 中,∠A =60°,AB =4,点E 在边AB 上,△EBC 绕点C 顺时针旋转60°,点E 落在BD第9题图第10题图第11题图延长线上的点F处,连接EF交AD于点H,若点E是AB的中点,则AH的长为_____.18.如图,在Rt△AOB中,∠AOB=90°,OA=8,OB=11,以O为圆心,4为半经作⊙O,分别交两边于点C,D两点,P为劣孤CD上一动点,则12PA+PB的最小值_____.三、解答题19.(满分8分,每小题4分)(1)计算:38+|3―12|+(π2―1.57)0―2cos30°.(2)先化简,再求值:(2xx―2+xx+2)÷xx2―4,其中x=―3.20.(满分8分)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?21.(满分8分)某学校积极开展了如下丰富多彩的课外兴趣活动:乒乓球,篮球,足球,自行车越野四种课程(依次用A,B,C,D表示),为了解学生对这四种课程的喜好情况,校学生会随机抽取部分学生进行了“你最喜欢哪一种课外活动(必选且只选一种)”的问卷调查.根据调查结果,小明同学绘制了如图所示的不完整的两个统计图.(1)请根据统计图将下面的信息补充完整;①参加问卷调查的学生共有______人;②扇形统计图中“D”对应扇形的圆心角的度数为______°;(2)若该校共有学生1200名,请你估计该校全体学生中最喜欢C课程的学生有多少人?(3)现从喜欢乒乓球的甲、乙、丙、丁四名学生中任选两人比赛,请用树状图或列表法求“恰好甲和丁同学被选到”的概率.22.(满分8分)如图,小明为了测量小河对岸大树BC 的高度,他在点A 处(点G 、A 、C 在同一水平线上)测得大树顶端B 的仰角为45°,沿着坡度i =1:的斜坡AE 走6米到达斜坡上点D 处,此时测得大树顶端B 的仰角为31°,点A 、B 、C 、D 在同一平面内.(1)填空:∠ADB =_____°;(2)求斜坡上点D 到AG 的距离;(3)求大树BC 的高度(结果精确到0.1米).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,≈1.73,≈1.41).23.(满分10分)如图,正比例函数的图象与反比例函数的图象交于A ,B 两点,已知A 点的横坐标是2.(1)分别求出这两个函数的表达式;(2)直接写出当时,x 的取值范围;(3)将直线y =kx 向下平移m 个单位长度,与反比例函数在第一象限的图象交于点C ,与x 轴和y 轴分别交于点D ,E ,若,求m 的值.24.(满分10分)如图,AB 是⊙O 的直径,点C 是圆上的一点,CD ⊥AD 于点D ,AD 交⊙O 于点F ,连接AC ,若AC 平分∠DAB ,过点F 作FG ⊥AB 于点G 交AC 于点H .(1)求证:CD 是⊙O 的切线;(2)延长AB 和DC 交于点E ,若AE =4BE ,求的值;(3)在(2)的条件下,求FHAF的值.25.(满分12分)【综合与实践】在一节数学课上,张老师提出了这样一个问题:如图1,在等腰直角三角形ABC 中,∠BAC =90°,D是∠C,BE⊥DE,DE交AB于点F.猜想线段BE,DF之间的数量边BC上一动点(不与点B重合),∠EDB=12关系并说明理由.小聪与同桌小明讨论后,仍不得其解.张老师给出提示:“数学中常通过把一个问题特殊化来找到解题思路.”两人茅塞顿开,于是进行了如下讨论,请仔细阅读,并完成相应的任务.小聪:已知点D是动点,因此可以将点D移动到一个特殊的位置.当点D与点C重合时,如图2所示.此时可以分别延长BE,CA交于点H,如图3所示,可知△CBH是等腰三角形,证明△ABH≌△ACF,从而得出线段BE,DF之间的数量关系.小明:对于图2,我有不同的证明方法,过点F分别作BE,AC的平行线,交边BC于点M,N,如图4所示,可知△BEF∽△CFM,且FN=MN=CN,又∵FN=FB,可得△BEF与△CFM的相似比为1:2,从而得出线段BE,DF之间的数量关系.任务一:如图2,猜想线段BE,DF之间的数量关系为______ ;任务二:通过阅读上述讨论,请在小聪与小明的方法中选择一种,就图1中的情形判断线段BE,DF之间的数量关系,并给出证明;任务三:若AB=4,其他条件不变,当△ADF是直角三角形时,直接写出BD的长.26.(满分14分)如图11,抛物线与x轴交于A(-4,0)、B(1,0)两点,与y轴交于点C(0,2).(1)求该抛物线的解析式;(2)点P 是直线AC 上方抛物线上一动点,设点P 的横坐标为t (-4<t <0).①连接PO 交AC 于点D ,求的最大值;② 连接PC 、BC ,若∠PCA =2∠OCB ,求点P 的坐标;③点Q 在x 轴上,是否存在点P ,使得△PCQ 是等腰直角三角形.若存在,直接写出点P 的横坐标;若不存在,请说明理由.2024年中考六校联考数学试卷参考答案及评分标准一、CABAD CDBCB BA二、13.9 14.15.16.1417. 3 18.三、19.(1)解:38+|3―12|+(π2―1.57)0―2cos30°=2+23―3+1―2×32…(2分)=2+23―3+1―3…(3分)=3.…(4分)(2) (2xx―2+xx+2)÷xx2―4=[2x(x+2)(x―2)(x+2)+x(x―2)(x+2)(x―2)]⋅(x+2)(x―2)x…(5分)=x(2x+4+x―2) (x―2)(x+2)⋅(x+2)(x―2)x…(6分)=3x+2,…(7分)当x=―3时,原式=―9+2=―7.…(8分)20. (1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,…(0.5分)依题意得:15x+1=10x,…(2.5分)解得:x=2,…(3.5分)经检验,x=2是原方程的解,且符合题意,…(4.5分)∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.…(5分) (2)设购买m件甲种农机具,则购买(20―m)件乙种农机具,依题意得:3m+2(20―m)≤46,…(6分)解得:m≤6.…(7分)答:甲种农机具最多能购买6件.…(8分)21.(1)①240,②36°;…(2分)(2)最喜欢D课程人数所占百分比为∴最喜欢C课程的人数所占百分比为…(3分)∴估计全体2100名学生中最喜欢C课程的人数约为:1200×30%=360(人)答:估计该校全体学生中最喜欢C课程的学生有360人;…(4分)(3)画树状图为:…(6分)共有12种等可能的结果数,其中恰好甲和丁同学被选到的结果数为2…(7分)∴恰好甲和丁同学被选到的概率为.…(8分)22.(1)61. …(1分)(2)如图2,过点D作DF⊥AG于点F.…(2分)在Rt△AFD中,∵∠DAF=30°,AD=6,∴DF=3.答:点D到AG的距离为3米. …(3分)(3)过点D作DH⊥BC于点H,则四边形DFCH是矩形. ∴CH=DF=3.设BC=x,则BH=BC-CH=x-3. …(4分)在Rt△ACB中,∵∠BAC=45°,∴AC=BC=x.在Rt△AFD中,AF=3. ∴DH=FC=AC+AF=x+3,在Rt△BHD中,tan∠BDH=tan31°=,∴. …(6分)解得x=…(7分)答:大树BC的高度约为15.3米. …(8分) 23.(1)由已知可得:,解得k=1,…(1分)∴正比例函数为y=x,反比例函数为…(2分)(2)或…(4分)(3)∵直线y=x向下平移m个单位长度,∴直线CD解析式为:y=x-m当y=0时,x=m,∴点D的坐标为…(5分)如图,过点C作CF⊥x轴于点F,则∴,∴,∴…(6分)∵点C在直线CD上,∴,∴∴点C的坐标是…(7分)∵点C在反比例函数的图象上,∴,…(8分)解得…(9分)由题意知m>0,∴…(10分)24. (1)证明:如图1,连接OC,…(1分)∵OA=OC,∴∠CAO=∠ACO,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠ACO,∴AD//OC,…(2分)∵CD⊥AD,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;…(4分)(2)解:∵AE=4BE,OA=OB,设BE=x,则AB=3x,∴OC=OB=1.5x,∵AD//OC,∴∠COE=∠DAB,…(5分)∴cos∠DAB=cos∠COE=OCOE =1.5x2.5x=35;…(7分)(3)解:由(2)知:OE=2.5x,OC=1.5x,∴EC=OE2―OC2=(2.5x)2―(1.5x)2=2x,…(8分)∵FG⊥AB,∴∠AGF=90°,∴∠AFG+∠FAG=90°,∵∠COE+∠E=90°,∠COE=∠DAB,∴∠E=∠AFH,∵∠FAH=∠CAE,∴△AHF∽△ACE,…(9分)∴FH AF =CEAE=2x4x=12.…(10分)25.任务一:2BE=DF…(2分)任务二:选择小明的方法:2BE=DF.证明:如图4,过点F分别作BE,AC的平行线,交BC于点M,N,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠C=∠ABC=45°,…(1分)∵FN//AC,∠BFN=∠BAC=90°,∠BNF=∠C=45°,∴BF=FN.…(2分)∵∠BNF=∠NFD+∠EDB,∠EDB=12∠C,∴∠NFD=12∠C=∠EDB.∴FN=DN.∵FM//BE.∴∠EBF=∠BFM,∠DFM=∠DEB.∵BE⊥DE,∴∠DEB=∠DFM=∠EFM=90°.∴∠BFN=∠DFM=90°,即∠BFM+∠MFN=∠MFN+∠NFD=90°,∴∠EBF=∠BFM=∠NFD=∠EDB.∴△EBF∽△FDM.…(6分)∴EB FD =BFDM,∠BFE=∠DMF.∵∠EFM=∠BFN=90°,即∠BFE+∠BFM=∠BFM+∠MFN=90°,∴∠BFE=∠MFN=∠DMF.∴BF=FN=MN=DN.∴EBFD =BFDM=12,∴2BE=DF.…(8分)任务三:42或42―4,…(12分)22.(1)∵抛物线与x轴交于A(-4,0)、B(1,0)两点,∴设所求抛物线的解析式为y=a(x+4)(x-1).把点C(0,2)代入,得2=a(0+4)(0-1),解得a=.∴所求抛物线的解析式为y=-(x+4)(x-1).即. …(3分)(2)①经过A(-4,0)、C(0,2)两点的直线AC的解析式为.如图4.1,过点P作PE∥y轴,交AC于点E,则△PDE∽△ODC,∴. …(4分)设点P 的坐标为(t ,),则点E 的坐标为(t,).∴PE =y P -y E=()-()=.∴.∵a =<0,且-4<t <0,∴当t =-2时,的最大值为1. …(7分)② 在Rt △AOC 中,tan ∠CAO =.在Rt △COB 中,tan ∠BCO =.∴∠CAO =∠BCO .如图4.2,过点C 作CF ∥x 轴,交PE 于点F . ∴∠FCA =∠CAO .∵∠PCA =2∠OCB ,∴∠PCF =∠ECF =∠CAO ,∴点F 是PE 的中点.∴y F =(y P +y E ).∴ 2=[()+()].解得t 1=-2,t 2=0(舍去).∴当∠PCA =2∠OCB 时,点P 的坐标为(-2,3). …(9分)③分三种情况讨论:(Ⅰ)如图4.3,当∠PCQ =90°,CP =CQ 时,过点P 作PM ⊥y 轴于点M ,则△PMC ≌△COQ . ∴PM =CO=2.∴点P 的横坐标为-2.…(10分)(Ⅱ)如图4.4,当∠CPQ =90°,PQ =PC 时,过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,则△PMC ≌△PNQ ,∴PM =PN . ∴. 解得,(舍去).∴点P 的横坐标为. …(12分)(Ⅲ)如图4.5,当∠PQC =90°,QP =QC 时,过点P 作PN ⊥x 轴于点N ,则△PNQ ≌△QOC . ∴PN =QO ,NQ =CO =2.∴PN +CO =NQ +QO =NO .∴.解得,(舍去).∴点P 的横坐标为.综上所述,△PCQ 是等腰直角三角形时,点P 的横坐标为:-2或或. …(14分)(注:用其它方法求解参照以上标准给分.)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如图,抛物线过、,直线AD交抛物线于点D,点D 的横坐标为,点是线段AD 上的动点.求直线AD及抛物线的解析式;过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?在平面内是否存在整点横、纵坐标都为整数,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.试题2:如图,已知,在的平分线OM上有一点C,将一个角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.当绕点C旋转到CD与OA垂直时如图,请猜想与OC的数量关系,并说明理由;当绕点C旋转到CD与OA不垂直时,到达图2的位置,中的结论是否成立?并说明理由;当绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.试题3:阅读以下材料:对数的创始人是苏格兰数学家纳皮尔年,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉年才发现指数与对数之间的联系.对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:;理由如下:设,,则,,由对数的定义得又解决以下问题:将指数转化为对数式______;证明拓展运用:计算______.试题4:如图,在中,.作出经过点B,圆心O在斜边AB上且与边AC相切于点E的要求:用尺规作图,保留作图痕迹,不写作法和证明设中所作的与边AB交于异于点B的另外一点D,若的直径为5,;求DE的长如果用尺规作图画不出图形,可画出草图完成问试题5:如图,在中,,,;求AC和AB的长.试题6:某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:在这次调查中,一共调查了______名学生;补全条形统计图;若该校共有1500名,估计爱好运动的学生有______人;在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是______.试题7:解不等式组:,并在数轴上表示其解集.试题8:计算:.试题9:如图,在中,,,将它沿AB翻折得到,则四边形ADBC的形状是______形,点P、E、F 分别为线段AB、AD、DB的任意点,则的最小值是______.试题10:观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有______个.试题11:六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为______、______个试题12:若函数的图象与x轴有且只有一个交点,则m的值为______.试题13:化简结果是______.试题14:分解因式:______.试题15:如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转,得到线段BM,连接AM并延长交CD于N,连接MC,则的面积为A.B.C.D.试题16:已知圆锥的侧面积是,若圆锥底面半径为,母线长为,则R关于l的函数图象大致是A. B. C. D.试题17:从、2、3、这四个数中任取两数,分别记为m、n,那么点在函数图象的概率是A. B. C. D.试题18:如图,若内接于半径为R的,且,连接OB、OC,则边BC的长为A.B.C.D.试题19:回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是A. 数形结合B. 类比C. 演绎D. 公理化试题20:在一次数学测试后,随机抽取九年级班5名学生的成绩单位:分如下:80、98、98、83、91,关于这组数据的说法错误的是A. 众数是98B. 平均数是90C. 中位数是91D. 方差是56试题21:如图,在中,点D、E分别是AB、AC的中点,若的面积为4,则的面积为A. 8B. 12C. 14D. 16试题22:下面几何的主视图是A. B. C. D.试题23:在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若,则的度数是A. B. C. D.试题24:2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为A. B. C. D.试题25:下列计算正确的是A. B. C.D.试题26:计算的结果是A. B. C. 4 D. 2 试题1答案:解:把,代入函数解析式,得,解得,抛物线的解析式为;当时,,解得,即.设AD的解析式为,将,代入,得,解得,直线AD的解析式为;设P点坐标为,,化简,得配方,得,当时,;且时,PQDR是平行四边形,由得,又PQ是正整数,,或.当时,,,即,,即;当时,,,即,,即,综上所述:R点的坐标为,,,使得P、Q、D、R为顶点的四边形是平行四边形.【解析】根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案.本题考查了二次函数综合题,解的关键是待定系数法;解的关键是利用二次函数的性质;解的关键是利用且是正整数得出DR的长.试题2答案:解:是的角平分线,,,,,,在中,,同理:,;中结论仍然成立,理由:过点C作于F,于G,,,,同的方法得,,,,,,且点C是的平分线OM上一点,,,,,≌,,,,,;中结论不成立,结论为:,理由:过点C作于F,于G,,,,同的方法得,,,,,,且点C是的平分线OM上一点,,,,,≌,,,,,.【解析】先判断出,再利用特殊角的三角函数得出,同,即可得出结论;同的方法得,再判断出≌,得出,最后等量代换即可得出结论;同的方法即可得出结论.此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.试题3答案:;1【解析】解:由题意可得,指数式写成对数式为:,故答案为:;设,,则,,,由对数的定义得,又,;,,,,故答案为:1.根据题意可以把指数式写成对数式;先设,,根据对数的定义可表示为指数式为:,,计算的结果,同理由所给材料的证明过程可得结论;根据公式:和的逆用,将所求式子表示为:,计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.试题4答案:解:如图所示;作于H.是的切线,,,四边形ECHO是矩形,,,在中,,,,,,∽,,,.【解析】作的角平分线交AC于E,作交AB于点O,以O为圆心,OB为半径画圆即可解决问题;作于首先求出OH、EC、BE,利用∽,可得,解决问题;本题考查作图复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.试题5答案:解:如图作于H.在中,,,,,在中,,,,.【解析】如图作于在求出CH、BH,这种中求出AH、AC即可解决问题;本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.试题6答案:100;600;【解析】解:爱好运动的人数为40,所占百分比为共调查人数为:爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,爱好运动所占的百分比为,估计爱好运用的学生人数为:爱好阅读的学生人数所占的百分比,用频率估计概率,则选出的恰好是爱好阅读的学生的概率为故答案为:;;根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.利用样本估计总体即可估计爱好运动的学生人数.根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.试题7答案:解:解不等式,得:;解不等式,得:,不等式组的解集为:.将其表示在数轴上,如图所示.【解析】分别解不等式、求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.试题8答案:解:原式.故答案为2.【解析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.试题9答案:菱;【解析】解:沿AB翻折得到,,,,,四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,此时,过点A作,,,作,,,由勾股定理可得,,,可得,,,最小为,故答案为.根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,求出ME即可.此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.试题10答案:6055【解析】解:观察图形可知:第1个图形共有:,第2个图形共有:,第3个图形共有:,,第n个图形共有:,第2018个图形共有,故答案为:6055.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.试题11答案:10;20【解析】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.根据二元一次方程组,可得答案.本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.试题12答案:【解析】解:函数的图象与x轴有且只有一个交点,,解得:.故答案为:.由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了抛物线与x轴的交点,牢记“当时,抛物线与x轴有1个交点”是解题的关键.试题13答案:【解析】解:原式故答案为:根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.试题14答案:【解析】解:原式提取公因式完全平方公式先提取公因式a,再根据完全平方公式进行二次分解完全平方公式:.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.试题15答案:C【解析】解:作于G,于H,则,,,,,,,由旋转变换的性质可知,是等边三角形,,由题意得,,,,,,的面积,故选:C.作于G,于H,根据旋转变换的性质得到是等边三角形,根据直角三角形的性质和勾股定理分别求出MH、CH,根据三角形的面积公式计算即可.本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.试题16答案:A【解析】解:由题意得,,则,故选:A.根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.试题17答案:B【解析】解:点在函数的图象上,.列表如下:m 2 2 2 3 3 3n 2 3 3 2 2 3mn 6 6 6 6mn的值为6的概率是.故选:B.根据反比例函数图象上点的坐标特征可得出,列表找出所有mn的值,根据表格中所占比例即可得出结论.本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出的概率是解题的关键.试题18答案:D【解析】解:延长BO交于D,连接CD,则,,,,,,故选:D.延长BO交圆于D,连接CD,则,;又,根据锐角三角函数的定义得此题综合运用了圆周角定理、直角三角形角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.试题19答案:A【解析】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.试题20答案:D【解析】解:98出现的次数最多,这组数据的众数是98,A说法正确;,B说法正确;这组数据的中位数是91,C说法正确;,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式是解题的关键.试题21答案:D【解析】解:在中,点D、E分别是AB、AC的中点,,,∽,,,的面积为4,的面积为:16,故选:D.直接利用三角形中位线定理得出,,再利用相似三角形的判定与性质得出答案.此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出∽是解题关键.试题22答案:B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,故选B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.试题23答案:D【解析】解:由题意可得:,.故选:D.直接利用平行线的性质结合已知直角得出的度数.此题主要考查了平行线的性质,正确得出的度数是解题关键.试题24答案:B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.试题25答案:C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据相关的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.试题26答案:A【解析】解:;故选:A.利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.本题考查了有理数的加法,比较简单,属于基础题.。

相关文档
最新文档