传感器实验指导书修订稿

合集下载

传感器实验指导书

传感器实验指导书

实验指导书实验一、箔式应变片的温度效应及补偿实验目的:1、认识环境温度变化对传感器输出的影响(零点漂移、灵敏度漂移);2、 掌握差动电桥电路对温漂的抑制;3、 了解差动电桥电路抗干扰能力。

实验原理:传感器输出不仅反映被测量,环境的其它物理量(温度、电磁、偏载等等)也会对传感器的输出产生影响,即产生干扰。

为了提高测量精度,需提高传感器抗干扰能力,即干扰补偿。

一种有效的补偿措施是差动传感器方法。

含干扰的传感器静态数学模型为:)(3210T f X a X a X a a Y n n +++++=若传感器采用差动方法则有:)()(2222155331T f T f X a X a X a Y -++++=式中,)(T f 为干扰量产生的输出,)(1T f 、)(2T f 为两差动转换元件产生的输出。

通常干扰为共模干扰,即)(1T f 、)(2T f 同号,这样差动传感器的干扰减小,若传感器转换元件完全对称,即)(1T f 、)(2T f 完全相等,则干扰输出为零。

由工艺原因,传感器结构不可能完全对称,即通过差动方法不能完全消除干扰,或是传感器不能采用差动结构,传感器的干扰通常还需采取其它补偿措施。

实验步骤:1、连接主机与模块电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路。

输出端接电压表2V 档。

开启主机电源,用调零电位器调差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

2、 观察贴于悬臂梁根部的应变片的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变片(可选上梁或下梁中的一个工作片),图中每两个节之间可理解为实验连接线,注意连接方式,勿使直流电源激励电源短路。

将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。

3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。

传感器技术实验指导书

传感器技术实验指导书

实验一差动式传感器综合性实验一、实验目的1、了解差动技术在传感器中的应用2、掌握最佳线性度的求解方法二、实验内容1、观察下列三种差动式传感器的结构:(1)差动变压器传感器;(2)差动霍尔式传感器;(3)差动变面积电容式传感器;对观察结果进行描述并说明差动工作原理。

2、观察差动螺旋管式电感传感器差动性能;3、了解差动式传感器的性能特点;4、任选其中一种传感器进行位移测量实验,指出线性范围。

5、根据线性范围,进行最佳线性度计算,并与最小二乘线性度进行比较。

三、差动螺旋管式电感传感器差动性能演示差动螺旋管式电感传感器是由两个完全相同的单线圈螺管式自感传感器组成(1) 所需部件:利用差动变压器的衔铁和两个次级线圈构成差动螺旋管式电感传感器。

演示使用音频振荡器、测量电路电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头等部件。

(2) 演示步骤<1>按下图接线,将两个次级线圈分别接入示波器的两个通道。

注:此图表明,单线圈的电源电压由初级线圈的电源电压耦合产生观察两个单线圈螺管式自感传感器的输出端口波形。

两波形是否同相?当衔铁处于中间位置时,两波形的幅值是否相等?<2>上、下移动衔铁,观察两端口波形的幅值是否发生变化。

<3>将次级线圈接入电桥的相邻两臂(构成差动式传感器,示波器的一个通道显示其输出值)。

上、下移动衔铁观察传感器输出,输出值是否在“+”、“0”、“-”之间变化(过零翻转)。

<4>讨论观察结果。

四、实验报告1、写出综合传感器实验仪上应用差动技术的传感器名称及结构特点,并画出结构示意图。

2、说明上述各种传感器的差动工作原理。

3、根据所选传感器的位移测量实验完成下列内容:(1) 原始数据记录。

(2) 最小二乘法线性度求解。

(3) 最佳线性度求解。

(4) 二个线性度值的比较分析。

附件一:差动螺旋管式电感传感器位移测量(1)差动变压器二个次级线圈组成差动状态,音频振荡器LV 端做为恒流源供电,差动放大器增益适度。

传感器实验指导书2023

传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。

二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。

电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。

电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。

压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。

磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。

传感器实验指导书

传感器实验指导书

使用说明实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。

一、实验仪的传感器配置及布局是:四片金属箔式应变计:位于仪器顶部的实验工作台部分,左边是一副双孔称重传感器,四片金属箔式应变计贴在双孔称重传感器的上下两面,受力工作片分别用符号和表示。

可以分别进行单臂、半桥和全桥的交、直流信号激励实验。

请注意保护双孔悬臂梁上的金属箔式应变计引出线不受损伤。

电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。

电感式(差动变压器):由初级线圈Li和两个次级线圈L。

绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。

电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。

压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。

磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。

热电式(热电偶):位于仪器顶部的实验工作台部分,左边还有一副平行悬臂梁,上梁表面安装一支K分度标准热电偶,冷端温度为环境温度。

热敏式:平行悬臂梁的上梁表面还装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。

光电式传感器装于电机侧旁。

为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热温度通常高于环境温度30℃左右,达到热平衡的时间随环境温度高低而不同。

需说明的是置于上梁上表面的温度传感器所感受到的温度与在两片悬臂梁之间电加热器处所测得的温度是不同的。

霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。

MPX 压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50KP 。

精度1%。

(CSY10B )湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH 。

气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm ,灵敏度RO/R >5。

传感器实验指导书

传感器实验指导书

传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

传感器实训指导书

传感器实训指导书

扬州高等职业技术学校实训指导书2011—2012学年第二学期课程名称传感器课程类别实训专业模具授课班级10205授课教师胡冯仪《传感器》实训指导书实验一、YL-CG2003型传感器实验台仪器的使用一、电源部分1.总电源空气式带漏电保护开关切换整个实验台的单相220V电源,额定电流最大为3A,安全可靠。

2.指示灯—电源插入电网后即亮,表示实验台已接入电源。

3.AC220输出双路多功能插座可输出220V单相电源,功率不大于300W二、温度控制部分1.温度控制仪面板说明(1)将K型热电偶接入主控箱面板温度中的Ei(+、-)标准值插孔中,合上热源开关。

仪表将首先按A、B、C程序自检2.通过切换开关可控制直流电压表输入端。

当为内接输入位置可测量指示2V-15V直流稳压输出电压。

外接输入分两档0-2V或0-20V。

A、所有数码管及所有指示灯全部点亮,用来检测发光系统是否正常,此时如发现有不能点亮的发光文件,请停止使用该仪表送修。

B、PV窗口显示“TYPE”,SV窗口显示仪表目前所应配输入类型。

C、显示仪表的控制范围,SV窗口显示下限测量控制值,PV窗口显示上限控制值。

(2)仪表进行完以上三步自检后,即投入正常测控状态,上排PV窗口显示测量值,下排SV 窗口设定值。

(3)要想修改设定值,请在正常显示方式下,按一下SET键,PV窗口显示,“SP”,SV窗口显示已设置的值,此时按▲键向上调节设定值,按键▼向下调节设定值。

2.温控仪电源开关—控制整个温控部分电源开或关。

(1)指示灯一亮表示电源部分总电源开关已打开,实验仪在工作。

(2)温控传感器输入插口一通过JK插头与9号温度实验模块E型热电偶连接用。

(3)加热源电源输出端—可提供20V交流5A功率电源。

与9号实验模块电源输入端进行加热温控。

控制温度精度±1℃。

三、数显单元和2V~15V直流电源部分1.直流电压显示为132数字电压表读数V。

2.通过切换开关可控制直流电压表输入端。

传感器实验指导书

传感器实验指导书

实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。

(E为供桥电压)。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。

2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。

3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW2使数显表显示为零。

4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。

传感器技术实验指导书_3

传感器技术实验指导书_3

实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验五直流激励时霍尔式传感器位移特性实验 (13)实验七光纤传感器的位移特性实验 (18)实验二直流全桥的应用――电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。

二、基本原理:电子秤实验原理为实验一,全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量纲(g)即成为一台原始电子秤。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码四、实验步骤:1、按实验一中2的步骤,将差动放大器调零,应变式传感器实验模板按全桥接线,合上主控台电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。

2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。

3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.0000V。

4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。

成为一台原始的电子秤。

5、把砝码依次放在托盘上,填入下表2-1。

6、根据上表,计算误差与非线性误差。

五、思考题1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。

实验三电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。

三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。

传感器实验指导书正文 (1)

传感器实验指导书正文 (1)

检测与转换(传感器)技术实训装置使用说明书上海天威教学实验设备有限公司实验一 电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验所用单元电阻应变式传感器、电阻与霍尔式传感器转换电路板(调零电桥)、差动放大器、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R =K ε,ΔR 为电阻丝变化值,K 为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L 。

通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分是上、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm 。

1342+5VR RR5R1─外壳 2─电阻应变片 3─测杆 4─等截面悬臂梁 5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R 1、R 2、R 3为固定,R 为电阻应变片,输出电压U O =EK ε,E 为电桥转换系数。

+5V R 2rR 1R R 1R 2R 4RP 2OP07R 3R 4RP 1R 5+15V-15V 调零电桥电 阻传感器差动放大器4321876RPR 3VA DB CE图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。

将测微器装入位移台架上部的开口处,将测微器测杆使其与电阻应变式传感器的测杆磁钢吸合,然后调节两个滚花螺母使电阻式应变传感器上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。

2、将实验箱(实验台内部已连接)面板上的±15V 和地端,用导线接到差动放大器上;将放大器放大倍数电位器RP 1旋钮(实验台为增益旋钮)顺时针旋到终端位置。

传感器与检测技术实验指导书

传感器与检测技术实验指导书

实验一金属箔式应变片性能研究一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、了解金属箔式应变片,半桥的工作原理和工作情况。

3、了解金属箔式应变片,全桥的工作原理和工作情况。

4、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的的各种物理量的检测。

本实验以金属箔式应变片为研究对象。

箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如图所示:(a)丝式应变片(b) 箔式应变片图1-1金属箔式应变片结构金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。

为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。

电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。

因此,为了得到较大的输出电压一般采用半桥或者全桥工作。

三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。

传感器试验指导书

传感器试验指导书

传感器试验指导书信息工程系测控专业用实验一金属箔式应变片性能—实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。

所需单元及部件:直流稳压电源、电桥、差动放大器Ⅰ、应变片传感器、砝码、电压表、电源。

旋钮初始位置:±4V,电压表打到20V挡,差动放大增益最大。

实验步骤:1.了解所需单元、部件在实验仪上的所在位置,观察应变片传感上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片。

2.将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与电压表的输入插口Ui 相连;开启电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使电压表显示为零,关闭电源。

根据图接线R1、R2、R3为电桥单元的固定电阻。

Rx为应变片;将稳压电源的调置±4V,电压置20V挡。

开启电源,调节电桥平衡网络中的W1,电压表显示为零,然后将电压表置2V挡,再调电桥W1(慢慢地调),使电压表显示为零。

图1原理图及接线参考图3.用手轻轻的按一下应变片传感器上的托盘,松开手后观察差动放大输出是否为0,如果不是,就还需要继续调节W,使输出为0。

反复操作这个步骤2-3遍就可以了。

将砝码逐个轻轻的放在应变片传感器的托盘上,放置砝码的时候不能碰到导线以及实验仪的其他部据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应电压表显示的电压相应变化)。

5.实验完毕,关闭电源,所有旋钮转到初始位置。

注意事项:1.电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。

2.为确保实验过程中输出指示不溢出,可先将砝码加至最大重量,如指示溢出,适当减小34.电位器W1、W2,在有的型号仪器中标为RD、RA问题:本实验电路对直流稳压电源和对放大器有何要求?实验二(A)金属箔式应变片:单臂、半桥、全桥比较实验目的:验证单臂、半桥、全桥的性能及相互之间关系。

传感器课程实验指导书

传感器课程实验指导书

传感器课程实验指导书实验⽬录实验⼀⾦属箔式应变⽚——单臂电桥性能实验··························(2) 实验⼆⾦属箔式应变⽚——半桥性能实验··································(7) 实验三⾦属箔式应变⽚——全桥性能实验··································(8) 实验四⾦属箔式应变⽚单臂、半桥、全桥性能⽐较实验 (9)实验五直流全桥的应⽤——电⼦秤实验.....................................(10) 实验六差动变压器的性能实验......................................................(11) 实验七电容式传感器的位移特性实验..........................................(15) 实验⼋直流激励时霍尔式传感器的位移特性实验 (16)实验九电涡流传感器的位移特性实验··········································(18) 实验⼗被测体材质对电涡流传感器的特性影响实验(选做)(20)实验⼗⼀光纤传感器的位移特性实验 (21)实验⼀⾦属箔式应变⽚——单臂电桥性能实验⼀、实验⽬的:了解⾦属箔式应变⽚的应变效应,并掌握单臂电桥⼯作原理和性能。

传感器实验指导书

传感器实验指导书

目录一、基本实验实验一金属箔式应变片性能——单臂电桥 (1)实验二差动变压器式的性能 (3)实验三差动变压器零点残余电压的补偿 (5)实验四移相器实验 (6)实验五相敏检波实验 (7)实验六电涡流式传感器的原理 (10)实验七被测体材料对电涡流传感器的影响 (12)实验八差动变面积型电容式传感器的原理 (13)实验九霍尔式传感器的特性 (15)实验十磁电式传感器性能 (17)实验十一压电传感器动态响应实验 (18)二、综合性实验实验十二电子秤的设计 (19)实验十三PN结温度测试仪 (20)实验十四光纤位移传感器 (21)三、附录Ⅰ:CSY-II型传感器实验仪简介 (22)附录Ⅱ:CSY-II型传感器实验仪电路原理图 (25)附录Ⅲ:传感器安装示意图及面板示意图 (35)实验一金属箔式应变片性能—单臂电桥一、实验目的:﹝1﹞了解悬梁梁受力(梁端位移)时产生应变的原理。

﹝2﹞了解金属箔式应变片受到应变时电阻的变化规律。

﹝3﹞掌握单臂电桥检测电阻的方法。

二、实验仪器:直流稳压电源、电桥、差动放大器、双平行梁测微头、一片应变片、F/V表、主、副电源。

旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。

三、实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1-1接线R1、R2、R3为电桥单元的固定电阻。

R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。

传感器实验指导书

传感器实验指导书

传感器实验指导书实验一电位器传感器的负载特性的测试一、实验目的:1、了解电桥的工作原理及零点的补偿;2、了解电位器传感器的负载特性;3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。

二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕);3、运算放大器LM358;4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。

三、基本原理:电位器的转换原理电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为电位器输出端接有负载电阻时,其特性称为负载特性。

当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。

电位器输出端接有负载电阻时,其特性称为负载特性。

四、实验步骤:1、在面包板上设计负载电路。

3、改进电路的负载电阻RL,用以测量的电位器的负载特性。

4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。

五、实验报告1、 画出电路图,并说明设计原理。

2、 列出数据测试表并画出负载特性曲线。

电源电压5V ,测试表格1.曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。

O12345UKUR1UR23、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及解决方法。

实验二声音传感器应用实验-声控LED旋律灯一、实验目的:1、了解声音传感器的工作原理及应用;2、掌握声音传感器与三极管的组合电路调试。

二、实验仪器与元件:1、直流稳压电源、数字万用表、电烙铁等;2、电子元件有:声音传感器(带脚咪头)1个;XH2.54-2P弯座1个;XH2.54-2P线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;4.7K电阻 1个;1UF电解电容 1个;47UF电解电容 1个;万能电路板一块。

传感器实验指导书-改报告

传感器实验指导书-改报告

传感器与自动检测技术实验指导书王莉君范程华合肥师范学院电子信息工程学院目录实验一应变片单臂电桥的特性实验 (2)实验二压力传感器的特性实验 (4)实验三差动变压器的性能实验 (6)实验四电容式传感器的特性实验 (8)实验五直流激励时霍尔传感器的位移特性实验 (10)实验六集成温度传感器的温度特性实验 (11)实验七光纤传感器的位移特性实验 (13)实验八电子称的设计实验 (15)实验一 应变片单臂电桥的特性实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器双杆式悬臂梁应变传感器、托盘、砝码、数显电压表、±5V 电源、差动放大器、电压放大器、万用表 三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1) 式中RR∆为电阻丝电阻相对变化; k 为应变灵敏系数;ll∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。

如图1-1所示,将四个金属箔应变片(R1、R2、R3、R4)分别贴在双杆式悬臂梁弹性体的上下两侧,弹性体受到压力发生形变,应变片随悬臂梁形变被拉伸或被压缩。

图1-1 双杆式悬臂梁称重传感器结构图通过这些应变片转换悬臂梁被测部位受力状态变化,可将应变片串联或并联组成电桥。

电桥的作用完成电阻到电压的比例变化,如图1-2所示R6=R7=R8=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR R R E U ∆⋅+∆⋅=211/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR。

图1-2 单臂电桥面板接线图四、实验内容与步骤1.悬臂梁上的各应变片已分别接到调理电路面板左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.按图1-2接好“差动放大器”和“电压放大器”部分,将“差动放大器”的输入端Ui短接并与地相连,“电压放大器”输出端Uo接数显电压表(选择2V档),开启直流电源开关。

传感器实验指导书修改版

传感器实验指导书修改版

《传感器原理》实验指导书电子信息学院传感器原理课程组编2010.2目录第一章概述 (2)第二章实验要求及注意事项 (3)实验 1 应变片:单臂、半桥、全桥比较 (4)实验 2 金属箔式应变片—交流全桥 (6)实验 3 交流全桥的应用—振幅测量 (8)实验 4 交流全桥的应用—电子称之一 (9)实验 5 差动变压器(互感式)的性能及应用 (10)实验 6 差动变压器(互感式)的标定(静态位移特性) (13)实验7差动变压器(互感式)的应用——电子秤之二 (14)实验8 差动螺管式电感传感器特性 (15)实验9 电涡流式传感器的静态标定 (16)实验10被测体材料对电涡流传感器特性的影响 (17)实验11电涡流式传感器的应用-振幅测量 (18)实验12 电涡流传感器的应用—电子秤之三 (19)实验13霍尔式传感器的特性—直流激励 (20)实验14 霍尔传感器的应用—电子秤之四 (22)实验15 压电传感器的动态响应实验 (23)实验16 压电传感器引线电容对电压放大器的影响、电荷放大器 (24)实验17 差动面积式电容传感器的静态及动态特性 (26)实验18 热电偶的原理及现象 (28)实验19热敏式温度传感器 (30)实验20热敏电阻测温实验 (31)实验21光电传感器(反射型)测转速实验 (32)实验22智能传感器特性实验 (35)附录产品说明书 (38)第一章概述传感器是机电一体化中各种设备和装置的“感觉器官”,它将各种各样形态各异的信息量转换成能够被直接检测的信号。

在当今信息社会的时代,如果没有传感器,现代科学技术将无法发展。

传感器在机电一体化系统乃至整个现代科学技术领域占有极其重要的地位。

为了适应这一时代发展的需要,全国各大中专院校及各类职业技术学校都相继将传感器教学纳入教学任务,作为电子、电器、测控以及工业自动化类专业的一门必修课。

实验的目的是使学生了解一些电气设备和各种非电量电测传感元件,理解一定的非电量电测技术,学会使用常用的测量仪器仪表,掌握基本的非电量电测方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器实验指导书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-传感器与检测技术实验指导教师:陈劲松实验一 金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

金属的电阻表达式为: SlR ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。

对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×mm mm610-)。

若径向应变为rr ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l r r ∆-=∆μ,因为S S ∆=2(r r ∆),则(2)式可以写成:llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。

0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。

对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。

实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。

通常金属丝的灵敏系数0k =2左右。

用应变片测量受力时,将应变片粘贴于被测对象表面上。

在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。

通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 σ——测试的应力; E ——材料弹性模量。

可以测得应力值σ。

通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。

电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。

三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V 电源、±5V 电源、万用表(自备)。

四、实验内容与步骤:1、应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

可用万用表进行测量,R1=R2=R3=R4=350Ω。

R1R2R3R4图1-1 应变式传感器安装示意图2、接入模板电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,顺时针调节Rw2使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。

关闭主控箱电源。

(注意:当Rw2的位置一旦确定,就不能改变。

)3、按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(R5、R6、R7模块内已接好),接好电桥调零电位器Rw1,接上桥路电源±5V,此时应将±5V地与±15V地短接(因为不共地)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw1,使数显表显示为零。

4、在砝码盘上放置一只砝码,读取数显表数值,以后每次增加一个砝码并读取相应的数显表值,直到200g砝码加完。

记下实验结果填入表1-1,关闭电源。

图1-2 应变式传感器单臂电桥实验接线图表1-1单臂电桥输出电压与所加负载重量值重量(g) 正行程I0 20 40 60 80 100 120 140 160 180 200 电压(mv)重量(g) 反行程I0 20 40 60 80 100 120 140 160 180 200 电压(mv)重量(g) 正行程II0 20 40 60 80 100 120 140 160 180 200 电压(mv)重量(g) 反行0 20 40 60 80 100 120 140 160 180 2005、根据表1-1计算系统灵敏度、非线性误差(端基法或最小二乘法)、迟滞误差和重复性误差。

五、实验注意事项:1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2、电桥的电压为±5V,绝不可错接成±15V,否则可能烧毁应变片。

六、思考题:1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

七、实验报告要求:1、记录实验数据,并绘制出单臂电桥时传感器的特性曲线。

2、从理论上分析产生非线性误差的原因。

实验二金属箔式应变片-全桥性能实验及电子秤实验一、实验目的:了解全桥测量电路的原理及优点。

了解应变直流全桥的应用及电路的标定。

二、基本原理:半桥测量电路中,把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。

电子秤实验原理为利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。

三、需用器件和单元:应变式传感器实验模板、砝码、数显表、±15V电源、±5V电源。

四、实验内容与步骤:(一)、半桥性能实验1、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V档)。

关闭主控箱电源。

2、根据图2-1接线。

R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。

接入桥路电源±5V,调节电桥调零电位器Rw1进行桥路调零,重复实验一中的步骤4、5,将实验数据记入表2-1。

若实验时显示数值不变化说明R1与R2两应变片受力状态相同。

则应更换应变片。

图2-1 应变式传感器半桥实验接线图表2-1半桥测量时,输出电压与加负载重量值重量(g) 正行程0 20 40 60 80 100 120 140 160 180 200 电压(mv)重量(g) 反行程0 20 40 60 80 100 120 140 160 180 200 电压(mv)(二)、全桥性能实验根据图2-2接线,实验方法与实验一相同,注意保持RW2的位置不动。

将实验结果填入表2-2;进行灵敏度和非线性误差计算。

表2-2全桥输出电压与加负载重量值重量(g) 正行程0 20 40 60 80 100 120 140 160 180 200 电压(mv)重量(g) 反行程0 20 40 60 80 100 120 140 160 180 200 电压(mv)图2-2 应变式传感器全桥实验接线图(三)电子秤实验利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。

1、按实验一中2的步骤,将差动放大器调零,按图2-2全桥接线,合上主控箱电源开关,调节电桥平衡电位器Rw1,使数显表显示(2V档)。

2、将10只砝码全部置于传感器的托盘上,调节电位器Rw2(增益即满量程调节)使数显表显示为或—。

3、拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使数显表显示为。

4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。

5、把砝码依次放在托盘上,填入下表2-3。

表2-3电桥输出电压与加负载重量值重量(g) 正行程0 20 40 60 80 100 120 140 160 180 200电压(mv)重量(g) 反行程0 20 40 60 80 100 120 140 160 180 200 电压(mv)五、实验注意事项:1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。

2、电桥的电压为±5V,绝不可错接成±15V。

六、思考题:1、全桥测量中,当两组对边(R1、R3为对边)值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。

图2-3 应变式传感器受拉时传感器周面展开图七、实验报告要求:1、根据所记录的数据绘制出传感器的特性曲线。

2、计算并比较半桥、全桥输出时的灵敏度、非线性度和迟滞误差,并从理论上加以分析比较,得出相应的结论。

3、分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。

实验三 电容式传感器的位移特性实验一、实验目的:了解电容式传感器结构及其特点。

一、基本原理:利用平板电容C =εS /d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、S 、d 中三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d )和测量液位(变S )等多种电容传感器。

变面积型电容传感器中,平板结构对极距特别敏感,测量精度受到影响,而圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系,(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。

)成为实际中最常用的结构,其中线位移单组式的电容量C 在忽略边缘效应时为:()12ln 2r r lC πε=(1) 式中 l ——外圆筒与内圆柱覆盖部分的长度; 12r r 、——外圆筒内半径和内圆柱外半径。

当两圆筒相对移动l ∆时,电容变化量C ∆为()()()()llC l l l l C r r r r r r ∆=∆=∆--=∆0121212ln 2ln 2ln 2πεπεπε (2) 于是,可得其静态灵敏度为:()()()()()121212ln 4/ln 2ln 2r r r r r r g l l l l l l C k πεπεπε=∆⎥⎦⎤⎢⎣⎡∆--∆+=∆∆= (3)可见灵敏度与,12r r 有关,12r r 与越接近,灵敏度越高,虽然内外极筒原始覆盖长度l 与灵敏度无关,但l 不可太小,否则边缘效应将影响到传感器的线性。

相关文档
最新文档