初中数学公式总结
初中数学公式大全总结

初中数学公式大全总结一:代数:1、二次函数的标准方程:y=ax^2+bx+c;2、一元二次方程的解法:ax^2+bx+c=0,△=b^2-4ac,若△<0则无解;△=0时,有一个解x=-b/2a;△>0时,有两个解分别为x1=(-b+√△)/2a,x2=(-b-√△)/2a;3、三次函数的标准方程:y=ax^3+bx^2+cx+d ;4、二次函数的极值:在y=ax^2+bx+c中,极值点为(-b/2a,f(-b/2a));5、四次函数的标准方程:y=ax^4+bx^3+cx^2+dx+e;6、多项式乘法:(x+a)(x+b)=x^2+(a+b)x+ab;7、多项式除法:ax^2+bx+c/x+d=(ax+b)/d + c/d(x+d)^1;二:几何:1、三角形外接圆半径表达式:R=abc/(4S);2、立体三角形的表达式:V=1/3S(a+b+c)(a+b-c)(b+c-a)(a+c-b);3、直角三角形的勾股定理:a^2+b^2=c^2;4、外接圆的中心到三角形边长的距离表达式:h=(2R^2-a^2)/2R;5、三角形夹角内接圆半径表达式:r=2S/a;6、内接圆的中心到三角形顶点距离表达式:h=2r tanα/2;7、立体四面体的表达式:V=a(a^2+b^2+c^2-ab-ac-bc)^1/2/12;三:三角函数:1、正弦定理:a/sinA=b/sinB=c/sinC=2R;2、余弦定理:a^2=b^2+c^2-2bc cosA;3、正切定理:tanA/b = tanB/a = tanC/c;4、余切定理:cotA/cotB+cotC=1;5、锐角所对的外角的正切:tan2A=2tanA/(1-tan^2A);6、向量的叉积:A×B=|A||B|sin(A,B);7、三角函数相等关系:sin(-A)= -sinA,cos(-A) =cosA,tan(-A)=-tanA,cot(-A)=-cotA。
(完整版)初中数学公式总结整理

一、常用数学定理和性质直线性质;1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短平行四边形性质;7 平行公理;经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补三角形性质;15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理;三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边,直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c 的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c 有关a2+b2=c2,那么这个三角形是直角三角形四边形的性质48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n 边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷2 (a,b 表示两对角线的长)67 菱形判定定理1 四边都相等的四边形是菱形(或有一组邻边相等的平行四边形是菱形)68 菱形判定定理2 对角线互相垂直的平行四边形是菱形70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等如果 a:b=c:d,那么 ad=bc S=L×h=(a+b )h÷2 L=(a+b )÷ 2 75 等腰梯形的两条对角线相等76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 83 (1)比例的基本性质 如果 ad=bc,那么 a:b=c:d84 (2)合比性质85 (3)等比性质86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA ) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS ) 94 判定定理 3 三边对应成比例,两三角形相似(SSS )95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin =cos(900- ) cos =sin(900- )100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 tan =cot(900- ) cot =tan(900- ) 圆的性质;如果 =那么 b da ca ±b =c ±d b d 如果 == = (b+d+…+n≠0),那么b d na c ma + c m a =b + d n b101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
初中数学公式总结

初中数学公式总结一、整数运算公式:1.加法法则:a+b=b+a2.减法法则:a-b+c=a+c-b3.乘法法则:a×b=b×a4.除法法则:a÷b≠b÷a(除以零没有意义)二、整数的乘方和开方:1. 平方公式:(a + b)² = a² + 2ab + b²2. 平方差公式:(a - b)² = a² - 2ab + b²3. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³4. 立方差公式:(a - b)³ = a³ - 3a²b + 3ab² - b³5.平方根公式:√(a±b)=√a±√b三、比例和百分数:1.比例关系:a:b=c:d,即a×d=b×c2.百分数:a%=a/100,即a%=a×0.013.小数和百分数的转换:a%=a/100,即a%=a×0.014.百分数和分数的转换:a%=a/100=a/100四、代数式和方程:1. 一元一次方程:ax + b = 0,x = -b/a2. 一元二次方程:ax² + bx + c = 0,x = (-b ± √(b² -4ac))/2a3.二元一次方程组:a₁x+b₁y=c₁,a₂x+b₂y=c₂4. 二元二次方程组:a₁x² + b₁y² + c₁xy + d₁x + e₁y + f₁ = 0,a₂x² + b₂y² + c₂xy + d₂x + e₂y + f₂ = 0五、三角学:1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:c² = a² + b² - 2abcosC3. 正切定理:tanA = a/b,tanB = b/a六、平面几何:1.图形的周长:正方形的周长为4边长;长方形的周长为2倍长+2倍宽;三角形的周长为三边之和;圆的周长为2πr2.图形的面积:正方形的面积为边长的平方;长方形的面积为长×宽;三角形的面积为底边×高的一半;圆的面积为πr²3.相似三角形:两个三角形的对应角相等,对应边成比例4.共面直线的性质:平行直线的两个对应角相等,对顶角相等,内角和为180度七、数列与函数:1.等差数列通项公式:an = a1 + (n - 1)d2.等差数列求和公式:S(n) = n/2(a1 + an)3.等比数列通项公式:an = a1 × q^(n-1)4.等比数列求和公式:S(n)=a1(1-q^n)/(1-q)5. 函数线性关系公式:y = kx + b6. 函数平方关系公式:y = ax² + bx + c以上是初中数学常用的公式总结,它们是完成数学运算和问题解决的基础,熟练掌握这些公式对学习数学非常有帮助。
初中常用数学公式总结归纳

初中常用数学公式总结归纳
1、二次根式:ax2+bx+c=0的解:
X1=(-b+√(b2-4ac))/2a;X2=(-b-√(b2-4ac))/2a。
2、三角函数:
(1)正弦函数:y=sinea=sinθ=a/h;
(2)余弦函数:y=cosinea=cosθ=b/h;
(3)正切函数:y=tana=tanθ=a/b;
(4)余切函数:y=cotana=cotθ=b/a;
(5)反正弦函数:y=asinθ=sin-1a;
(6)反余弦函数:y=acosθ=cos-1a;
(7)反正切函数:y=atanθ=tan-1a;
(8)反余切函数:y=acotθ=cot-1a。
3、勾股定理:a2+b2=c2;
4、立方差分:3ax2+2bx+c=0的解:x1=a/3;X2=b-√(b2-3ac)/3a;
X3=b+√(b2-3ac)/3a;
5、一元二次方程的解:ax2+bx+c=0的解:X1=-b/2a+√(b2-4ac)/2a;X2=-b/2a-√(b2-4ac)/2a;
6、垂直平分线定理:若在△ABC的内角A,内切于BC的过线段AD,
则有:AD⊥BC,AD=BC/2;
7、相似三角形定理:若两个三角形的对应角相等,则两个三角形相似;
8、平行四边形定理:若四边形ABCD,AB⊥CD,AD⊥BC,且AB=CD,AD=BC,则ABCD是平行四边形;
9、梯形定理:若在梯形ABCD中,AB⊥CD,BC⊥AD,且AB=CD,BC =AD,则ABCD是等腰梯形;
10、等比定理:若两个比数:a/c=b/d,则它们三者构成等比数列;
11、等差定理:若三个数:b-a=c-b,则它们三者构成等差数列;。
初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结公式一:点、角、线。
公式二:平行。
公式三:三角形基本性质。
公式四:三角形全等。
公式五:等腰三角形。
公式六:等边三角形。
公式七:比例。
公式八:相似三角形。
公式九:圆初中生学习数学要掌握和熟悉基本公式。
以下是初中数学公式汇总,希望对考生学习数学有所帮助。
初中数学全部公式总结1一元二次方程解答公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。
解答一元二次方程,我们可以先做出抛物线,然后看与x轴交点。
△=b²-4ac;解答公式:x=(-b±V△)/2a;2因式分解经常会用到公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
3三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg认为有用点个赞吧初中生学习数学要掌握和熟悉基本公式。
初中数学实用的公式总结(优秀6篇)

初中数学实用的公式总结(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!初中数学实用的公式总结(优秀6篇)总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它是增长才干的一种好办法,让我们好好写一份总结吧。
初中数学公式大全总结归纳

初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。
- 任何数同0相乘,都得0。
- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。
即adiv b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。
例如:3x+2x=(3 + 2)x=5x。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如:a+(b - c)=a + b-c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如:a-(b -c)=a - b + c。
3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。
- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。
- 去括号。
- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。
- 合并同类项。
- 系数化为1(方程两边同时除以未知数的系数)。
4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
初中阶段数学公式总结大全

初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。
如需更详细的总结,可以参考相关数学教材或参考资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0 丨a丨=a;a≤0 丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700 =-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④ (a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)1=-,5 2==,()2=()2=,(-3.14)º=1,(-)0=1.(a>0,b≥0).如:①(3 )2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=-b b -4ac,其中△=b2-4ac叫做根的判别式.2a当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数 最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数 (或两个数的平均数)叫做这组数据的中位数. (2)公式:设有 n 个数 x 1,x 2,…,x n ,那么:①平均数为: x =x 1+x2+ ...................................................................+ xnn② 极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即: 极差=最大值-最小值;③ 方差:数据x 1 、x 2 ……, x n 的方差为s 2,则s 2= 1 犏轾(x 1- x ) + (x 2- x ) + ............ + (x n- x )标准差:方差的算术平方根.一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率: (1)频率= 频数,各小组的频数之和等于总数,各小组的频率之和等于 1,频率分布直方图中各个小长 总数方形的面积为各组频率。
(2)概率① 如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;② 在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③ 大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A .③特殊角的三角函数值:sin30º=cos60º= ,sin45º=cos45º= ,sin60º=cos30º= , tan30º= ,tan45º =1,tan60º= . ④ 斜坡的坡度:i =铅垂高度= .设坡角为α,则i =tan α=14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点 P (a ,b ),则 P 关于 x 轴对称的点为 P 1(a ,-b ), P 关于 y 轴对称的 点为 P 2(-a ,b ),关于原点对称的点为 P 3(-a ,-b ).(2)坐标平移:若直角坐标系内一点 P (a ,b )向左平移 h 个单位,坐标变为 P (a -h ,b ),向右平移 h 个单位,坐标变为 P (a +h ,b );向上平移 h 个单位,坐标变为 P (a ,b +h ),向下平移 h 个单位,坐标 变数据 x 1 、x 2xn①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A ∠A 的余弦:cos A ,∠A 的正切:tan A并且sin 2A +cos 2A =1.的标准差s ,则s =hl为 P (a ,b -h ).如:点A (2,-1)向上平移 2个单位,再向右平移 5 个单位,则坐标变为 A (7,1). 15、二次函数的有关知识:1.定义:一般地,如果y =ax 2 +bx +c (a ,b ,c 是常数,a 0) ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.① a 的符号决定抛物线的开口方向:当a0时,开口向上;当a 0时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于 y 轴(或重合)的直线记作 x = h .特别地, y 轴记作直线 x = 0. 几种特殊的二次函数的图像特征如函数解析式开口方向对称轴顶点坐标y = ax 2 当a0时 开口向上 当a 0时 开口向下x = 0 ( y 轴) (0,0) y = ax 2 + kx = 0 ( y 轴)(0, k ) y = a ( x - h )2x =h (h ,0) y = a ( x - h )2 + kx =h (h ,k )y = ax 2 + bx + cb x =- 2ab 4ac - b 2 ( - , ) 2a4ab 2 4ac - b 2b 4ac - b 21)公式法: y = ax2+bx +c =ax + b+4ac -b ,∴顶点是(- b ,4ac -b ),对称轴是直2a 4a 2 a 4 a2a2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x - h )2 +k 的形式,得到顶点为(h ,k ),对称轴是直线x = h .( 3 )运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点(x 1 , y )、(x 2 , y ) (及y 值相同),则对称轴方程可以表示为: x = x 1+x 2 9.抛物线 y =ax 2 +bx +c 中, a , b ,c 的作用(1) a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样.(2) b 和a 共同决定抛物线对称轴的位置.由于抛物线y = ax 2 + bx + c 的对称轴是直线x = - b ,故:①b = 0时,对称轴为y 轴;②b 0 (即a 、 b 同号)时,对称轴在y 轴左侧; 2aa③b0(即a 、b 异号)时,对称轴在y 轴右侧.a(3) c 的大小决定抛物线y = ax 2 +bx +c 与 y 轴交点的位置.当x =0时,y =c ,∴抛物线y =ax 2 + bx + c 与y 轴有且只有一个交点(0,c ): ①c = 0 ,抛物线经过原点; ②c0,与 y 轴交于正半轴;③ c 0 ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右侧,则 b0.a11.用待定系数法求二次函数的解析式(1)一般式: y = ax 2 + bx + c .已知图像上三点或三对x 、 y 的值,通常选择一般式.(2)顶点式: y = a ( x - h )2 + k .已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标x 1 、 x 2 ,通常选用交点式: y =a (x -x 1)(x -x 2). 12.直线与抛物线的交点(1) y 轴与抛物线 y = ax 2 +bx +c 得交点为(0, c ). ( 2 )抛物线与 x 轴的交点二次函数 y = ax 2 +bx +c 的图像与 x 轴的两个交点的横坐标 x 1、 x 2 ,是对应一元二次方程ax 2 +bx +c = 0的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点( 0)抛物线与 x 轴相交;②有一个交点(顶点在 x 轴上) ( = 0) 抛物线与 x 轴相切; ③没有交点(0 ) 抛物线与x 轴相离.( 3 )平行于 x 轴的直线与抛物线的交点 同(2)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是ax 2 + bx + c = k 的两个实数根. (4)一次函数y = kx + n (k 0)的图像l 与二次函数y = ax 2 + bx + c (a 0)的图像G 的交点,由方程的解的数目来确定:①方程组有两组不同的解时l 与G 有两个交点; ②方程组只有一组解时l 与G 只有一个交点;③方程组无解时 l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线 y = ax 2 +bx +c 与x 轴两交点为 A (x 1,0),B(x 2,0), 则 AB =x 1-x 21、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。