重磅拉深模设计案例

合集下载

拉深模的结构形式与设计

拉深模的结构形式与设计

拉深模的结构形式与设计
拉深模是把坯料拉压成空心体,或者把空心体拉压成外形更小而板厚没有明显变化的空心体的冲模。

拉深模结构形式
1.第一次拉深工序的模具(表1)
2.后续拉深工序的模具(表2)
表1 第一次拉深工序的模具
表2 后续拉深工序的模具
3.反拉深模 将工序件按前工序相反方向进行拉深,称为反拉深。

反拉深把工序件内壁外
翻,工序件与凹模接触面大,材料流动阻力也大,因而可不用压料圈。

图1
是反拉深示例。

图2示反拉深模,凹模的外径小于工序件的内径,因此反拉深的拉深系数不能太大,太大则凹模壁厚过薄,强度不足。

4.变薄拉深模 变薄拉深与一般拉深不同,变薄拉深时工件直径变化很小,工件底部厚度
基本上没有变化,但是工件侧面壁厚在拉深中加以变薄,工件高度相应增加。

变薄拉深凹模的形式见表3。

变薄拉深凸模的形式见表4。

图3示变薄拉深模,凸模下冲时,经过凹模(两件),对坯件进行二次变薄拉深,凸模上升时,卸料圈拼块把拉深件从凸模上卸下。

表3 变薄拉深凹模的形式
表4 变薄拉深凸模的形式
图3 变薄拉深模
1-凸模 2-定位圈 3、4-凹模 5-卸料圈拼块。

拉深模设计_毕业设计

拉深模设计_毕业设计

摘要 (2)前言 (3)1. 工件的工艺性分析 (4)1.1 冲压件的工艺性分析 (4)1.2 拉深件的工艺性分析 (4)1.3 材料的工艺性分析 (5)1.4 拉深变形过程的分析 (6)2. 冲压工艺方案的确定 (8)3. 模具的技术要求及材料选用 (10)4. 主要设计尺寸的计算 (12)4.1 毛坯尺寸的确定 (12)4.2 冲压力的计算 (13)4.3 拉深间隙的确定 (14)4.4 冲裁件的排样 (15)5. 工作部分尺寸计算 (19)5.1 拉深凸凹尺寸的确定 (19)5.2 圆角半径的确定 (20)6. 模具的总体设计 (22)6.1 模具的类型及定位方式的选择 (22)6.2 推件零件的设计 (23)7. 主要零部件的结构设计 (25)7.1 工作零件的结构设计 (25)7.2 其他零部件的设计与选用............................ 错误!未定义书签。

8. 模具的总装图 (26)9. 模具的装配 (27)结束语 (28)致谢 (29)参考文献 (30)我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模模具设计实例等方面的资料。

再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计模具中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的计算公式、盒形件用压边圈拉深系数、盒形件角部的第一次拉深系数等,然后再集结了自己平时的所学,还有通过对工件的零件、模具工作部分(凸凹模、拉深凸模、落料凹模)、模具装配图的绘制,我的绘图功底也有了一定程度地提高。

本次设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。

我觉得通过本次的毕业设计,达到了这样的目的:1.综合运用本专业所学课程的理论和生产实际知识,进行一次冷冲压模具(落料拉深冲裁模)设计工作的实际训练,从而培养和提高我们独立工作的能力。

设计实例(落料拉深复合模)部分

设计实例(落料拉深复合模)部分

典型冲压件冲压工艺设计实例汽车车门玻璃升降器外壳件的形状、尺寸如图8.2.1 所示,材料为08 钢板,板厚1.5mm ,中批量生产,打算采用冲压生产,要求编制冲压工艺。

冲压件的工艺分析首先必须充分了解产品的应用场合和技术要求,并进行工艺分析。

汽车车门上的玻璃抬起或降落是*升降器操纵的。

升降器部件装配简图如图8.2.2 所示,本冲压件为其中的外壳 5 。

升降器的传动机构装在外壳内,通过外壳凸缘上三个均布的小孔φ 3.2mm 用铆钉铆接在车门座板上。

传动轴6 以I T11 级的间隙配合装在外壳件右端孔φ 16.5mm 的承托部位,通过制动扭簧3 、联动片9 及心轴4 与小齿轮11 联接,摇动手柄7 时,传动轴将动力传递给小齿轮,然后带动大齿轮12 ,推动车门玻璃升降。

该冲压件采用1.5mm 的钢板冲压而成,可保证足够的刚度与强度。

外壳内腔的主要配合尺寸φ 16.5 mm 、φ 22.3 mm 、16 mm 为IT11-IT12 级。

为确保在铆合固定后,其承托部位与轴套的同轴度,三个φ 3.2mm 小孔与φ 16.5mm 间的相对位置要准确,小孔中心圆直径φ 42 ± 0.1mm 为ⅠT10 级。

此零件为旋转体,其形状特征表明,是一个带凸缘的圆筒形件。

其主要的形状、尺寸可以由拉深、翻边、冲孔等冲压工序获得。

作为拉深成形尺寸,其相对值、都比较合适,拉深工艺性较好。

φ 22.3 mm 、16 mm 的公差要求偏高,拉深件底部及口部的圆角半径R1.5 mm 也偏小,故应在拉深之后,另加整形工序,并用制造精度较高、间隙较小的模具来达到。

三个小孔φ 3.2 mm 的中心圆直径42 ± 0.1mm 的精度要求较高,按冲裁件工艺性分析,应以φ 22.3 mm 的内径定位,用高精度(IT7 级以上)冲模在一道工序中同时冲出。

图8.2.1 玻璃升降器外壳图8.2.2 玻璃升降器外壳的装配简图冲压件冲压工艺过程的确定一.工艺方案的分析比较外壳的形状表明,它为拉深件,所以拉深为基本工序。

无凸缘深筒件拉深模设计

无凸缘深筒件拉深模设计

随着现代工业的发展和人们的生活不断改善,各种新型的工具不断地问世为人们的生活提供方便,而在制造这些工具的过程离不开模具。

各种模具在不同的时代发生着飞跃的变化,随之出现许多不同的制造方式。

由于产品的材料和工艺特性不同,生产用的设备也各异,模具种类繁多,但用的最为广泛的大约有以下几种:冷冲压模、塑料成型模、锻造模、精密铸造模、粉末冶金模、橡胶成型模、玻璃成型模、窑业制品模、食品糖果模、建材用模等。

其中以冷冲压模、塑料模的技术要求和复杂程度较高。

我的设计课题是:内胆的拉深,主要介绍的是无凸缘筒形件拉深模的设计过程。

我参考了大量有关拉深模模具设计实例等方面的资料。

拉深是利用拉深模将板料制成各种空心件的一种方法,是冲压生产中应用最主要的工序之一。

我设计的是无凸缘内胆拉深模设计和制造,材料为08钢板,厚度t=1mm。

采用的工序为落料拉深复合工序和拉深单工。

设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。

最后生成装配工程图和相关的零件图。

关键词:模具落料拉深装配图零件图With the development of modern industry and people's lives continue to improve, a varietyof new tools continue to come out to provide convenience to people's lives and in the process of manufacture of these tools can not be separated from the mold. Various molds at different times, changes in the leap, followed by a number of different manufacturing methods.Materials and workmanship of the product characteristics, production equipment also vary a wide range of mold, but the most widely used in approximately the following: cold stamping mold, plastic molding, forging mold, the mold of precision casting, powder metallurgy mold, rubber molding, glass molding, ceramic products, mold, food candy mold, building materials and mold. Among them, the high technical requirements and complexity of the cold stamping mold, plastic mold.In the design, introduces the mold drawing. In this design, I made reference to the large number of Die mold design example. The drawing is a drawing die as a processing method of the sheet metal stamping into a variety of hollow, is the most widely used in the stamping process. I designed the interior of no flange drawing die design and manufacturing materials for the steel plate 08, the thickness t = 1mm. Processing methods for the blanking pull deep composite processes and drawing a single process. Processing method is relatively simple. The main content of the design: the process of the workpiece analysis; program of stamping process; mold the technical requirements and material selection; the calculation of the main design dimensions; work part size calculation; the overall design of the mold; the structural design of the main components; the mold assembly diagrams; mold assembly. Finally, to generate assemblydrawings and part drawings.Keyword: mould blanking deep drawing assembly drawing parts drawing目录摘要 (I)ABSTRACT (II)目录 (III)引言 (1)一材料分析 (5)1.1工件材料分析 (5)1.2模具材料分析 (5)1.2.1 模具零件的材料 (5)1.2.2 要针对模具失效形式选用钢材 (5)1.2.3 要根据制品批量大小 (5)1.2.4 要根据冲模零件的作用选择 (5)1.2.5 要根据冲模精密程度选用 (5)二零件工艺性分析 (6)冲压工艺方案 (6)三拉深工艺参数的计算 (8)3.1确定修边余量 (8)3.2计算毛坯直径D (8)3.3判断是否采用压边圈 (8)3.4确定拉深系数 (8)3.4.1 先判断能否一次拉出 (8)3.4.2 用计算法确定拉深次数 (8)3.4.3 由查表法确定拉深次数 (8)3.4.4 由推算法确定拉深系数 (9)3.4.5 确定各次拉深半成品尺寸 (9)3.5画出工序图 (10)四落料拉深复合模工艺计算 (11)4.1落料凸、凹模刃口尺寸计算 (11)4.2首次拉深凸、凹模尺寸计算 (12)4.3落料排样设计 (12)4.4画出零件的排样图 (13)五二次拉深模工作部分尺寸计算 (14)5.1第二次拉深凸、凹模尺寸计算 (14)5.2第三次拉深凸、凹模尺寸计算 (14)5.3第四次拉深凸、凹模尺寸计算 (14)六计算工序冲压力 (15)6.1落料力的计算 (15)6.2卸料力、推件力、顶件力的计算 (15)6.3拉深力的计算 (16)6.4压边力的计算 (16)6.5压力中心的计算 (17)七冲压设备的选用 (18)7.1落料拉深复合模设备的选用 (18)7.2二次拉深模设备的选用 (18)八模具零部件结构的确定 (20)8.1落料拉深复合模零部件设计 (20)8.1.1 标准模架的选用 (20)8.1.2 卸料零件的选择 (21)8.1.3 定位方式的选择 (22)8.1.4 其他零部件结构 (23)8.2二次拉深模零部件设计 (23)九模具的装配 (23)9.1落料拉深复合模装配图 (24)9.2二次拉深模装配图 (25)十模具的检验 (26)10.1模具检测的内容 (26)10.2模具检测的方法 (27)结束语 (28)参考文献 (29)致谢 (30)附录 (31)引言模具工业是国民经济的基础工业,受到政府和企业界的高度重视,发达国家有“模具工业是进入富裕社会的源动力”之说,可见其重视的程度。

拉伸模设计实例

拉伸模设计实例

案例3拉深模零件名称:180柴油机通风口座子生产批量:大批量材料:08酸洗钢板零件简图:如图17所示图17通风口座子设计步骤按如下程序进行(一)分析零件的工艺性这是一个不带底的阶梯形零件,其尺寸精度、各处的圆角半径均符合拉深工艺要求。

该零件形状比较简单,可以采用:落料一拉深成二阶形阶梯件和底部冲孔一翻边的方案加工。

但是能否一次翻边达到零件所要求的高度,需要进行计算。

1. 翻边工序计算一次翻边所能达到的高度:按相关表取极限翻边系数K最小=0.68由相应公式计算得:H最大=D/2(1-K最小)+0.43r+0.72δ=56/2(1-0.68)+0.43*8+0.72*1.5=13.48(mm)而零件的第三阶高度H=21.5>H最大=13.48。

由此可知一次翻边不能达到零件高度要求,需要采用拉深成三阶形阶梯件并冲底孔,然后再翻边。

第三阶高度应该为多少,需要几次拉深,还需继续分析计算。

计算冲底孔后的翻边高度h(见图18):取极限翻边系数K最小=0.68拉深凸模圆角半径取r凸=2σ=3mm由相关公式得翻边所能达到的最大高度:图18拉深后翻边h最大=D/2(1-K最小)+0.57r凸=56/2(1-0.68)+0.57*3=10.67(mm)取翻边高度 h=10(mm)计算冲底孔直径d:d=D+1.14r凸-2h=56+1.14×3-2×10=39.42(mm)实际采用Ф39mm。

计算需用拉深拉出的第三阶高度h´h´=H-h+r凸+δ=21.5-10+3+1.5=16(mm)根据上述分析计算可以画出翻边前需拉深成的半成品图,如图19所示。

2.拉深工序计算图19所示的阶梯形半成品需要几次拉深,各次拉深后的半成品尺寸如何,需进行如下拉深工艺计算。

计算毛坯直径及相对厚度:先作出计算毛坯分析图,如图20所示。

为了计算方便,先按分析图中所示尺寸,根据弯曲毛坯展开长度计算方法求出中性层母线的各段长度并将计算数据列于表6中。

拉深模具设计PPT课件

拉深模具设计PPT课件

8.1.2 带压边圈的拉深模
.
9
应用科学学院
8.1.2 带压边圈的拉深模
• 凹模固定在上模座上,有刚性打料装置。 • 坯料由固定挡料销定位,凸模固定在下模座上,有弹性压边装置。 • 压边力可以由弹簧或橡皮产生,也可以由气垫产生。
有弹性压边装置的倒装式拉深模
.
10
应用科学学院
8.1.2 带压边圈的拉深模
.
12
应用科学学院
8.2 单动压力机后次拉深模
• 在以后各次拉深中,因毛坯已不是平板形状,而是已经成形的半 成品,所以应充分考虑毛坯在模具上的定位
• 由于首次拉深的拉深系数所限,其尺寸和高度不能达到要求,还 需要经第二次、第三次甚至更多次拉深。
• 后次拉深模的定位方式、压边方式、拉深方法以及所用毛坯与首 次拉深模有所不同。
.
55
应用科学学院
8.6 拉深模设计实例
8.6.6 压力机选择 • 根据标称压力,滑块行程,及模具闭合高度,确定选择型号为JC23—35
型开式双柱可倾压力机。
• 校核过程如下:确定所选型号压力机的滑块许用负荷图,设备参数 和模具工艺力确定模具工作过程中对应的落料拉深力曲线,
• 若落料拉深力曲线处于许用负荷曲线之下,则所选设备符合工作要 求;
.
13
应用科学学院
8.2 单动压力机后次拉深模
应用科学学院
无压边. 装置的以后各次拉深模
14
8.2 单动压力机后次拉深模
.
15
应用科学学院
8.2 单动压力机后次拉深模
1-推件板 2-拉深凹模 3-拉深凸模 4-压边圈 5-顶杆 6-弹簧
应用科学学院
.
有压边装置的以后各次拉深模 16

拉深模具的设计

拉深模具的设计

拉深模具的设计拉深工艺及拉深模具的设计拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心件 , 或将已制成的开口空心件加工成其他形状空心件的一种加工方法。

拉深也称为拉延。

图4.0.1 所示即为平板毛坯拉成开口空心件的拉深。

其变形过程是 : 随着凸模的不断下行 , 留在凹模端面上的毛坯外径不断缩小 , 圆形毛坯逐渐被拉进凸、凹模间的间隙中形成直壁 , 而处于凸模下面的材料则成为拉深件的底 , 当板料全部进入凸、凹模间的间隙时拉深过程结束 , 平板毛坯就变成具有一定的直径和高度的开口空心件。

与冲裁相比 , 拉深凸、凹模的工作部分不应有锋利的刃口 , 而应具有一定的圆角 , 凸、凹模间的单边间隙稍大于料厚。

用拉深工艺可以制得筒形、阶梯形、球形、锥形、抛物线形等旋转体零件 , 也可制成方盒形等非旋转体零件, 若将拉深与其他成形工艺(如胀形、翻边等)复合 , 则可加工出形状非常复杂的零件 , 如汽车车门等 , 如图4.0.2 所示。

因此拉深的应用非常广泛 , 是冷冲压的基本工序之一。

1—凸模; 2—压边圈; 3—凹模;4—坯料; 5—拉深件图 4.0.1 圆筒件的拉图 4.0.2 拉深件示意图a) 轴对称旋转体零件 ;b) 轴对称盒行件 ;c) 不对称复杂件4.1 拉深变形过程的分析4.1.1 拉深变形的过程及特点如果不用模具 , 则只要去掉图 4.1. 中的阴影部分 , 再将剩余部分沿直径 d 的圆周弯折起来 , 并加以焊接就可以得到直径为 h, 高度为 h=(D-d)/2, 周边带有焊缝 , 口部呈波浪的开口筒形件 . 这说明圆形平板毛坯在成为筒形件的过程中必须去除多余材料。

但圆形平板毛坯在拉深成形过程中并没有去除多余材料,因此只能认为多余的材料在模具的作用下产生了流动。

为了了解材料产生了怎样的流动,可以作坐标网格试验。

即拉深前在毛坯上画一些由等距离的同心圆和等角度的辐射线组成的网格( 图 4.1.2) ,然后进行拉深,通过比较拉深前后网格的变化来了解材料的流动情况。

拉深模设计案例

拉深模设计案例

拉深模设计案例拉深图所示带凸缘圆筒形零件,材料为08钢,厚度t =1mm ,大批量生产。

试确定拉深工艺,设计拉深模。

1.零件的工艺性分析该零件为带凸缘圆筒形件,要求内形尺寸,料厚t =1mm ,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径r =2mm >t ,凸缘处的圆角半径R =2mm=2t ,满足拉深工艺对形状和圆角半径的要求;尺寸φ2.001.20+mm 为IT12级,其余尺寸为自由公差,满足拉深工艺对精度等级的要求;零件所用材料08钢的拉深性能较好,易于拉深成形。

综上所述,该零件的拉深工艺性较好,可用拉深工序加工。

2.确定工艺方案为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。

(1) 计算坯料直径D 根据零件尺寸查表5-5得切边余量∆R =2.2mm ,故实际凸缘直径d t =(55.4+2×2.2)=59.8mm 。

由表5-6查得带凸缘圆筒形件的坯料直径计算公式为D =2324222212156.428.64828.6d d R Rd h d r rd d -++++++依图5-23,d 1=16.1mm ,R =r =2.5mm ,d 2=21.1mm ,h =27mm ,d 3=26.1mm ,d 4=59.8mm ,代入上式得D =28953200+≈78(mm)(其中3200×π/4为该拉深件除去凸缘平面部分的表面积)(2) 判断可否一次拉深成形 根据t /D =1/78 = 1.28 % d t /d = 59.8/21.1 = 2.83 H /d = 32/21.1 =1. 52 m t =d /D =21.1/78=0.27查表5-12、表5-13,[m 1]=0.35,[H 1/d 1]=0.21,说明该零件不能一次拉深成形,需要多次拉深。

(3) 确定首次拉深工序件尺寸 初定d t /d 1=1.3,查表5-12得[m 1]=0.51,取m 1= 0.52,则d 1= m 1 ×D = 0.52×78 = 40.5(mm)取r 1=R 1= 5.5 mm为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即零件中除去凸缘平面以外的表面积3200×π/4)增加5%,故坯料直径修正为D =2895%1053200+⨯≈79(mm)按式(5-9),可得首次拉深高度为 H 1 =)(14.0)(43.0)(25.02121111221R r d R r d D d t -+++- =)5.55.5(43.0)8.5979(5.4025.022+⨯+-⨯=21.2(mm) 验算所取m 1是否合理:根据t /D =1.28 %,d t /d 1 = 59.8/40.5=1.48,查表5-13可知[H 1/d 1]=0.58。

拉深模设计实例(课程设计)(毕业设计)

拉深模设计实例(课程设计)(毕业设计)

拉深模设计实例(课程设计)(毕业设计)如图4.11.1所示阶梯形盖,大批量生产,材料为08钢板,料厚为1.5mm ,试进行冲压工艺分析,确定工艺方案,并设计拉深模具。

设计步骤如下:1. 零件的工艺性分析这是一个阶梯形零件,形状简单,没有厚度不变的要求,零件的各处的圆角半径满足拉深对圆角半径的要求。

其尺寸公差为自由公差,满足拉深工序对工件公差等级的要求。

材料10钢的拉深性能较好。

(1)计算毛坯直径及相对厚度毛坯计算方法有多种,下面用解析法求坯料尺寸。

先作出计算毛坯分析图,如图4.11.2所示。

为了计算方便,先按分析图中所示尺寸,计算出中性层母线的各段长度i L 及母线形心到旋转轴线的距离xi R,并将计算数据列于表4-23中。

图4.11.1 阶梯形盖 图4.11.2 毛坯计算分析图表4-23 毛坯计算汇总表 (mm )根据公式(4-11)计算得毛坯直径:D 206mm坯料的尺寸也可以根据拉深前后表面积不变,借助pro/E 等CAD 软件求出。

过程如下:(1) 先在pro/E 软件中进行造型, 如图4.11.3所示,因为零件的内、外表面积的不同,造型过程要注意,把零件的中间层设为实体的外表面或内表面,以便于测量;(2) 复制曲面,点击菜单中分析→ 测量;(3) 选择类型为“面积”,曲线/边为“面组”,投影方向选择为“无”,即可计算出被选中曲面的表面积,如图4.11.4所示。

由图4.11.4可知,零件的表面积A=33434.8mm 2,坯料的直径:206mm D ==≈计算相对厚度: 1.52060.72%t D == (2)确定拉深次数54.557.50.95n h d ==;根据公式(4-21),查表4-11,得拉深次数为2。

(3)计算第一次拉深工序尺寸 为了计算第一次拉深工序尺寸,利用等面积法,求出第一次拉深后工序件的直径和深度。

由于参与第二次拉深变形的区域是从图4.11.2中的L 5开始,因此以L 5开始计算面积,并求出相应的直径。

拉深模设计

拉深模设计
凹模尺寸:
Dd
(
Dmax
0.75
) dd 0
凸模尺寸:
Dp
(
Dmax
0.75
2C
)0 dP
(3-18) (3-19)
项目三 拉深模设计
当制件要求内形尺寸时(见图3-11(b)),以凸模为基准,先
定凸模尺寸。因为凸模会越磨越小,因此应取工件的最大极
限尺寸,模具工作部分计算公式见式(3-20)和式(3-21)。
生产实际中,采用压边圈时,拉深间隙一般按表3-8选 取。
项目三 拉深模设计
表3-8 有压边圈拉深时的单边间隙
总拉深次数
拉深工序
1
第 1 次拉深
第 1 次拉深 2
第 2 次拉深
第 1 次拉深
3
第 2 次拉深
第 3 次拉深
第 1、2 次拉深
4
第 3 次拉深
第 4 次拉深
第 1、2、3 次拉深
5
第 4 次拉深
项目三 拉深模设计
3.拉深模具的圆角半径 1) 凹模圆角半径 rd 首次拉深时可按式(3-22)计算。
>100
≤0.5 >0.5~1.5
dd
dp
dd
dp
dd
dp
0.02
0.01
0.03
0.02


0.04
0.02
0.05
0.03
0.08
0.05
>1.5
0.06
0.04
0.08
0.05
0.10
0.06
注:dp、dd 在必要时可提高至 IT6~IT8 级。若制件公差在 IT13 级以下,则dp、dd 可以采用 IT10 级。

拉深模设计模块

拉深模设计模块
(1)拉深件形状应尽可能简单、对称、避免急剧转角或凸 台。
(2)深高度应尽可能小,以减少拉深次数,提高冲件质 量。
(3)在保证装配要求的前提下,应允许拉深件侧壁有一
定的斜度。
拉深模设计
(4)需多次拉深的零件,在保证必要的表面质量前提下, 应允许内、外表面存在拉深过程中可能产生的痕迹。
(5)拉深件的底或凸缘上的孔边到侧壁的距离应满足: aR0.5t(或 rd 0.5t)。
拉深模设计
弹性压边圈在下模的首次拉深模 1-模具气孔 2-上模座 3-打料杆 4-推板 5-凹模 6-定位板 7-弹性压边圈 8-下模座
拉深模设计
1-上模座 2-推杆 3-推件板 4-锥形凹模 5-限位柱 6-锥形压边圈 7-拉深凸模 8-固定板 9-下模座
拉深模设计
无压边圈的再次拉深模 1-上模座 2-垫板 3-凸模固定板 4-凸模 5-凸模气孔
用书中表所列公式直接求得其坯料尺寸D。
注意:当板料厚度大于lmm时,应按板料厚度中线尺寸计
算。
(4)复杂旋转体拉深件坯料尺寸的确定
久里金法则求其表面积:任何形状的
母线绕轴旋转一周所得到的旋转体面积,
等于该母线的长度与其重心绕该轴线旋转
所得周长的乘积。如右图所示,旋转体表
面积为 A2RxL
D2
4
2RxL
面质量要求高,凸、凹模间隙略大于板料厚度。
拉深模设计
学习项目二 圆筒形拉深件的变形分析
一、拉深变形过程 1.宏观分析
拉深前,于坯料上划出扇形区 域oab,拉伸开始后,扇形区转化 为三部分:
凸缘部分a’b’cd:逐渐转化为 筒壁,比例减小,是变形区。
筒壁部分cdef, 逐渐增加,为 传力区。

冲裁弯曲拉深设计案例

冲裁弯曲拉深设计案例

设计案例冲裁、弯曲、拉深及成形是冷冲压的基本工序,下面以常见的冲裁件、弯曲件及拉深件为例介绍冲裁、弯曲及拉深的冲压工艺分析、工艺方案拟订、工艺计算、模具设计和模具主要零件的加工工艺。

案例1冲裁模设计如图1所示零件:托扳生产批量:大批量材料:08F t=2mm设计该零件的冲压工艺与模具。

图1 托板零件图(一)冲裁件工艺分析1. 材料:08F钢板是优质碳素结构钢,具有良好的可冲压性能。

2. 工件结构形状:冲裁件内、外形应尽量避免有尖锐清角,为提高模具寿命,建议将所有90°清角改为R1的圆角。

3. 尺寸精度:零件图上所有尺寸均未标注公差,属自由尺寸,可按IT14级确定工件尺寸的公差。

经查公差表,各尺寸公差为:58-0.74、38-0.62、30-0.52、16-0.44、14±0.22、17±0.22、Ф3.5+0.3 结论:可以冲裁(二)确定工艺方案及模具结构形式经分析,工件尺寸精度要求不高,形状不大,但工件产量较大,根据材料较厚(2mm)的特点,为保证孔位精度,冲模有较高的生产率,通过比较,决定实行工序集中的工艺方案,采取利用导正钉进行定位、刚性卸料装置、自然漏料方式的连续冲裁模结构形式。

(三)模具设计计算1.排样计算条料宽度及确定步距首先查有关表确定搭边值。

根据零件形状,两工件间按矩形取搭边值b=2,侧边按圆形取搭边值a=2。

连续模进料步距为32mm。

条料宽度按相应的公式计算:B=(D+2a)-⊿查表⊿=0.6B=(58+2×2)-0.6=62-0.6画出排样图,图2图2 排样图2.计算总冲压力由于冲模采用刚性卸装置和自然漏料方式,故总的冲压力为:P0=P+P tP=P1+P2而式中 P 1--------落料时的冲裁力P 2--------冲孔时的冲裁力 按推料力公式计算冲裁力:P 1=KL t τ 查τ=300MPa=2.2[2(58-16)+2(30-16)+16π]*2*300/10000 =12.6 (t )P 2=2.2*4π*3.5*2*300/10000 =3.4(t)按推料力公式计算推料力P t :P t =nK t P 取n=3,查表2-10,K t =0.055 P t =3*0.055*(12.6+304)=2.475(t) 计算总冲压力P Z : P Z =P 1+P 2+P t=12.6+3.4+2.475 =18.475(t)3.确定压力中心:根据图3分析,因为工件图形对称,故落料时P 1的压力中心在O 1上;冲孔时P 2的压力中心在O 2上。

拉深模设计案例

拉深模设计案例

拉深模设计案例拉深图所示带凸缘圆筒形零件,材料为08钢,厚度t =1mm ,大批量生产。

试确定拉深工艺,设计拉深模。

1.零件的工艺性分析该零件为带凸缘圆筒形件,要求内形尺寸,料厚t =1mm ,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径r =2mm >t ,凸缘处的圆角半径R =2mm=2t ,满足拉深工艺对形状和圆角半径的要求;尺寸φ2.001.20+mm 为IT12级,其余尺寸为自由公差,满足拉深工艺对精度等级的要求;零件所用材料08钢的拉深性能较好,易于拉深成形。

综上所述,该零件的拉深工艺性较好,可用拉深工序加工。

2.确定工艺方案为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。

(1) 计算坯料直径D 根据零件尺寸查表5-5得切边余量∆R =2.2mm ,故实际凸缘直径d t =(55.4+2×2.2)=59.8mm 。

由表5-6查得带凸缘圆筒形件的坯料直径计算公式为D =2324222212156.428.64828.6d d R Rd h d r rd d -++++++依图5-23,d 1=16.1mm ,R =r =2.5mm ,d 2=21.1mm ,h =27mm ,d 3=26.1mm ,d 4=59.8mm ,代入上式得D =28953200+≈78(mm)(其中3200×π/4为该拉深件除去凸缘平面部分的表面积)(2) 判断可否一次拉深成形 根据t /D =1/78 = 1.28 % d t /d = 59.8/21.1 = 2.83 H /d = 32/21.1 =1. 52 m t =d /D =21.1/78=0.27查表5-12、表5-13,[m 1]=0.35,[H 1/d 1]=0.21,说明该零件不能一次拉深成形,需要多次拉深。

(3) 确定首次拉深工序件尺寸 初定d t /d 1=1.3,查表5-12得[m 1]=0.51,取m 1= 0.52,则d 1= m 1 ×D = 0.52×78 = 40.5(mm)取r 1=R 1= 5.5 mm为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即零件中除去凸缘平面以外的表面积3200×π/4)增加5%,故坯料直径修正为D =2895%1053200+⨯≈79(mm)按式(5-9),可得首次拉深高度为 H 1 =)(14.0)(43.0)(25.02121111221R r d R r d D d t -+++- =)5.55.5(43.0)8.5979(5.4025.022+⨯+-⨯=21.2(mm) 验算所取m 1是否合理:根据t /D =1.28 %,d t /d 1 = 59.8/40.5=1.48,查表5-13可知[H 1/d 1]=0.58。

拉深模具的设计

拉深模具的设计

拉深模具的设计拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。

按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。

按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。

此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。

下面将先容几种常见的拉深模典型结构。

1一凸模; 2一定位板; 3一凹模; 4一下模座图 4.6.1 无压边装置的首次拉深模1.首次拉深模(1) 无压边装置的首次拉深模(图4.6.1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。

工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深进到凹模下面,所以该模具只适合于浅拉深。

(2) 具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图4.6.2)压边力由弹性元件的压缩产生。

这种装置可装在上模部分( 即为上压边 ) ,也可装在下模部分( 即为下压边 ) 。

上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。

相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。

(3) 落料首次拉深复合模图 4.6.3 为在通用压力机上使用的落斜首次拉深复合模。

它一般采用条料为坯料,故需设置导料板与卸料板。

拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。

拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。

拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。

1一凸模; 2一上模座; 3一打料杆; 4一推件块; 5一凹模;6一定位板; 7一压边圈; 8一下模座; 9一卸料螺钉图 4.6.2 有压边装置的首次拉深模(4) 双动压力机上使用的首次拉滦模(图 4.6.4) 因双动压力机有两个滑块,其凸模 1 与拉深滑块( 内滑块 ) 相连接,而上模座 2(上模座上装有压边圈3) 与压边滑块(外滑块)相连。

拉深模设计与制造实例

拉深模设计与制造实例

拉深模设计与制造实例零件简图:如图8.2.7所示。

生产批量:大批量材料:镀锌铁皮材料厚度:1mm1.冲压件工艺性分析该工件属于较典型圆筒形件拉深,形状简单对称,所有尺寸均为自由公差,对工件厚度变化也没有作要求,只是该工件作为另一零件的盖,口部尺寸φ69可稍作小些。

而工件总高度尺寸14mm可在拉深后采用修边达要求。

2.冲压工艺方案的确定该工件包括落料、拉深两个基本工序,可有以下三种工艺方案:方案一:先落料,后拉深。

采用单工序模生产。

方案二:落料-拉深复合冲压。

采用复合模生产。

方案三:拉深级进冲压。

采用级进模生产。

方案一模具结构简单,但需两道工序两副模具,生产效率低,难以满足该工件大批量生产的要求。

方案二只需一副模具,生产效率较高,尽管模具结构较方案一复杂,但由于零件的几何形状简单对称,模具制造并不困难。

方案三也只需一副模具,生产效率高,但模具结构比较复杂,送进操作不方便,加之工件尺寸偏大。

通过对上述三种方案的分析比较,该件若能一次拉深,则其冲压生产采用方案二为佳。

3.主要设计计算(1)毛坯尺寸计算根据表面积相等原则,用解析法求该零件的毛坯直径D,具体计算见表8.2.7。

(2)排样及相关计算采用有废料直排的排样方式,相关计算见表8.2.7。

查板材标准,宜选750mm×1000mm 的冷轧钢板,每张钢板可剪裁为8张条料(93mm×1000mm),每张条料可冲10个工件,故每张钢板的材料利用率为68%。

(3)成形次数的确定该工件底部有一台阶,按阶梯形件的拉深来计算,求出h/dmin=15.2/40=0.38,根据毛坯相对厚度t/D=1/90.5=1.1,查表4.4.3发现h/dmin小于表中数值,能一次拉深成形。

所以能采用落料-拉深复合冲压。

(4)冲压工序压力计算该模具拟采用正装复合模,固定卸料与推件,具体冲压力计算见表8.2.7所示。

根据冲压工艺总力计算结果并结合工件高度,初选开式双柱可倾压力机J23-25。

模具第四章拉深模

模具第四章拉深模

一、拉深变形过程
的分析
1、拉深变形过程及特点
圆筒形件的拉深过程如图4-1所示。 直径为D的圆形平板毛坯2被凸模1拉 入凸、凹模的间隙里,形成直径为d 高为H的空心圆柱体4。在这一过程 中,板料金属是如何流动的呢?
如图4-2所示,把直径为D的圆板料 分成两部分:一部分是直径为d的圆 板,另一部分是直径为(D-d)的 圆环部分,把这块板料拉深成直径为 d的空心圆筒。在这个拉伸试验完成 后,发现板料的第一部分变化不大, 即直径为d的圆板仍保持原形状作为 空心圆筒的底,板料的圆环部分变化 相当大,变成了圆柱体的筒壁,这一 部分的金属发了流动。
硬化指数n值愈大,材料变形愈均匀,愈不易发生拉深细颈,因 此拉裂和危险截面变薄也会推迟出现,可使极限拉深因数减小。
厚向异性因数γ 大,板平面方向比厚度方向变形容易,则主变 形区不易起皱,危险截面不易变薄、拉裂,可使板料极限拉深 因数减小。
材料的深长率δ 是材料的塑性指标, δ 值愈小,塑性变形能力 愈差,则极限拉深因数也会增大。
第四章 拉深模
第一节 拉深模的设计基础 第二节 拉深模的设计示范
第一节 拉深模的设计基础
拉深是把一定形状的平板毛坯或空心件通过拉 深模制成各种空心零件的工序。在冲压生产中 拉深是一种广泛使用的工序,用拉深工序可得 到的制件一般可分为三类:
1、旋转体零件:如搪瓷脸盆、铝锅等。 2、方形零件:如饭盒、汽车油箱等。 3、复杂形状零件:如汽车覆盖件等。
⑵拉深条件
①模具的几何参数:
1)凸、凹模的间隙Z 模具的间隙适当大些,材料被拉入间隙
后的挤压小,摩擦阻力也小,拉深力也会减小,极限拉深因数亦减小。
2)凹模圆角半径rd 凹模圆角半径rd适当大些,材料沿凹模圆角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉深模设计案例
拉深图所示带凸缘圆筒形零件,材料为08钢,厚度t =1mm ,大批量生产。

试确定拉深工艺,设计拉深模。

1.零件的工艺性分析
该零件为带凸缘圆筒形件,要求内形尺寸,料厚t =1mm ,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径r =2mm >t ,凸缘处的圆角半径R =2mm=2t ,满足拉深工艺对形状和圆角半径的要求;尺寸φ2
.00
1.20+mm 为IT12级,其余
尺寸为自由公差,满足拉深工艺对精度等级的要求;零件所用材料08钢的拉深性能较好,易于拉深成形。

综上所述,该零件的拉深工艺性较好,可用拉深工序加工。

2.确定工艺方案
为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。

(1) 计算坯料直径D 根据零件尺寸查表5-5得切边余量∆R =2.2mm ,故实际凸缘直径d t =(55.4+2×2.2)=59.8mm 。

由表5-6查得带凸缘圆筒形件的坯料直径计算公式为
D =232
4222212156.428.64828.6d d R Rd h d r rd d -++++++
依图5-23,d 1=16.1mm ,R =r =2.5mm ,d 2=21.1mm ,h =27mm ,d 3=26.1mm ,d 4=59.8mm ,
代入上式得
D =28953200+≈78(mm)
(其中3200×π/4为该拉深件除去凸缘平面部分的表面积)
(2) 判断可否一次拉深成形 根据
t /D =1/78 = 1.28 % d t /d = 59.8/21.1 = 2.83 H /d = 32/21.1 =1. 52 m t =d /D =21.1/78=0.27
查表5-12、表5-13,[m 1]=0.35,[H 1/d 1]=0.21,说明该零件不能一次拉深成形,需要多次拉深。

(3) 确定首次拉深工序件尺寸 初定d t /d 1=1.3,查表5-12得[m 1]=0.51,取m 1= 0.52,则
d 1= m 1 ×D = 0.52×78 = 40.5(mm)
取r 1=R 1= 5.5 mm
为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即零件中除去凸缘平面以外的表面积3200×π/4)增加5%,故坯料直径修正为
D =2895%1053200+⨯≈79(mm)
按式(5-9),可得首次拉深高度为 H 1 =
)(14.0)(43.0)(25.0212
11
11221R r d R r d D d t -+++- =
)5.55.5(43.0)8.5979(5
.4025
.022+⨯+-⨯=21.2(mm) 验算所取m 1是否合理:根据t /D =1.28 %,d t /d 1 = 59.8/40.5=1.48,查表5-13可知[H 1/d 1]=
0.58。

因H 1/d 1 =21.2/40.5= 0.52<[H 1/d 1]= 0.58,故所取m 1是合理的。

(4) 计算以后各次拉深的工序件尺寸 查表5-14得,[m 2]= 0.75,[m 3]= 0.78,[m 4]= 0.80,则
d 2= [m 2] ×d 1= 0.75×40.5 = 30.4(mm) d 3= [m 3] ×d 2 = 0.78×30.4 = 23.7(mm) d 4= [m 4] ×d 3 = 0.80×23.7 = 19.0(mm)
因d 4= 19.0<21.1,故共需4次拉深。

调整以后各次拉深系数,取m 2 = 0.77,m 3 = 0.80,m 4 = 0.844。

故以后各次拉深工序件
的直径为
d 2= m 2 ×d 1= 0.77×40.5 = 31.2(mm) d 3= m 3 ×d 2 = 0.80×31.2 = 25.0(mm) d 4= m 4 ×d 3 = 0.844×25.0= 21.1(mm)
以后各次拉深工序件的圆角半径取
r 2=R 2=4.5mm ,r 3=R 3=3.5mm ,r 4=R 4=2.5mm 设第二次拉深时多拉入3%的材料(其余2%的材料返回到凸缘上),第三次拉深时多拉入1.5%的材料(其余1.5%的材料返回到凸缘上),则第二次和第三次拉深的假想坯料直径分别为
2895%1033200+⨯='D =78.7(mm)
2895%5.1013200+⨯=''D =78.4(mm)
以后各次拉深工序件的高度为
H 2 =
)(14.0)(43.0)(25.0222
22
22222R r d R r d D d t -+++-' =)5.45.4(43.0)8.597.78(2
.3125
.022+⨯+-⨯=24.8(mm) H 3 =
)(14.0)(43.0)(25.0232
33
33223R r d R r d D d t -+++-'' =
)5.35.3(43.0)8.594.78(25
25
.022+⨯+-⨯=28.7(mm) 其计算结果列于表1。

表1 拉深次数与各次拉深工序件尺寸 (mm )
根据上述计算结果,本零件需要落料(制成79mm 的坯料)、四次拉深和切边(达到零件要求的凸缘直径φ55.4mm)共六道冲压工序。

考虑该零件的首次拉深高度较小,且坯料直径(φ79)与首次拉深后的筒体直径(φ39.5)的差值较大,为了提高生产效率,可将坯料的落料
与首次拉深复合。

因此,该零件的冲压工艺方案为:落料与首次拉深复合—→第二次拉深—→第三次拉深—→第四次拉深—→切边。

本例以下仅以第四次拉深为例介绍拉深模设计过程。

3.拉深力与压料力计算
(1) 拉深力 拉深力根据式(5-11)计算,由表2-3查得08钢的强度极限σb =400MPa ,由m 4=0.844查表5-15得K 2=0.70,则
F =K 2πd 4tσb =0.70×3.14×20.1×1×400 = 17672(N)
(2) 压料力 压料力根据式(5-14)计算,查表5-16取p =2.5MPa ,则
F Y =π(2423d d -)p /4 =3.14×(242- 20.12)×2.5/4= 338(N)
(3) 压力机标称压力 根据式(5-16)和F Σ= F + F Y ,取F g ≥1.8F Σ,则
F g ≥1.8×(17672+338)= 32418(N)=32.4kN
4.模具工作部分尺寸的计算 (1) 凸、凹模间隙 由表5-27查得凸、凹模的单边间隙为Z =(1~1.05)t ,取Z =1.05 t =1.05×1=1.05mm 。

(2) 凸、凹模圆角半径 因是最后一次拉深,故凸、凹模圆角半径应与拉深件相应圆角半径一致,故凸模圆角半径r T = 2 mm ,凹模圆角半径r A = 2mm 。

(3) 凸、凹模工作尺寸及公差 由于工件要求内形尺寸,故凸、凹模工作尺寸及公差分别按式(5-45)、式(5-46)计算。

查表5-28,取δT =0.02,δA =0.04,则
0min )4.0(T d d T δ-∆+=
002.0002.018.20)2.04.01.20(--=⨯+= (mm)
A Z d d A δ++∆+=0
min )24.0(
04
.0004.0028.22)05.122.04.01.20(++=⨯+⨯+=(mm)
(4) 凸模通气孔 根据凸模直径大小,取通气孔直径为φ5 mm 。

5.模具的总体设计
模具的总装图如图1所示。

因为压料力不大(F Y =338N),故在单动压力机上拉深。

本模具采用倒装式结构,凹模11固定在模柄7上,凸模13通过固定板15固定在下模座3上。

由上道工序拉深的工序件套在压料圈14上定位,拉深结束后,由推件块12将卡在凹模内的工件推出。

6.压力机选择
根据标称压力F g ≥32.4kN ,滑块行程S ≥2工件h =2×32=64mm 及模具闭合高度H=188mm ,查表2-3,确定选择型号为J23-40型开式双柱可倾式压力机。

7.模具主要零件设计
根据模具总装图结构、拉深工作要求及前述模具工作部分的计算,设计出的拉深凸模、拉深凹模及压料圈分别见图2、图3和图4。

图1 拉深模总装图
1-螺杆2-橡胶3-下模座4、6-螺钉5、10-销钉7-模柄8、18-螺母9-打杆11-凹模12-推件块13-凸模14-压料圈15-固定板16-顶杆17-托板
图2 拉深凸模图3 拉深凹模
材料:T10A 热处理:60~64HRC 材料:T10A 热处理:58~62HRC
图4 压料圈
材料:T8A 热处理:54~58HRC。

相关文档
最新文档