第二章随机变量习题参考答案
概率论与数理统计(第三版)课后答案习题2
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章
第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22/C53=1/10,P{X=4}=C32/C53=3/10,P{X=5}=C42/C53=3/5,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60},即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)k p=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5. F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarc tanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞==23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-32=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-)=0.1,所以Φ(x-)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595. (2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2X2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={1/[2π(y-1)]e-(y-1)/4, y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同. 总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3) 8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于元, 元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出X(元),要使保险公司亏本,则必须X>即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于元}=P{-X≥}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.,即保险公司获利不少于元的概率在98%以上.P{保险公司获利不少于元}=P{-X≥}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.,即保险公司获利不少于元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X,300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x) 1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+ 1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2( 12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0..习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X 表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3,有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
概率论与数理统计第二章随机变量习题答案
大学数学云课堂30.83028203.射手向目标独立地进行了次射击,每次击中率为,3求次射击中击中目标的次数的分布律及分布函数,32.并求次射击中至少击中次的概率,0123.X X =解设表示击中目标的次数则,,,3(0)(0.2)0.008P X ===123(1)C 0.8(0.2)0.096P X ===223(2)C (0.8)0.20.384P X ===3(3)(0.8)0.512P X ===X 故的分布律为01230.0080.0960.3840.512X p 0,00.008,01()0.104,120.488,231,3x x F x x x x <ìï£<ïï=£<íï£<ï³ïî(2)(2)(3)0.89P X P X P X ³==+==分布函数大学数学云课堂0.6,0.7,33028205.甲、乙两人投篮,投中的概率分别为今各投次,求:(1);两人投中次数相等的概率(2.)甲比乙投中次数多的概率~30.6),~(3,0.7)X Y X b Y b 解分别令、表示甲、乙投中次数,则(,1)()(0,0)(1,1)(2,2)(3,3)P X Y P X Y P X Y P X Y P X Y ====+==+==+==331212222233333(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)C (0.6)0.4C (0.7)0.3(0.6)(0.7=+++0.32076=(2)()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+(2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==1232233322123333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)(0.6)(0.3)C (0.6)0.4C 0.7(0.3)=+++31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.30.243++=3028207.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有辆汽车通过,10002问出事故的次数不小于的概率是多少(利用泊松定理)?解设表示出事故的次数,则(,)~10000.0001X X b0.10.1³=-=-==--´(2)1(0)(1)1e0.1eP X P X P X--大学数学云课堂大学数学云课堂0.3A 3028209.设事件在每一次试验中发生的概率为,3A 当发生不少于次时,指示灯发出信号,(1)5进行了次独立试验,试求指示灯发出信号的概率;(2)7.进行了次独立试验,试求指示灯发出信号的概率(1)5~650.3X A X 解设表示次独立试验中发生的次数,则(,)5553(3)C (0.3)(0.7)0.16308kkk k P X -=³==å(2)7~70.3Y A Y b 令表示次独立试验中发生的次数,则(,)7773(3)C (0.3)(0.7)0.35293kkk k P Y -=³==å大学数学云课堂e ,0,(0),00.xt A B x X F x ,x l -ì+³>í<î3028224.设随机变量分布函数为()=30282概率统计(北大出版社)课后习题二第24题分布函数视频详解1A B ()求常数,;2{2}{3}P X P X £()求,>;3().f x ()求分布密度00lim ()11(1),lim ()lim ()1x x x F x A F x F x B ®+¥®+®-=ì=ìï\íí==-îïîQ 解2(2)(2)(2)1eP X F l -£==-33(3)1(3)1(1e )e P X F l l -->=-=--=e ,0(3)()()0,0x x f x F x x l l -ì³¢==í<î大学数学云课堂a 3028227.求标准正态分布的上分位点,10.01;a a =(),求z /220.003.a a a =(),求z ,z (1)()0.01,1()0.01P X z z a a F >=\-=Q 解()0.09, 2.33z z a a F ==即查表得(2)()0.003,1()0.003P X z z a a F >=\-=Q ()0.997, 2.75z z a a F ==即查表得/2/2()0.0015,1()0.0015P X z z a a -F >=\=Q /2/2()0.9985, 2.96z z a a F ==即查表得x.大学数学云课堂00.9?3028235.随机数字序列要多长才能使数字至少出现一次的概率不小于()0~,0.1.X n X b n 解令为出现的次数,设数字序列中要包含个数字,则00(1)1(0)1C (0.1)(0.9)0.9nnP X P X ³=-==-³(0.9)0.1,22nn £\³即22.\随机数字序列至少要有个数字。
随机变量练习题(答案)
随机变量练习题(答案)1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是(B )(A )取到的球的个数 (B )取到红球的个数(C )至少取到一个红球 (D )至少取到一个红球的概率提示:(A )的取值不具有随机性,(C )是一个事件而非随机变量,(D )是概率值而非随机变量,而(B )满足要求.2.抛掷两颗骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验结果是(D )(A )一颗是3点,一颗是1点 (B )两颗都是2点(C )两颗都是4点 (D )一颗是3点,一颗是1点或两颗都是2点提示:对(A )、(B )中表示的随机试验的结果,随机变量均取值4,而(D )是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻划的随机试验的结果的对应关系是理解随机变量概念的关键.提示(A )、(D )不满足分布列的基本性质②,(B )不满足分布列的基本性质①,正确选择是(C ). 4.在三次独立重复试验中,若已知A 至少出现一次的概率等于1927,则事件A 在一次试验中出现的概率为31 。
提示:1927=1-(1-p )3, ⇒P (A )=p =31. 5.设随机变量ξ的分布列为P (ξ=k )=(1)c k k +,k =1,2,3,c 为常数,则P (0.5<ξ<2.5)= 98 . 提示:1=c ·(111122334++⨯⨯⨯)=43c , 故c =34. 所以P (0.5<ξ<2.5)=p (1)+p (2)=32+92=98. 6.设随机变量ξ~B (2,p ),η~B (4,p ),若 P (ξ>1)=95,则 P (η≥1)= 6581· 提示:95=P (ξ≥1)=1-P (ξ=0)=1-(1-p )2, 即(1-p )2=94, p =31,故P (η≥1)=1-P (η=0)=1-(1-p )4=1-(32)4=6581. 7.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是31。
概率论与数理统计(经管类)第二章课后习题答案
习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。
概率论与数理统计+第二章+随机变量及其分布+练习题答案
滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。
随机变量及其分布习题解答
随机变量及其分布习题解答第2章随机变量及其分布习题解答⼀.选择题1.若定义分布函数(){}F x P X x =≤,则函数()F x 是某⼀随机变量X 的分布函数的充要条件是( D ).A .0()1F x ≤≤.B .0()1F x ≤≤,且()0,()1F F -∞=+∞=.C .()F x 单调不减,且()0,()1F F -∞=+∞=.D .()F x 单调不减,函数()F x 右连续,且()0,()1F F -∞=+∞=.2.函数()0 212021 0x F x x x <-=-≤A .某⼀离散型随机变量X 的分布函数.B .某⼀连续型随机变量X 的分布函数.C .既不是连续型也不是离散型随机变量的分布函数.D .不可能为某⼀随机变量的分布函数.3.函数()0 0sin 01 x F x x x x ππ=≤( D ).A .是某⼀离散型随机变量的分布函数.B .是某⼀连续型随机变量的分布函数.C .既不是连续型也不是离散型随机变量的分布函数.D .不可能为某⼀随机变量的分布函数.4.设X 的分布函数为1()F x ,Y 的分布函数为2()F x ,⽽12()()()F x aF x bF x =-是某随机变量Z 的分布函数,则, a b 可取( A ).A .32, 55a b ==-.B .2 3a b ==.C .13 , 22a b =-=. D .13 , 22a b ==-. 5.设X 的分布律为⽽(){}F x P X x =≤,则F =( A ).A .0.6.C .0.25.D .0.6.设连续型变量X 的概率密度为()p x ,分布函数为()F x ,则对于任意x 值有( A ).A .(0)0P X ==.B .()()F x p x '=.C .()()P X x p x ==.D .()()P X x F x ==.7.任⼀个连续型的随机变量X 的概率密度为()p x ,则()p x 必满⾜( C ).A .0()1p x ≤≤.B .单调不减.C .()1p x dx +∞-∞=?.D .lim ()1x p x →+∞=.8.为使 x 1()0 1p x x <=≥?成为某个随机变量X 的概率密度,则c 应满⾜( B ).A .1+∞=?.B .11-=?.C .11=.11+∞-=?.9.设随机变量X 的概率密度为2()x p x Ae -=,则A = ( D ).A .2.B .1.C .12.D .14.10.设X 的概率密度函数为1() ,2xp x e x -=-∞<<+∞,⼜{}()F x P X x =≤,则0x <时,()F x =( D ).A .112-e x. B .112xe --. C .12xe -. D .12e x .11.设220()00x cx e x p x cx -??>=??≤?是随机变量X 的概率密度,则常数c ( B ).B .只能是任意正常数.C .仅取1.D .仅取- 1. 12.设连续型随机变量X 的分布函数为()F x ,则112Y X =-分布函数为( D ). A .(22)F y -. B .1(1)22y F -. C .2(22)F y -.D .1(22)F y --.13.设随机变量X 的概率密度为()p x ,12Y X =-,则Y 的分布密度为( A ).A .1122y p -?? ???. B .112y p -??- C .12y p -??-. D .2(12)p y -.14.设随机变量X 的密度函数()p x 是连续的偶函数(即()()p x p x =-),⽽()F x 是X 的分布函数,则对任意实数a 有( C ).A .()()F a F a =-.B .0()1()aF a p x dx -=-.C .01()()2aF a p x dx -=-? . D .()()F a F a -=.⼆.填空题15.欲使2103()103xx e x F x A e x -?-≥为某随机变量的分布函数,则要求x F x Axx x,则必有A =____1/36______.17.从装有4件合格品及1件次品的⼝袋中连取两次,每次取⼀件,取出后不放回,求取出次品数X 的分布律为{0}3/5,{1}2/5P X P X ==== .18.独⽴重复地掷⼀枚均匀硬币,直到出现正⾯为⽌,设X 表⽰⾸次出现正⾯的试验次数,则X的分布列{}P X k ==1111{},1,2,222k kP X k k -??==?== ?.19.设某离散型随机变量X 的分布列是{},1,2,,10kP X k k C===,则C =____55_____.20.设离散型随机变量X 的分布函数是(){}F x P X x =≤,⽤()F x 表⽰概率{}0P X x ==00()(0)F x F x --.21.设X 是连续型随机变量,则{3}P X ==___0____.22.设随机变量X 的分布函数为20,2()(2),231,3x F x x x x(2.54)P X <≤=(4)(2.5)0.75x e x F x e x -?≤??=??->??,则{}1P X <=11e --.24.设连续型随机变量X的分布函数为20()021x xF x x x≥?X 的概率密度()p x=00 ()x x ?≤≤??其它.25.设随机变量X 的分布密度为2(1),(0,1) ()0,(0,1)Ax x x p x x ?-∈=,则常数A =__12____.26.若X的概率密度为()p x ,则31Y X =+的概率密度()Y p y =1133y p -??.27.设电⼦管使⽤寿命的密度函数()2 1001000100x p x x x ?>?=??≤?(单位:⼩时),则在求(1){14}P X <≤;(2)X 的分布函数()F x .解:(1){14}{2}{3}{4}0.30.30.10.7P X P X P X P X <≤==+=+==++=(2)X 的分布函数()F x 为0,00.1,010.3,12()0.6,230.9,341,4x x x F x x x x≤<=≤≥?29. 设连续随机变量X 的概率密度,10(),010,||1c x x p x c x x x +-≤=-≤≤??>?试求: (1)常数c ; (2) 概率{||0.5}P X ≤;(3) X 的分布函数()F x . 解:(1)由01 11()()()21p x dx c x dx c x dx c +∞-∞-==++-=-?,得1c =(2){||0.5}{0.50.5}P X P X ≤=-≤≤00.50.5(1)(1)0.75x dx x dx -=++-=?(3)X 的分布函数为1010,1(1),10()(1)(1),011,1x xx t dt x F x t dt t dt x x --<-??+-≤21,1x x x x x x <-+-≤30.设顾客到某银⾏窗⼝等待服务的时间X (单位:分钟)的概率密度函数为5()50,0xe x p x x -?>?=??≤?某顾客在窗⼝等待,如超过10分钟,他就离开,求他离开的概率. 解:他离开的概率为/5 2101{10}5x P X e dx e +∞--≥==?31.已知随机变量X 的分布函数为()1,x 0211, 02241,2xe F x x x x ?=+≤,求其分布密度()p x .解:()1 021()0240 2xe x p x F x x x ?≥32. 设X 是离散型随机变量,其分布律为(1)求常数a ;(2)23Y X =+的分布律.解:(1)由0.330.10.21a a ++++=得0.1a = (2)由于所以,23Y X =+的分布律为33.设随机变量X 的密度函数为,0()0,0x X e x p x x λλ-?>=?≤?,0λ>,求XY e =的密度函数()Y p y .解:(1)XY e =的分布函数为()()(ln )0,0X XY F y y F y P e y P X y y >?=≤=≤=?≤?(2)XY e =的密度函数()Y p y 为ln 1,ln 0,1(ln )(ln ),01()()0,ln 00,00,10,0y X Y Y e y y p y y y y p y F y y y y y y λλλλ-+?>?'>?>'===?≤=?≤?≤≤。
概率论与数理统计第二章习题及答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P XP C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=qk -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
第二章习题答案
习题二(A )1. 已知随机变量X 服从10-分布,并且2.0}0{=≤X P ,求X 的概率分布.解 X 只取0与1两个值,2.0}0{}0{}0{=<-≤==X P X P X P ,8.0}0{1}1{==-==X P X P .2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取2,1,0三个值.由古典概型概率公式可知)2,1,0(}{220255===-m C C C m X P m m 依次计算得X 的概率分布如下表所示X0 1 2 P 5526.0 3947.0 0526.0 3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是2,1,0.每次抽取一件取到优质品的概率是4/1,取到非优质品的概率是4/3,且各次抽取结果互不影响,应用伯努利公式有 5625.0169)43(}0{2====X P , 375.0166)43)(41(}1{12====C X P , 0625.0161)41(}2{2====X P . 4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解 X 可以取 ,2,1可列个值.且事件}{m X =表示抽取m 次前1-m 次均未取到优质品且第m 次取到优质品,其概率)41()43(1⋅-m .因此X 的概率分布为1)43(41}{-==m m X P , ,2,1=m . 5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布.)1(抽取次数X ; )2(取到的旧球个数Y .解 )1(X 可以取4,3,2,1各值. 75.043}1{===X P , 2045.0449119123}2{≈=⨯==X P , 0409.02209109112123}3{≈=⨯⨯==X P , 0045.0220199101112123}4{≈=⨯⨯⨯==X P . )2(Y 可以取3,2,1,0各值.75.0}1{}0{====X P Y P , 2045.0}2{}1{≈===X P Y P ,0409.0}3{}2{≈===X P Y P , 0045.0}4{}3{≈===X P Y P .6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取3,2,1,0各值.0045.02201}0{31233≈===C C X P , 1227.022027}1{3122319≈===C C C X P , 4909.0220108}2{3121329≈===C C C X P , 3818.022084}3{31239≈===C C X P . 7. 将3人随机地分配到5个房间去住,求第一个房间中人数的概率分布和分布函数.解 用X 表示第一个房间中的人数,则其可能的取值为3,2,1,0.512.01256454}0{33====X P , 384.01254854}1{3213====C X P , 096.01251254}2{323====C X P , 008.0125151}3{3====X P . X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<= .3,1,32,992.0,21,896.0,10,512.0,0,0)(x x x x x x F 8. 袋中装有n 个球,分别编号为n ,,2,1 ,从中任取)(n k k ≤个,求取出的k 个球最大编号的概率分布.解 用X 表示k 个球的最大编号,则X 可能的取值为n k k ,,1, +.考虑随机事件}{l X =,总样本点数为kn C ,若k 个球的最大编号是l ,编号是l 的球一定被取出,剩下1-k 个球从编号为1,,2,1-l 的1-l 个球中取,共11--k l C 种取法,所以随机事件}{l X =所包含的样本点数为11--k l C ,由古典概型概率公式得),,1,(}{11n k k l C C l X P k nk l +===--. 9. 已知np n X P ==}{,,,6,4,2 =n 求p 的值. 解 1122642=-=+++p p p p p 解方程,得 22±=p .10. 已知cn n X P ==}{,100,,2,1 =n ,求c 的值.解 c n c cn n 5050)21(11001=+++==∑=解得 50501=c . 11. 已知λλ-==e m c m X P m!}{, ,2,1=m ,且0>λ,求常数c . 解 λλ-∞=∞=∑∑===e m c m X P m mm 11!}{1 由于λλλe m m m m m m =+=∑∑∞=∞=10!1!,所以有 1)1()1(!1=-=-=---∞=∑λλλλλe c e e c e m c m m解得 λ--=ec 11 12. 某人任意抛硬币10次,写出出现正面次数的概率分布,并求出现正面次数不小于3及不超过8的概率.解 用X 表示抛10次出现正面的次数,则X 可能的取值为10,,2,1,0 .10105.0}{⋅==k C k X P )10,,2,1,0( =k .}2{}1{}0{}3{=+=+==<X P X P X P X P0547.05.0455.0105.0101010≈⋅+⋅+=,9453.0}3{1}3{=<-=≥X P X P ,0107.05.05.010}10{}9{}8{1010≈+⋅==+==>X P X P X P ,9893.00107.01}8{1}8{=-=>-=≤X P X P .13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为4.0及5.0,求:)1(二人投篮总次数Z 的概率分布;)2(甲投篮次数X 的概率分布;)3(乙投篮次数Y 的概率分布.解 设事件i A 表示在第i 次投蓝中甲投中,j B 表示在第j 次投蓝中乙投中, ,6,4,2,,5,3,1==j i ,且 ,,,,4321B A B A 相互独立.)1(}{}12{12223211---=-=m m m A B A B A P m Z P11)3.0(4.04.0)5.06.0(--=⋅⨯=m m ,2,1=m ,}{}2{212223211m m m m B A B A B A P m Z P ---==m m 3.0)5.06.0(6.05.01=⨯⨯⨯=- ,2,1=m .)2(}{}{12223211---==m m m A B A B A P m X P}{212223211m m m m B A B A B A P ---+113.07.0)5.06.04.0()5.06.0(--⨯=⨯+⨯=m m ,2,1=m .)3(4.0}{}0{1===A P Y P}{}{}{122121121211+--+==m m m m m A B A B A P B A B A P m Y P)4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-m 13.042.0-⨯=m ,2,1=m .14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为6.0,遇到红灯或黄灯则停止前进,其概率为4.0,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车).解 X 可以取4,3,2,1,0.4.0}0{==X P , 24.04.06.0}1{=⨯==X P ,144.04.06.0}2{2=⨯==X P ,0864.04.06.0}3{3=⨯==X P ,1296.06.0}4{4===X P .15.⎩⎨⎧+<<=.,0,2,2)(其他a x a x x f 问)(x f 是否为密度函数,若是,确定a 的值;若不是,说明理由.解 如果)(x f 是密度函数,则0)(≥x f ,因此0≥a ,但是,当0≥a 时,444|2222≥+==++⎰a x xdx a a a a 由于⎰+∞∞-dx x f )(不是1,因此)(x f 不是密度函数.16. 某种电子元件的寿命X 是随机变量,概率密度为.100 ,100 ,0,100)(2<≥⎪⎩⎪⎨⎧=x x x x f 3个这种元件串联在一个线路上,计算这3个元件使用了150小时后仍能使线路正常工作的概率. 解 串联线路正常工作的充分必要条件是3个元件都能正常工作.而三个元件的寿命是三个相互独立同分布的随机变量,因些若用事件A 表示"线路正常工作",则3}]150{[}{>=X P A P , 32100}150{1502==>⎰+∞dx x X P , 278)(=A P . 17. 设随机变量X ~)(x f ,||)(x Aex f -=,确定系数A ,计算}1|{|≤X P . 解 A dx e A dx Ae x x 2210||===⎰⎰+∞-+∞∞--, 解得 21=A , 632.0121}1|{|101||11≈-===≤⎰⎰----e dx e dx e X P x x . 18. 设X 的概率密度为⎪⎩⎪⎨⎧<-= .,0,1||,1)(2其他x x c x f 确定常数c ;计算}21|{|<X P ;写出分布函数. 解 2cos cos sin 111222222112πππππ⋅==-=-=⎰⎰⎰---c tdt c tdt t c dx x c解得 π2=c ; tdt t dx x X P cos sin 1212}1|{|66222121⎰⎰---=-=<ππππ)2cos 2121(2cos 26666662⎰⎰⎰---+==ππππππππtdt dt tdt πππ2331)3416(2+=+=; 当1-≤x 时,0)(=x F ,当1≥x 时,1)(=x F ,当11<<-x 时,ϕϕϕπππd dt t x F s x cos sin 1212)(2arcsin 221-=-=⎰⎰-- )2cos 2121(2cos 2arcsin 2arcsin 2arcsin 22⎰⎰⎰---+==x x x d dx d πππϕϕπϕϕπ)12(arcsin 12x x x -++=ππ19. 设X 的概率密度为⎪⎩⎪⎨⎧<-= .,0,1||,1)(2其他x x c x f 确定常数c ;计算}2121{<≤-X P ;写出分布函数. 解 πc x c dx x c==-=--⎰11112|arcsin 11,π1=c ; 31|arcsin 211}21|{|21021212==-=≤⎰-x dx xX P ππ; 当1-≤x 时,0)(=x F ,当1≥x 时,1)(=x F ,当11<<-x 时,x d dt t x F x x arcsin 121cos sin 111111)(arcsin 2212πϕϕϕπππ+=-=-=⎰⎰--. 20. 设连续型随机变量X 的分布函数)(x F 为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x A x x F 确定系数A ;计算}25.00{≤≤X P ;求概率密度)(x f .解 连续型随机变量X 的分布函数是连续函数,)01()1(-=F F ,有1=A ;⎪⎩⎪⎨⎧<<=.0,1021)(其他x x x f5.0)0()25.0(}25.00{=-=≤≤F F X P .21. 随机变量X 的分布函数)(x F 为:⎪⎩⎪⎨⎧≤>-= .2,0,2,1)(2x x x A x F 确定常数A 的值,计算}40{≤≤X P .解 由 )2()02(F F =+,可得 041=-A , 4=A , 75.0)0()4(}40{}40{=-=≤<=≤≤F F X P X P .22. 设X 的分布函数为⎩⎨⎧≤>-=- .0,0,0,)(2x x e A x F x 求:常数A ;}2|{|<X P ;概率密度.解 由 )0()00(F F =+,可得 10-=A , 1=A ;41)2()2(}2|{|--=--=<e F F X P ;⎩⎨⎧≤>=-.0,0,0,2)(2x x e x f x 23. 设X 的分布函数为x B A x F arctan )(+=,+∞<<∞-x . 求:常数B A ,;}1|{|<X P ;概率密度.解 12)(=⋅+=+∞πB A F ,02)(=⋅-=-∞πB A F ,可得π1,21==B A ; 21)1()1(1|}{|=--=<F F X P ; )1(1)(2x x f +=π, +∞<<∞-x . 24. 设X 的概率密度为||)(x Ae x f -= , +∞<<∞-x .求:常数A ;分布函数; X 落在)1,0(内的概率.解 由17题, 21=A ; ⎪⎩⎪⎨⎧≤>=-.021,021)(x e x ex f xx 当0<x 时, x x t t x e e dt e x F 21|2121)(===∞-∞-⎰,当0≥x 时, dt e dt e x F t x t -∞-⎰⎰+=002121)( x x t t e e e --∞--=-+=211|)21(|2100. 316.02121211211)0()1(}10{11≈-=+--=-=<<--e e F F X P . 25. 随机变量X ~)(x f ,x x e e A x f -+=)(,确定A 的值;求分布函数)(x F . 解 A e A dx e e A dx e e A x x x x x 2|arctan 112π==+=+=∞+∞-∞+∞-∞+∞--⎰⎰, 因此 π2=A , x x t x t t e e dt e e x F arctan 2|arctan 2)(2)(πππ==+=∞-∞--⎰. 26. 随机变量X ~)(x f ,⎪⎩⎪⎨⎧<<= .,0,0,2)(2其他a x x x f π确定a 的值并求分布函数)(x F .解 2202202|21πππa x dx xa a ===⎰,因此, π=a .当π<<x 0时, 22022)(ππx dt tx F x ==⎰,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.,1,0,,0,0)(22πππx x x x x F 27. 随机变量X 的分布函数为⎪⎩⎪⎨⎧>++-≤=- 0,2221,0,0)(22x e ax x a x x F ax )0(>a .求X 的概率密度并计算}10{a X P <<. 解 当0≤x 时,X 的概率密度0)(=x f ;当0>x 时,)()('x F x f =, ⎪⎩⎪⎨⎧>≤=-.02,00)(23x e x a x x f ax08.0251)0()1(}10{1≈-=-=<<-e F a F a X P . 28. 某公共汽车站,每隔8分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客到达汽车站后候车时间不超过3分钟及至少5分钟的概率.解 用X 表示乘客到达汽车站后候车时间,则X ~)8,0(U ,则X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.81,808,00)(x x x x x F 375.083)0()3(}30{==-=≤≤F F X P ; 375.0851)5()8(}85{=-=-=≤≤F F X P . 29. 设ξ~)10,0(U ,求方程012=++x x ξ有实根的概率.解 ξ的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=.101,10010,00)(x x x x x F 方程012=++x x ξ当042≥-ξ时有实根.8.0511)2(1}2{}2{}04{2=-=-=-≤+≥=≥-F P P P ξξξ. 30. 一批产品中有%15的次品,逐个进行返样抽取检查,共抽取20个样品,问取出的20个样品中最可能有几个次品,并求相应的概率.解 用X 表示抽取20个样品中的次品的件数,由于 3]15.0)120[(=⋅+,则取出的20个样品中最可能有3个次品,且243.0)85.0()15.0(}3{173320≈==C X P .31. 在1000件产品中含有15件次品,现从中任取6件产品,求其中恰含有2件次品和不含次品的概率. 解 用X 表示抽取的6件产品中次品的件数,次品率为015.0,故X 近似地服从二项分布)015.0,6(B ,0032.0)985.0()015.0(}2{4226≈==C X P ,9133.0)985.0(}0{6≈==X P .32. 电话交换台每分钟接到呼唤的次数服从泊松分布)3(P ,求一分钟内接到4次呼唤、不超过5次呼唤和至少3次呼唤的概率.解 用X 表示每分钟接到的呼唤次数,则X 服从泊松分布)3(P , ,2,1,0,!3}{3===-m e m m X P m. 查表得168.0}4{≈=X P .}3{}2{}1{}0{}5{=+=+=+==≤X P X P X P X P X P}5{}4{=+=+X P X P 9161.0≈.5768.0}2{}1{}0{1}3{≈=-=-=-=≥X P X P X P X P .33. 设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有错误的页数为Y ,依题意,}2{}1{===X P X P即 λλλλ--=e e !22解得 2=λ,即X 服从2=λ的泊松分布.2}0{-===e X P p , 显然 Y ~),4(2-e B84}4{-===e p Y P .34. 每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠的概率的两倍,求粮仓内无鼠的概率.解 设X 为粮仓内老鼠数目,依题意}2{2}1{===X P X Pλλλλ--⨯=e e !222解得 1=λ, 1}0{-==e X P .35. 上题中条件不变,求10个粮仓内有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓的数目为Y ,则Y ~),10(p B ,其中11}0{1}0{--==-=>=e X P X P p , 1-=e q .)458036(}2{}1{}0{}2{128+-==+=+==≤---e e e Y P Y P Y P Y P .36. 随机变量X 服从参数为7.0的10-分布,求2X ,X X 22-的概率分布.解 2X 仍服从10-分布,且3.0}0{}0{2====X P X P ,7.0}1{}1{2====X P X P .X X 22-的取值为1-与0,3.0}0{}02{2====-X P X X P ,7.0}0{1}12{2==-=-=-X P X X P .37. 设X 的概率分布为 X 1- 0 1 5P 1.0 2.0 3.0 4.0求:23+X 和122-X 的概率分布.解 1.0}1{}123{=-==-=+X P X P ,2.0}0{}223{====+X P X P ,3.0}1{}523{====+X P X P ,4.0}5{}1723{====+X P X P .4.0}1{}1{}112{2==+-===-X P X P X P ,2.0}0{}112{2===-=-X P X P ,4.0}5{}4912{2====-X P X P .38. 从含有3件次品的12件产品中任取3件,设其中次品数为X ,求12+X 的概率分布. 解 X 可能的取值为3,2,1,0. 382.0}0{}112{31239≈====+C C X P X P , 491.0}1{}312{3122913≈====+C C C X P X P , 123.0}2{}512{3121923≈====+C C C X P X P , 0045.0}3{}712{31233≈====+C C X P X P . 39. 已知nn n X P X P 31}10{}10{====-,,,2,1 =n X Y lg =,求Y 的概率分布. 解 Y 的取值为 ,2,1±±, n n X P n X P n Y P 31}10{}{lg }{======, n n X P n X P n Y P 31}10{}{lg }{===-==-=-, ,2,1=n . 40. X 服从],[b a 上的均匀分布,b aX Y +=,)0(≠a ,求证Y 也服从均匀分布.证明 X 的密度函数为)(x f X⎪⎩⎪⎨⎧<<-=.0,1)(其它b x a a b x f XY 的密度函数为)(y f Y )(||1)(ab y f a y f X Y -= 当0>a 时,⎪⎩⎪⎨⎧+<<+-=.011)(2其他b ab y b a a b a y f Y ⎪⎩⎪⎨⎧+<<+-=.0122其他b ab y b a a ab当0<a 时,可得 ⎪⎩⎪⎨⎧+<<+-=.01)(22其他b a y b ab ab a y f Y 41. 随机变量服从]2,0[π上的均匀分布,X Y cos =,求Y 的概率密度. 解 x y cos =在]2,0[π上单调,在)1,0(上,y x y h arccos )(==,2'11)(y y h --=,π2)(=x f X ,20π≤≤x .因此⎪⎩⎪⎨⎧<<-=.0,1012)(2其他y y y f Y π42. 随机变量服从)1,0(上的均匀分布,Xe Y =,|ln |X Z =,分别求随机变量Y 与Z 的概率密度)(yf Y 及)(z f Z .解 x e y =在)1,0(内单调,y x ln =可导,且yx y 1'=, 1)(=x f X 10<<x ,因此有⎪⎩⎪⎨⎧<<=.0,11)(其他e y y y f Y在)1,0(内,0ln <x ,x x ln |ln |-=单调,且z e x -=,z z e x --=',因此有⎩⎨⎧+∞<<=-.0,0)(其他z e z f zZ 43. 设X 服从参数1=λ的指数分布,求X Y =的概率密度)(y f Y 及2X Z =的概率密度)(z f Z . 解 x y =在),0[+∞上单调,2y x = +∞<≤y 0,y x y 2'=,⎩⎨⎧≤>=-.00,0)(x x e x f xX 因此有 ⎪⎩⎪⎨⎧≤>=-.00,02)(2y y ye y f yY2x z =在),0[+∞上单调,z x = +∞≤≤z 0,z x z 21'=,因此有⎪⎩⎪⎨⎧≤>=-.00,021)(z z e z z f z Z44. 随机变量X ~)(x f ,当0≥x 时,)1(2)(2x x f +=π,X Y arctan =,XZ 1=,分别计算随机变量Y 与Z 的概率密度)(y f Y 及)(z f Z .解 由于x y arctan =是单调函数,其反函数y x tan =,y xy 2'sec =在 )2,0(π内不恒为零,因此,当20π<<y 时, ππ2)tan 1(2sec )(22=+=y yy f Y , 即Y 服从区间)2,0(π上的均匀分布.x z 1=在0>x 时也是x 的单调函数,其反函数z x 1=,2'1zx z -=,因此当0>z 时, )1(2])1(1[21)(222z zz z f Z +=+-=ππ, ⎪⎩⎪⎨⎧≤>+=.00,0)1(2)(2z z z z f Z π 即XZ 1=与X 同分布. 45. 一个质点在半径为R 、圆心在原点的圆之上半圆周上随机游动.求该质点横坐标X 的概率密度)(x f X .解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从],0[R π上的均匀分布. ⎪⎩⎪⎨⎧≤≤=.0,01)(其他R l R l f L ππM 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且 RL R R X cos cos ==θ, 函数R l R x /cos =是l 的单调函数)0(R l π<<,其反函数为 Rx R l arccos =, 22'x R R l x --=, 当R x R <<-时,0'≠x L ,此时有 222211)(x R R x R Rx f X -=⋅--=ππ, 当R x -≤或R x ≥时,0)(=x f X .图46. 设X ~)4,3(N ,求:)1(}5.2{≤X P ;)2(}3.1{>X P ;)3(}5.31{≤≤X P ;)4(}8.2|{|>X P ;)5(}6.1|{|<X P ;)6(}52{>-X P .解 )1()25.0(}235.223{}5.2{-Φ=-≤-=≤X P X P 4013.0)25.0(1=Φ-=;)2()85.0(1}233.123{}3.1{-Φ-=->-=>X P X P 8032.0)85.0(=Φ=;)3()1()25.0(}235.323231{}5.31{-Φ-Φ=-≤-≤-=≤≤X P X P 44.0)1(1)25.0(=Φ+-Φ=;)4(}8.2{}8.2{}8.2|{|-<+>=>X P X P X P }238.223{}238.223{--<-+->-=X P X P 5417.0)9.2()1.0(1≈-Φ+-Φ-=;)5(}6.16.1{}6.1|{|<<-=<X P X P }236.123236.1{-<-<--=X P )3.2(1)7.0(1)3.2()7.0(Φ+-Φ-=-Φ--Φ=2313.0≈;)6(}23723{}7{}52{->-=>=>-X P X P X P 0227.0)2(1≈Φ-=.47. 随机变量X ~),(2σμN ,若975.0}9{=<X P ,062.0}2{=<X P ,计算μ和2σ的值,求}6{>X P .解 975.0)9(}9{=-Φ=<σμX P . 062.0)2(}2{=-Φ=<σμX P , 938.0)2(=-Φσμ, 查表得: ⎪⎩⎪⎨⎧=-=-54.1296.19σμσμ 解以μ和σ为未知量的方程组,得08.5=μ, 2=σ.328.0)46.0(1}6{1}6{=Φ-=≤-=>X P X P .48. 已知随机变量X ~)2,10(2N ,95.0}|10{|=<-c X P , 023.0}{=<d X P ,确定c 和d 的值.解 95.01)2(2}2210{}|10{|=-Φ=<-=<-c c X P c X P , 975.0)2(=Φc , 查表得 96.12=c , 92.3=c . 023.0)210(}{=-Φ=<d d X P , 977.0)210(=-Φd , 查表得 2210=-d ,6=d . 49. 假定随机变量X 服从正态分布),(2σμN ,确定下列各概率等式中a 的数值: )1(9.0}{=+<<-σμσμa X a P ;)2(95.0}{=+<<-σμσμa X a P ;)3(99.0}{=+<<-σμσμa X a P .解 1)(2}{}{-Φ=<-=+<<-a a X P a X a P σμσμσμ)1( 9.01)(2=-Φa , 95.0)(=Φa , 64.1=a ;)2( 95.01)(2=-Φa , 975.0)(=Φa , 96.1=a ;)3(99.01)(2=-Φa , 995.0)(=Φa , 58.2=a .50. 设X ~),160(2σN ,如要求X 落在区间)200,120(内的概率不小于8.0,则应允许σ最大为多少 解 }160200160160120{}200120{σσσ-<-<-=<<X P X P 8.01)40(2}40160{≥-Φ=<-=σσσX P , 查表得 9.0)28.1(≈Φ可得 28.140≥σ.σ最大约为31.51. 设一节电池使用寿命X ~)35,300(2N求)1(使用250小时后仍有电的概率; )2(求d ,使9.0}|300{|=<-d X P ;)3(求c ,使)()(c X P c X P <=>.解 )1(}3530025035300{}250{->-=>X P X P 9236.0)43.1()43.1(1≈Φ=-Φ-≈;)2(9.01)35(2}3535300{}|300{|=-Φ=<-=<-d d X P d X P , 95.0)35(=Φd , 75.57≈d . )3(}3530035300{}3530035300{-<-=->-c X P c X P )35300()35300(1-Φ=-Φ-c c , 5.0)35300(=-Φc , 300=c . 52. 设某班有40名同学,期末考试成绩X ~)81,375(N ,假设按成绩评定奖学金,一等奖学金评4人,二等奖学金8人,问至少得多少分才能得到一、二等奖学金解 假设分别至少得分为a 和b ,才能得到一、二等奖学金.1.0}93759375{=->-a X P , 1.0)9375(1=-Φ-a , 28.19375=-a , 52.386=a .3.0}93759375{=->-b X P ,3.0)9375(1=-Φ-b , 53.09375=-b , 77.379=b .(B )1. 设随机变量X 的概率密度为)(x f ,且)()(x f x f =-.)(x F 是X 的分布函数,则对任意实数a ,有)(a ⎰-=-adxx f a F 0)(1)()(b ⎰-=-adx x f a F 0)(21)()(c )()(a F a F =- )(d 1)(2)(-=-a F a F解⎰-∞-=-adx x f a F )()(t x -=令⎰⎰∞++∞=aadx x f dt t f )()(-,由于1)(=⎰+∞∞-dx x f ,)()(x f x f =-,所以⎰⎰⎰⎰-∞--+∞=+=+aaa adx x f dx x f dx x f dx x f 0021)()()()(, 即⎰=-+aa F dx x f 021)()(, 所以有 ⎰-=-adx x f a F 0)(21)(, )(b 为正确答案.2. 设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,b a ,的值应取)(a 52,53- )(b 32,32 )(c 23,21- )(d 23,21- 解 由分布函数的性质,应有1)()()(21lim lim lim =-=-=+∞→+∞→+∞→b a x F b x F a x F x x x ,所以,)(a 为正确答案.3. 设随机变量X 服从正态分布),(2σμN ,则随σ的增大,概率}|{|σμ<-X P . )(a 单调增大 )(b 单调减小 )(c 保持不变 )(d 增减不定 解 由正态分布的标准化变换得 }11{}1|{|}|{|<-<-=<-=<-σμσμσμX P X P X P1)1(2)1()1(-Φ=-Φ-Φ=, 所以,概率}|{|σμ<-X P 的大小与σ无关. )(c 正确.4. 设随机变量X 服从正态分布),(211θμN ,随机变量Y 服从正态分布),(222θμN ,且}1|{|}1|{|21<-><-μμY P X P ,则必有)(a 21θθ<)(b 21θθ>)(c 21μμ<)(d 21μμ>解 因为)2,1(0=>i i θ,由正态分布的标准化变换}1|{|}1|{|21<-><-μμY P X P }1||{}1|{|222111θθμθθμ<-><-⇔Y P X P1)1(21)1(221-Φ>-Φ⇔θθ)1()1(21θθΦ>Φ⇔2111θθ>⇔. )(a 正确.5. 从数4,3,2,1中任取一个数,记为X ,再从X ,,1 中任取一个数,记为Y ,求}2{=Y P . 解 显然随机变量X 能取4,3,2,1四个值,由于事件}1{=X ,}2{=X ,}3{=X ,}4{=X 构成完备事件组,且41}{==i X P ,4,3,2,1=i .条件概率 0}1|2{===X Y P ,ii X Y P 1}|2{===, 4,3,2=i . 所以,由全概率公式,得4813)4131210(41}|2{}{}2{41=+++======∑=i i X Y P i X P Y P .6. 设在一段时间内进入某一商店的顾客人数X 服从参数为λ的泊松分布,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买该种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的概率分布.解 由题意得,!}{λλ-==e m m X P m,2,1,0=m .设购买某种物品的人数为Y ,在进入商店的人数m X =的条件下,随机变量Y 的条件分布为二项分布),(p m B ,即k m k km q p C m X k Y P -===}|{, m k ,2,1,0=;p q -=1,由全概率公式得∑∞======0}|{}{}{m m X k Y P m X P k Y P∑∞=====k m m X k Y P m X P }|{}{k m k km mq p k m k m e m --∞=-⋅=∑)!(!!!λλk m kkm mq pk m k e-∞=-∑-=)!(!λλ∑∑∞=-∞=--=-=0!)(!)()!()(!)(n nkkm k m kn q k p e k m q k p eλλλλλλp k q k e k p e k p eλλλλλ--==!)(!)( , ,2,1,0=k . 7. 设X 是只取自然数为值的离散随机变量.若X 的分布具有无记忆性,即对任意自然数n 与m ,都有}{}|{n X P m X m n X P >=>+>,则X 的分布一定是几何分布. 解 由无记忆性知}{}{}{}|{n X P m X P m n X P m X m n X P >=>+>=>+>,或}{}{}{m X P n X P m n X P >>=+>.若把n 换成1-n 仍有}{}1{}1{m X P n X P m n X P >->=-+>.上两式相减可得}{}{}{m X P n X P m n X P >==+=.若取1==m n ,并设p X P ==}1{,则有)1(}2{p p X P -==.若取1,2==m n , 可得2)1(}1{}2{}3{p p X P X P X P -=>===. 若令1)1(}{--==k p p k X P ,则由归纳法可推得 k p p X P k X P k X P )1(}1{}{}1{-=>==+=,,1,0=k ,这表明X 的分布就是几何分布.8. 假设一大型设备在任何长为t 的时间内发生故障的次数)(t N 服从参数为t λ的泊松分布.)1(求相继两次故障之间时间间隔T 的概率分布;)2(求在设备已经无故障工作8小时的情识下,再无故障工作8小时的概率Q .解 发生故障的次数)(t N 是一个随机变量,且)(t N 服从参数为t λ的泊松分布,即tk e k t k t N P λλ-==!)(})({,,2,1,0=k .)1(相继两次故障之间时间间隔T 是非负连续型随机变量,所以,当0<t 时,分布函数0}{)(=≤=t T P t F ;0≥t 时,}{t T >与}0)({=t N 等价,于是,t e t N P t T P t T P t F λ--==-=>-=≤=1}0)({1}{1}{)(,即⎩⎨⎧≥->=≤=-.0,1,0,0}{)(t e t t T P t F tλ 于是,随机变量T 服从参数为λ的指数分布.)2(}8{}8,16{}8|16{≥≥≥=≥≥=T P T T P T T P Q}8{1}16{1}8{}16{<-<-=≥≥=T P T P T P T Pλλλ8816---==e ee . 9. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧∉∈= ].8,1[,0],8,1[,31)(32x x x x f)(x F 是x 的分布函数,求随机变量的)(X F Y =的分布函数)(y G .解 对X 的概率密度积分得X 的分布函数⎪⎩⎪⎨⎧>≤≤-<=.8,1,81,1,0,0)(3x x x x x F当0≤y 时,0})({}{)(=≤=≤=y X F P y Y P y G ; 当1≥y 时,1})({}{)(=≤=≤=y X F P y Y P y G ;当10<<y 时,}1{})({}{)(3y X P y X F P y Y P y G ≤-=≤=≤=y y F y X P =+=+≤=])1[(})1({33,或y dx xdx x f y X P y G y y ===+≤=⎰⎰++33)1(1)1(132331)(})1({)(.于是,)(X F Y =的分布函数为⎪⎩⎪⎨⎧≥<<≤=,1,1,10,,0,0)(y y y y y G即)(X F Y =服从区间]1,0[上的均匀分布.10. 假设随机变量X 服从参数为λ的指数分布,求随机变量 },min{k X Y =的分布函数(0>k 为一常数). 解 由题设条件X ~⎩⎨⎧≤>=- .0,0,0,)(x x e x f x λλ ⎩⎨⎧≥<==.,,,},min{k X k k X X k X Y 所以}},{m in{}{)(y k X P y Y P y F Y ≤=≤=.当0<y 时,⎰⎰∞-∞-===≤=≤=yyY dx dx x f y X P y Y P y F 00)(}{}{)(,当k y <≤0时,⎰∞-=≤=≤=yY dx x f y X P y Y P y F )(}{}{)(x yy x e dx e dx dx x f dx x f λλλ-∞--∞--=+=+=⎰⎰⎰⎰10)()(0,当k y ≥时,1}},{m in{}{)(=≤=≤=y k X P y Y P y F Y . 所以Y 的分布函数为⎪⎩⎪⎨⎧≥<≤-<=-.,1,0,1,0,0)(k y k y e y y F y Y λ。
概率与数理统计第2章一维随机变量习题及答案
第2章一维随机变量 习题2一. 填空题:1.设 离 散 型 随 机 变 量 ξ 的 分 布 函 数 是 (){}x P x F ≤=ξ, 则 用 F (x) 表 示 概 {}0x P =ξ = __________。
解:()()000--x F x F2.设 随 机 变 量 ξ 的 分 布 函 数 为 ()()+∞<<∞-+=x arctgx x F π121 则 P{ 0<ξ<1} = ____14_____。
解: P{ 0<ξ<1} = =-)0(F )1(F 143.设 ξ 服 从 参 数 为 λ 的 泊 松 分 布 , 且 已 知 P{ ξ = 2 } = P{ ξ = 3 },则 P{ ξ = 3 }= ___2783e - 或 3.375e -3____。
4.设 某 离 散 型 随 机 变 量 ξ 的 分 布 律 是 {}⋅⋅⋅===,2,1,0,!k k C k P Kλξ,常 数 λ>0, 则 C 的 值 应 是 ___ e -λ_____。
解:{}λλλλξ-∞=∞=∞==⇒=⇒=⇒=⇒==∑∑∑e C Ce k C k Ck P KK KK K 11!1!105 设 随 机 变 量 ξ 的 分 布 律 是 {}4,3,2,1,21=⎪⎭⎫⎝⎛==k A k P kξ则⎭⎬⎫⎩⎨⎧<<2521ξP = 0.8 。
解:()A A k P k 161516181412141=⎪⎭⎫ ⎝⎛+++==∑=ξ 令15161A = 得 A =1615()()212521=+==⎪⎭⎫ ⎝⎛<<ξξξp p P 8.041211516=⎥⎦⎤⎢⎣⎡+=6.若 定 义 分 布 函 数 (){}x P x F ≤=ξ, 则 函 数 F(x)是 某 一 随 机 变 量 ξ 的 分 布 函 数 的 充 要 条 件 是F ( x ) 单 调 不 减 , 函 数 F (x) 右 连 续 , 且 F (- ∞ ) = 0 , F ( + ∞ ) = 17. 随机变量) ,a (N ~2σξ,记{}σ<-ξ=σa P )(g ,则随着σ的增大,g()σ之值 保 持 不 变 。
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案
⎧ 0,
(2)
FX
⎜⎛ ⎝
x1
,
x2
;
1 2
,1⎟⎞ ⎠
=
⎪⎩⎪⎨ 121,,
x1 < 0,−∞ < x2 < ∞; 0 ≤ x1 < 1, x2 ≥ −1;
x1 ≥ 1,
x1 ≥ 0, x2 < −1 x1 ≥ 1,−1 ≤ x2 < 2
x2 ≥ 2
2.3 设某信号源,每 T 秒产生一个幅度为 A 的方波脉冲,其脉冲宽度 X 为均匀分布于[0,T ]
当 ti
=
0 时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
0< x <1 else
当 ti
=
π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
0<x< π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
− 2 2<x<0 else
当 ti
=
π ω
时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
当kl时有rtsx2????????????eakutkt0utkt01uskt0uskt01ea2eut?k?t?ut?k?t?1us?k?t?us?k?t?1k0000eut?k?t0?ut?k?t0?1us?k?t0?us?k?t0?1kt00faa?2??0a0是在02中均匀分布的随机变量且与a统计独立为常量
D[ X (t)] = D[ Acosωt + B sin ωt] = D[ A]cos2 ωt + D[B]sin2 ωt = σ 2
第2章 随机变量及其分布课后习题答案(高教出版社,浙江大学)
第2章 随机变量及其分布1,设在某一人群中有40%的人血型是A 型,现在在人群中随机地选人来验血,直至发现血型是A 型的人为止,以Y 记进行验血的次数,求Y 的分布律。
解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , ( ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。
2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。
当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。
设各阀门的工作相互独立。
解:X 只能取值0,1,2。
设以)3,2,1(=i A i记第i个阀门没有打开这一事件。
则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P XP ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,据信有20%的美国人没有任何健康保险,现任意抽查15个美国人,以X 表示15个人中无任何健康保险的人数(设各人是否有健康保险相互独立)。
问X 服从什么分布?写出分布律。
并求下列情况下无任何健康保险的概率:(1)恰有3人;(2)至少有2人;(3)不少于1人且不多于3人;(4)多于5人。
解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515 =⨯⨯==-k C k X P k k k。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案
2× 2 4 1× 2 2 = , P{Y = 5} = 2 = , 2 6 36 6 36 故 Y 的分布列为 P{Y = 4} =
Y P
0 6 36
1 10 36
2 8 36
3 6 36
4 4 36
5 2 . 36
3. 口袋中有 7 个白球、3 个黑球. (1)每次从中任取一个不放回,求首次取出白球的取球次数 X 的概率分布列; (2)如果取出的是黑球则不放回,而另外放入一个白球,此时 X 的概率分布列如何. 解: (1)X 的全部可能取值为 1, 2, 3, 4,
且 P{ X = 1} =
X P
1 2 3 4 . 0.7 0.24 0.054 0.006
4. 有 3 个盒子,第一个盒子装有 1 个白球、4 个黑球;第二个盒子装有 2 个白球、3 个黑球;第三个盒 子装有 3 个白球、2 个黑球.现任取一个盒子,从中任取 3 个球.以 X 表示所取到的白球数. (1)试求 X 的概率分布列; (2)取到的白球数不少于 2 个的概率是多少? 解:设 A1 , A2 , A3 分别表示“取到第一个、第二个、第三个盒子” , (1)X 的全部可能取值为 0, 1, 2, 3, 且 P{X = 0} = P (A1) P{X = 0 | A1} + P (A2) P{X = 0 | A2} + P (A3) P{X = 0 | A3}且 P{ X = 1}Fra bibliotek=X P
1 11 36
2 9 36
3 7 36
4 5 36
5 3 36
6 1 ; 36
(2)Y 的全部可能取值为 0, 1, 2, 3, 4, 5, 且 P{Y = 0} =
6 6 5 × 2 10 = , P{Y = 1} = 2 = , 6 2 36 6 36 4× 2 8 3× 2 6 P{Y = 2} = 2 = , P{Y = 3} = 2 = , 6 36 6 36
概率论与数理统计第二章课后习题及参考答案
概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 3()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim )32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .解:∵)2()1(===X P X P ,X 100000060000400000P0.160.240.240.36∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 213ln 210==+=<<⎰-x x x x X P ππ.(3)xxxx xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1)∵2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f ∵2d )(d )(10ah x x a h h x x f a=-==⎰⎰∞+∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 3)21(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时ax x F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0(2(=+Φ=Φσ,∴8.02(2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.02(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又∵1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .∴25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .∵5833.0)360(360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011Y 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy yX Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f y y y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.0,0,0)],()([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y y y y.23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。
概率论与数理统计第二章随机变量习题答案
大学数学云课堂30.83028203.射手向目标独立地进行了次射击,每次击中率为,3求次射击中击中目标的次数的分布律及分布函数,32.并求次射击中至少击中次的概率,0123.X X =解设表示击中目标的次数则,,,3(0)(0.2)0.008P X ===123(1)C 0.8(0.2)0.096P X ===223(2)C (0.8)0.20.384P X ===3(3)(0.8)0.512P X ===X 故的分布律为01230.0080.0960.3840.512X p 0,00.008,01()0.104,120.488,231,3x x F x x x x <ìï£<ïï=£<íï£<ï³ïî(2)(2)(3)0.89P X P X P X ³==+==分布函数大学数学云课堂0.6,0.7,33028205.甲、乙两人投篮,投中的概率分别为今各投次,求:(1);两人投中次数相等的概率(2.)甲比乙投中次数多的概率~30.6),~(3,0.7)X Y X b Y b 解分别令、表示甲、乙投中次数,则(,1)()(0,0)(1,1)(2,2)(3,3)P X Y P X Y P X Y P X Y P X Y ====+==+==+==331212222233333(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)C (0.6)0.4C (0.7)0.3(0.6)(0.7=+++0.32076=(2)()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+(2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==1232233322123333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)(0.6)(0.3)C (0.6)0.4C 0.7(0.3)=+++31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.30.243++=3028207.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有辆汽车通过,10002问出事故的次数不小于的概率是多少(利用泊松定理)?解设表示出事故的次数,则(,)~10000.0001X X b0.10.1³=-=-==--´(2)1(0)(1)1e0.1eP X P X P X--大学数学云课堂大学数学云课堂0.3A 3028209.设事件在每一次试验中发生的概率为,3A 当发生不少于次时,指示灯发出信号,(1)5进行了次独立试验,试求指示灯发出信号的概率;(2)7.进行了次独立试验,试求指示灯发出信号的概率(1)5~650.3X A X 解设表示次独立试验中发生的次数,则(,)5553(3)C (0.3)(0.7)0.16308kkk k P X -=³==å(2)7~70.3Y A Y b 令表示次独立试验中发生的次数,则(,)7773(3)C (0.3)(0.7)0.35293kkk k P Y -=³==å大学数学云课堂e ,0,(0),00.xt A B x X F x ,x l -ì+³>í<î3028224.设随机变量分布函数为()=30282概率统计(北大出版社)课后习题二第24题分布函数视频详解1A B ()求常数,;2{2}{3}P X P X £()求,>;3().f x ()求分布密度00lim ()11(1),lim ()lim ()1x x x F x A F x F x B ®+¥®+®-=ì=ìï\íí==-îïîQ 解2(2)(2)(2)1eP X F l -£==-33(3)1(3)1(1e )e P X F l l -->=-=--=e ,0(3)()()0,0x x f x F x x l l -ì³¢==í<î大学数学云课堂a 3028227.求标准正态分布的上分位点,10.01;a a =(),求z /220.003.a a a =(),求z ,z (1)()0.01,1()0.01P X z z a a F >=\-=Q 解()0.09, 2.33z z a a F ==即查表得(2)()0.003,1()0.003P X z z a a F >=\-=Q ()0.997, 2.75z z a a F ==即查表得/2/2()0.0015,1()0.0015P X z z a a -F >=\=Q /2/2()0.9985, 2.96z z a a F ==即查表得x.大学数学云课堂00.9?3028235.随机数字序列要多长才能使数字至少出现一次的概率不小于()0~,0.1.X n X b n 解令为出现的次数,设数字序列中要包含个数字,则00(1)1(0)1C (0.1)(0.9)0.9nnP X P X ³=-==-³(0.9)0.1,22nn £\³即22.\随机数字序列至少要有个数字。
概率论与数理统计(经管类)第二章课后习题答案
2.设离散型随机变量X的分布律为:
X
-1
2
3
P
0.25
0.5
0.25
求X的分布函数,以及概率 , .
解:
则X的分布函数F(x)为:
3.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=a F1(x)-bF2(x)也是某一随机变量的分布函数,证明a-b=1.
证:
4.如下4个函数,哪个是随机变量的分布函数:
注:可知X为从2到12的所有整数值.
可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故
P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)
P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))
P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))
求: (1) ; (2)
解:
(1)
(2)(2)
5.设K在(0,5)上服从均匀分布,求方程 (利用二次式的判别式)
解: K~U(0,5)
方程式有实数根,则
故方程有实根的概率为:
6.设X ~ U(2,5),现在对X进行
解:
至少有两次观测值大于3的概率为:
7.设修理某机器所用的时间X服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,
X的概率密度为:
即
(2)
即
(3)
,
即
6.X~N(0,1),求以下Y的概率密度:
(1)
解: (1)
第2章随机变量及其分布习题答案
第2章随机变量及其分布习题答案第⼆章随机变量及其分布§2.1 随机变量的概念与离散型随机变量习题 1. 解: 1112(1)121,.993θθθθ+-++-=∴=±⼜因为≤0)1(2θθ-1≤ , 所以 13θ=.2. 解:设X 表⽰任取3次,取到的不合格品数,则 1)有放回 33()0.20.8,0,1,2,3.k k k P X k C k -=== 即X 的分布律为 X 0 1 2 3 P12564125481251212512)⽆放回 328310(),3,4,5.kkC C P X k k C-===即X 的分布律为 X 0 1 2 P 1571571514. 解:设X 表⽰直⾄取到⽩球为⽌,取球的次数,则其概率分布为X 1 2 3 4P521031531015. 解:由全概率公式得42(2)()(2|)111113().423448k P Y P Xk P Y X k =======++=∑§2.2 0-1分布和⼆项分布习题1. 解:设A 表⽰“10件中⾄少有两件⼀级品”,则P (A )=1()P A -=1=--6.04.04.0911010C 0.9983.2. 解: X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 5 6.00.01024 0.0768 0.2304 0.3456 0.2592 0.077763. 解:设A 表⽰“4个灯泡中⾄少有3个能使⽤1500⼩时以上”,则4. 解:1)设A 表⽰“恰有3粒种⼦发芽”,则003764768.002.098.0)(2335==C A P2)设B 表⽰“⾄少有4粒种⼦发芽”,则=+=544598.002.098.0)(C B P 0.996§2.3 泊松分布习题1. 解:设A 表⽰“⼀页上⾄多有⼀个印刷错误”,则 010.20.20.20.2()(1)(0)(1)0.9820!1!P A P X P X P X ee--=≤==+==+=2.解:1)设X 表⽰5分钟内接到的电话个数,则0,1,2,X = 22(),0,1,2,3,4,5,6.!kP X k e k k -===2)设A 表⽰“5分钟内⾄多接到3个电话”,则∑2!2-ek k=0.8571或4()(3)1(4)1k P A P X P X +∞==≤=-≥=-∑2!2-ek k=(查表)1-0.1429=0.85713.解:1)设A 表⽰“中午12时⾄下午3时没有急症病⼈”, 则~(1.5),X π1.51.5()(0)0.223.0!P A P X e-====2)设B 表⽰“中午12时⾄下午5时⾄少有2个急症病⼈”,则~(2.5),X π12.52.5()(2)1(0)(1)2.5 2.510.7127.0!1!P B P X P X P X ee--=≥=-=-==-§2.4 随机变量的分布函数习题1. 解:1)≥<≤<≤<=2,121,2110,310,0)(x x x x x F312)()(0)(1),221(14)(2),22(14)(1)(2).3P X P X P X P X P X P X P X P X ≤==+==<≤===≤≤==+==2. 解:X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 56.00.01024 0.0768 0.2304 0.3456 0.2592 0.07776≥<≤≤<≤<≤<≤<=515492.04366.03223.021086.01001.000)(x x x x x x x x F <3. 解:X 的分布律为 X -1 0 2 4 P 0.2 0.4 0.3 0.1 §2.5 连续型随机变量习题 1. 解:1)?? =?=?=101231,1)(c dx cx dx x f2)30,0(),011,1x F x x x x=≤)41()21()2141(=-=≤≤F F x P 22219()1()1().33327P X P X F >=-≤=-= 2. 解:1)连续型随机变量的分布函数左连续,则00012l i m ()(0),l i m ()(1),l i m ()(2),10,1,2211,210,,2.2x x x F x F F x F F x F A B C C A B C ---→→→=====----====解得2),01()()2,120,x x f x F x x x <'==-≤其它3)2111117P ()1P ()1F()1().222=-=-= 3. 解:1)12011()2,~(3,),44P A xdx Y B ==则 Y 的概率分布为 Y 0 1 2 3 P642764276496412)设B 表⽰“对X 的三次独⽴重复观测中事件A ⾄多出现两次”,则3163()1()1(3)1().464P B P B P Y =-=-==-= 4.设最⾼洪⽔位为X,河堤⾄少要修c 单位⾼,由题意得:32()1()10.0110.c P X c P X c dx c x>=-≤=-≤?≥?P X dx >==设A 表⽰“3次独⽴观测中⾄少有两次观测值⼤于3”,则223321220()()().33327P A C =+=2. 解:有实根的条件:2(4)44(2)01K 2,K K K -??+≥?≤-≥或所求概率为 3P (K 2.5dx ≥=521)=5 3. 解:1)33001,|1 3.33xxk k kedx ek +∞--+∞=-==?=?即2)23 4.561.5(1.52)3.xP x edx e e ---≤≤=1(200)1,600x P X e dx e--≤==-?设A 表⽰“3只独⽴元件⾄少1只在最初200⼩时内出故障”,则13311)(1)(1)(---=-=-=eeA P A P .§2.7 正态分布习题1. :(1)(0.022.33)(2.33)(0.02)0.99010.50800.4821;P X <<=Φ-Φ=-=解( 1.850.04)(0.04)( 1.85)(0.04)[1(1.85)](0.04)(1.85)10.5160.967810.4838. P X -<<=Φ-Φ-=Φ--Φ=Φ+Φ-=+-= 2. 解:101)(716)(12)(2)(1)3(2)(1)10.97720.841310.8185;X P X P -<<=-<<=Φ-Φ-=Φ+Φ-=+-=10222)(102)()2()120.748610.4972;333x P x P --<=<=Φ-=?-=103)()0.9()0.9,(1.28)0.9,1.28,13.84.3P X αααα-<=?Φ=Φ≈-==反查表得故得3. 解:设X 表⽰螺栓长度,则:10.05(10.050.12)(2)2(2)120.977210.9544.0.06X P X P --<=<=Φ-=?-=4. 解:30(30)()2(1.5)10.8664,2020X P X P ≤=≤=Φ-=设A 表⽰“三次测量中⾄少有⼀次误差的绝对值不超过30cm ”3()1()1(0.1336)0.9976.P A P A =-=-=§2.8 随机变量函数的分布习题 1. 解:1)Y -3 2 5 6 P161 164 167 1642) Z 1 2 3 4 9 P1621641651641612. 解: 3110≤≤?≤≤y x , 当31≤≤y 时,11()();2y Y Y Y y y F y P Y y P X y P X dx f y F y ---=≤=+≤=≤= ='==;当13,y y ≤≥或时Y 的密度函数为零.故Y 的密度函数为1,13()20,Y y f y ?≤≤?=其它22222()2()22()()()(),,()(),.Y X yy yY Y X Y F y P Y y P y P X y dx y R Y f y F y y R µσµσµσµσµ∈'===∈?3.解:因为的分布函数为所以的密度函数为第⼆章随机变量及其分布复习题⼀选择题1. B2. B3. C4. D5. C ⼆填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592. 27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 611. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表⽰两次调整之间⽣产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k kP X k C k -===设A 表⽰“5道选择题⾄少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)⼀天中必须有油船转⾛意味着“X .>3”242(3)0.143;!kk P X ek ∞(查泊松分布表)2) 设设备增加到⼀天能为y 艘油船服务,才能使到达港⼝的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥?-≥?≤+≥?≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+?>dx b ax dx b ax X P X P47,23=-=?b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥≥?≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表⽰“100个男⼦中与车门碰头⼈数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -?-∞<≤??=??-<<+∞??011(2)P Y P X e dx P Y P X e dx ∞--∞==>===-=≤==故Y的概率分布律为Y-1 1P1/2 1/2Y的分布函数为0,11(),1121,1YyF y yy<-=-≤<≥。
第二章 概率论解析答案习题解答
第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组、1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X = 解:(1) 10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. :解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为>200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N =求常数a解:由11ii p+∞==∑得>11Nk a N==∑1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k kC C p X k C -== (0,1,,5)k =.7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数\解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯=于是X(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列解:X 的分布列为9、求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; .(3) 至多有3个设备被使用的概率解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.!10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;,(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算; (2) 用泊松分布作的似计算 …解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数 *解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|x xxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1x xF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为200()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为 ~212(1)12()0x f x x⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)xxx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为 ·011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩.16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时]2221111()()0cos sin |sin 2222xxxF x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 0242224π=+--=. 17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数]解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰?621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;?(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=- 0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤ 解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ-(1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.&21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-=23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤ 1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ10.69150.99380.6977=+-= 333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤?3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率 *解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的%,试求考生的成绩在60分至84分之间的概率解:设考生的外语成绩为X ,则2~(72,)X N σ】由96分以上的人数占总数的%得0.023(96)p X =>729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列解:由X于是Y25求2Y X =的分布列解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=¥即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240XF y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=:当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为()0xX e x f x x -⎧>=⎨≤⎩ 求随机变量2Y X =的密度函数~解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;$当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()10()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()00y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C:11、设随机变量X 的分布函数为0111()21232x a x F x a x a b x <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X==,求常数a、b解:由()1F+∞=及()()(0)p X a F a F a==--得()121(2)(2)(20)()()32F a bp X F F a b a+∞=+=⎧⎪⎨==--=+--=⎪⎩1726a ba b+=⎧⎪⇒⎨+=⎪⎩1656ab⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a解:由11 ii p+∞==∑得20.5121a a+-+=12a⇒=±|再由11202a a-≥⇒≤,可得1a=13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X表示取出的3个球中的最大号码.(1) 求X的分布列;(2) 求X的分布函数解:(1) 由题意知X是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce -= (0)a >-求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <解:(1) 由()1f x dx +∞-∞=⎰得||()2221x xa a f x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰ 当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a ---∞-∞==+⎰⎰⎰001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰ 于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a ap X p X F F e e e ---<=-<<=--=--=-.15、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===. 16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是02025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=.17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X < 解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章随机变量(习题2)参考答案因此:p i i=2, p i 2.2 由离散型随机变量概率分布性质:ae −k =1∞k=1, 即: a e−k =1∞k=1, 注意到 e −k =1+12+⋯+1n +⋯=1∞k=1因此:ae −1=1, 所以:a =e −1.2.3 设A i ={甲第i 次投篮命中},B i ={乙第i 次投篮命中},i =1,2. 则P A 1 =P A 2 =0.7, P B 1 =P B 2 =0.4, 且A 1, A 2, B 1, B 2相互独立,因此 (1) 两人投中次数相同的概率为:P A 1 A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1 A 2B 1B 2 + P A 1A 2 B1 B2 + P(A 1A 2 B 1B 2 )+P(A 1A 2B 1B 2)=0.32×0.62+4×0.7×0.3×0.4×0.6+0.72×0.42=0.3124.(2) 甲比乙投中的次数多的概率为:P A 1A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1A 2B 1B 2 + P A 1A 2B1 B2 + P A 1A 2B 1 B 2=0.7×0.3×0.62×2+2×0.72×0.4×0.6+0.72×0.62=0.5628. 2.4 由于P X =k =k 15, k =1,2,3,4,5. 因此(1) P 1≤X ≤3 =P X =1 +P X =2 +P{X =3}=115+215+315=0.4. (2) P 0.5<X <2.5 =P X =1 +P X =2 =115+215=315=0.2 2.5由于P X =k =12, k =1,2,⋯. 因此 (1) P X =2,4,6,⋯ =12+12+12+⋯=13.(2) P X ≥3 =1−P X <3 =1− P X =1 +P X =2 =1−(12+12)=14=0.25.2.6 设X 为n 次试验中事件A 发生的次数,则依题意X 服从二项分布,其中P A =0.4=p . (1)n =4, X~B(4,0.4),则P X ≥3 =C 43p 3 1−p +C 44p 4=4×0.43×0.6+0.44=0.1792. (2)n =5, X~B(5,0.4),则P X ≥3 =C 53p 3 1−p 2+C 54p 4 1−p +C 55p 5=10×0.43×0.62+5×0.44×0.6+0.45=0.31744. 2.7 设X 为火灾发生的次数,则: X~P(λ),P X =k =λk k !e −λ, k =0,1,2,⋯, 其中λ=0.5t .(1)依题意λ=0.5×3=1.5,k =0, 从而 P X =0 =λ00!e −λ=e −1.5≈0.22313. (2)依题意λ=0.5×4=2,k ≥2, 从而P X ≥2 =1−P x <2 =1− P X =0 +P X =1=1− 200!e −2+21!e −2 =1−3e −2≈0.59399.2.8 设X 为同一时刻发生故障的设备台数,则:X~B(180,0.01),若配备N 名维修人员,则所要解决的问题为:确定最小N ,使得:P X >N <0.01,其中λ=np =1.8. 而P X >N =1−P X ≤N =1−C n k p k 1−p n−k N k =0=1−λk e −λk !N k =0= 1.8k e −1.8k !∞k =N +1<0.01.查表知:满足上式最小的N 为7,因此,至少应配备6名工人. 2.9 依题意:设电子元件在使用1500小时后,失效的概率为p ,则 P X <1500 = 1000x 215001000dx =13.因此,5个元件使用1500小时后,恰有2个元件失效的概率为:P Y =2 =C 52(13)2(23)3=10×19×827=80243.2.10 依题意:若每天供电量仅有80万千瓦时,则每天供电量不足的概率为:P X >0.8 = 12x (1−x )2dx 10.8= (12x +12x 3−24x 2)10.8dx=1− 12x +12x 3−24x 2 0.80dx =1−0.9728=0.0272. 若每天供电量上升到90万千瓦时,则每天供电量不足的概率为: P X >0.9 =1−P X ≤0.9 =1− 12x (1−x )20.90dx =0.0037.2.11 由于K 服从区间[−2,4]上的均匀分布,方程x 2+2Kx +2K +3=0有实根的充要条件是判别式∆=4K 2−4(2K +3)≥0, 即K 2−2K −3≥0,求得:K ≤−1,K ≥3. 因此所求概率为:P K ≤−1 +P K ≥3 = 16dx −1−2+ 1643dx =13.2.12 依题意,X 的密度函数为:f x =0.005e −0.005xx ≥00 x <0, 因此:(1)发射管寿命不超过100小时的概率为: P X ≤100 = 0.005e −0.005x 100−∞dx =1−1e =0.39347. (2)发射管寿命超过300小时的概率为: P X >300 =1−P X ≤300 =1− 0.005e −0.005x 300dx =1e =0.22313.(3)由(1)(2)得,所求概率为:(注意:X 与Y 相互独立)P X ≤100 P 100<Y <300 =P{X ≤100}(P Y <300 −P{Y ≤100})=(1−1e 0.5)( 1−1e 1.5 −(1−1e0.5))=0.15086. 2.13 用X 表示没人每次打电话的时间,则X 服从参数为0.5的指数分布,其密度函数为:f x = 0.5e−0.5xx ≥00 x <0, 此时,每人每次打电话超过10分钟的概率p 为: p =P X >10 =1−P X ≤10 =1− 0.5100e −0.5x dx =1e 5≈0.00674.将282人次电话视为282次伯努利试验,由于p 很小,n =282很大,由二项分布的泊松近似公式,所求概率为:1− λ00!e −λ−λ11!e −λ=1−e −λ−1.9e −λ=1−2.9e −1.9≈0.56625. 其中:λ=np =282×0.00674≈1.9. 2.14 由于X~N(110,122), 则(1)所求概率为:P X ≤105 =F 105 =Φ105−11012=Φ −512 =1−Φ 512=1−Φ 0.41667 ≈1−Φ 0.42 =1−0.6628=0.3372.(2)所求概率为:P 100<X ≤120 =F 120 −F 100 =Φ120−11012−Φ100−11012Φ 56 −Φ −56 =2Φ 56 −1=2Φ 0.83 −1=2×0.7967−1=0.5934. 2.15 设车门最低高度为x 0, 依题意:P X >x 0 <0.01, 即1−P X ≤x 0 <0.01, 所以 X ≤x 0 =F x 0 =Φ x 0−1706>0.99, 经查表得到:x 0−1706>2.33, 即x 0>183.98≈184. 因此车门最低高度为184cm.2.16 由于每次抽取后不放回,则有 P X =0 =1820×1719×1618×1517=6095;P X =1 =C 41×220×1819×1718×1617=3295;P X =2 =C 42×220×119×1818×1717=395;所以X 的概率分布为:F x =0 x <01219 0≤ x <192951≤x <21 x ≥2.2.17 依题意: X =1,2,3. 且P X =1 =C 42C 53=610; P X =2 =C 32C 53=310; P X =3 =C 22C 53=110.所以X其分布函数为:F x =0 x <135 1≤ x <29102≤x <31 x ≥3.2.18 根据X 的分布函数,得到:(1)P X <2 =F 2 =ln2,P 0<X <3 =F 3 −F 0 =F 3 =1,P 2<X ≤2.5 =F 2.5 −F 2 =ln2.5−ln2=ln1.25.(2)f x = 1x 1≤x ≤e0 其他.2.19 因F x = a +be −x 2 x ≥00 x <0则:首先有lim x →+∞F x =1, 即a =1. 又密度函数为f x = −xbe −x 2 x ≥00 x <0由 f(x)+∞0dx=1,即:−b xe −x22+∞0dx =1, 求得b =−1. 因此(1)a =1,b =−1.(2)X 的密度函数为:f x = xe −x 2 x ≥00 x <0;(3)P <X < =xe −x2ln 6 ln 4dx =e −ln 2−e −ln 4=12−14=14.2.20 (1)由Y =(2X −π)2,依次将X =0,π2,π,3π2代入得到:Y =π2,0,π2,4π2. 因此Y 的概率分布为:(2)因Y =cos (2X −π), 依次将X =0,π2,π,3π2代入得到:Y =−1,1,−1,1. 因此Y 的概率分布为:2.21 (1)X(2)X =−Y 的概率分布为:2.22 因X~N(0,1), X 的密度函数为:f X x =2π−x 22, x ∈R .(1)Y =2X −1时,由于F Y y =P Y ≤y =P 2X −1≤y =P X ≤y +12= 2πy +12−∞−x 22dx ,因此:f Y y =22π−(y +1)2, y ∈R .(2)Y =e −X , 因F Y y =P Y ≤y =P e −X ≤y ,此时当y <0时,F Y y =0;当y ≥0时,F Y y =P e X≥1y =1−P e X<1y =1− 2π−lny −∞−x 2dx ,此时:F Y′ y=f Y y =2π y−ln 2y , 因此f Y y = 2π y −ln 2y y ≥00 y <0. (3)Y =X 2,F Y y =P Y ≤y =P X 2≤y . y <0时,F Y y =0. y ≥0时,F Y y =P − y ≤X ≤ y =2π−x 2 y − y dx =22π−x 2 y 0dx ,因此:f Y y = 2πy −yy ≥00 y <0.2.23 因为X~U(0,π), X 的密度函数为:f(x)= 1π 0≤x ≤π0 其他,(1)Y =2lnX 时:F Y y =P Y ≤y =P 2lnX ≤y =P X 2≤ey =P {e−y ≤X ≤e y }= 1πe y2e−y 2dx =2 1πe y20dx ,因此:f Y y = 12πe y2 y ≤2lnπ0 y >2lnπ, 其中:y ≤2ln π由条件e y≤π而确定.(2)Y =cosX 时:F Y y =P Y ≤y =P cosX ≤y =P X ≥arccosy =1−P {X <arccosy } =1− 1πarccosy 0dx ,因此:f Y y =2−1< y <10 其他, 其中:−1<y <1由条件0<arccosy ≤π而确定.(3)Y =sinX 时:F Y y =P Y ≤y =P sinX ≤y =P X ≤arcsiny +P {X >π−arcsiny } = 1πarcsiny 0dx +1− 1ππ−arcsiny 0dx ,因此:f Y y =π2≤ y ≤10 其他, 其中:0≤y ≤1由条件0≤X ≤π而确定.。