3.3——矩阵线性代数课件PPT

合集下载

线性代数课本课件

线性代数课本课件

最小二乘法的计算实例
直线拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 直线方程。
多项式拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 多项式方程。
非线性拟合的计算实例
通过最小二乘法结合适当的变换,拟合非线 性模型。
THANKS FOR WATCHING
感谢您的观看
04 特征值与特征向量
特征值与特征向量的概念
特征值
设A是n阶方阵,如果存在数λ和 非零n维列向量x,使得Ax=λx成
立,则称λ是A的特征值。
特征向量
对应于特征值λ的满足Ax=λx的非 零向量x称为A的对应于特征值λ的 特征向量。
特征空间
对应于同一特征值的所有特征向量 (包括零向量)的集合,加上零向 量后构成的线性子空间称为特征空 间。
线性方程组的应用举例
线性规划问题
图像处理
线性方程组可用于描述和解决线性规划问 题,如资源分配、生产计划等。
在计算机图像处理中,线性方程组可用于 图像滤波、图像恢复等任务。
机器学习
电路分析
在机器学习领域,线性方程组常用于线性 回归、逻辑回归等模型的参数求解。
在电路分析中,线性方程组可用于描述电路 中的电流、电压等物理量之间的关系,从而 进行电路分析和设计。
向量的线性组合关系不变。
线性变换的性质
02
线性变换具有保持线性组合、保持线性相关等性质,同时线性
变换的核与像也是重要的概念。
线性变换的运算
03
线性变换之间可以进行加法和数量乘法运算,同时线性变换的
逆变换和复合变换也是常见的运算。
线性空间的基与维数
基的概念
线性空间中的一组线性无关的向量,可以表示该空间中的任意向 量,称为该线性空间的基。

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

矩阵代数ppt课件

矩阵代数ppt课件
特征向量
对于一个给定的矩阵A,如果存在一 个非零向量x,使得Ax = λx成立,则 称x为矩阵A的对应于特征值λ的特征 向量。
特征值与特征向量的计算
定义法
根据特征值和特征向量的定义,通过解方程组Ax = λx来计算特征值和特征向量。
幂法
通过计算矩阵A的幂来逼近特征值和特征向量,即通过计算A^n x来逼近Ax = λx的解。
04
矩阵分解
矩阵的三角分解
总结词
三角分解是一种将一个矩阵分解为一个 下三角矩阵和一个上三角矩阵之和的方 法。
VS
详细描述
三角分解也称为LU分解,它将一个矩阵A 分解为一个下三角矩阵L和一个上三角矩 阵U的乘积,即A = LU。这种分解对于解 决线性方程组和计算行列式值等数学问题 非常有用。
矩阵的QR分解
谱分解法
将矩阵A进行谱分解,即A = Σλi Pi,其中Σ为对角矩阵,λi为特征值,Pi为特征向量所构 成的特征矩阵。通过谱分解可以方便地计算出矩阵A的特征值和特征向量。
特征值与特征向量的性质
特征值的唯一性
一个矩阵的特征值是唯一的,但对应于同一特征值的特征向量不一定唯一。
特征向量的正交性
对应于不同特征值的特征向量是正交的,即如果λ1≠λ2,那么对应于λ1和λ2的特征向量x1和x2是正交 的。
总结词
矩阵的加法、数乘、乘法运算规则
详细描述
矩阵的加法运算规则是对应行和列的元素相加,数乘运算规则是对应元素乘以一 个常数,乘法运算规则是按照一定的规则对应元素相乘。
矩阵的逆与行列式
总结词
矩阵的逆、行列式的定义与性质
详细描述
矩阵的逆是一个特殊的矩阵,与原矩阵相乘为单位矩阵,行列式反映了矩阵的某些重要性质。

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

线性代数-线性方程组与矩阵PPT课件

线性代数-线性方程组与矩阵PPT课件

k 1
k 1
k 1
s
aik bk1
c1
j
s
aikbk 2
c2
j
s
aikbkp
c
pj
p
s
aikbktctj .
k1
k1
k1
t1 k 1
ps
同理可以验证矩阵 Ams (BspC pn ) 中 (i, j) 元素也是 aikbktctj ,所以矩阵乘法的结合律成立. t1 k 1
aij bij
.
mn
2. 矩阵的数乘
第1章 线性方程组与矩阵 12
定义4 用一个数 k 乘矩阵 A (aij )mn 的所有元素得到的矩阵 kaij mn 称为矩阵的数乘,记为 kA 或者 Ak ,

kA Ak kaij mn .
矩阵的数乘运算满足如下的运算规律: 设 k,l 是任意两个数, A, B 是任意两个 m n 矩阵,
21 21 0 2
21 21 01
2 0 21 0 1
4 4
3 0
2
2
.
三、矩阵的乘法
例3
求矩阵
A
1 2
1 2

B
2 6
1 3
的乘积
AB

BA
.

AB
1 2
1 2
2
6
1 3
8 16
4 8

BA
2 6
1 1
3
2
1 2
0 0
0 0
.
第1章 线性方程组与矩阵 16
3
A Omn Omn A A .
1. 矩阵的加法
第1章 线性方程组与矩阵 11

线性代数课件3 3

线性代数课件3 3

? ? ???
?
?5?
? ?
?
1 ??
方程组可简化为 AX = b .
x1
? ? ?
3 1
? ? ?
?
x2
? ? ?
4? ? 1 ??
?
x3
? ? ?
?1?
2
? ?
?
?5?
? ?
?
1??
二、线性方程组的解的判定
设有 n 个未知数 m 个方程的线性方程组
m、n 不一 定相等!
? a11 x1 ? a12 x2 ?
前 r列
后 n - r列
第一步:往证 R(A) < R(A, b) ? 无解.
若 R(A) < R(A, b) ,即 R(A, b) = R(A)+1,则 dr+1 = 1 . 于是 第 r +1 行对应矛盾方程 0 = 1,故原线性方程组无解.
?1 0
? ?
0
1
?
B
?
? ? ? ?
0 0
0 0
?0 0
?? ?
a21 x1 ?
a22 x2
?
?
??am1 x1 ? am2 x2 ?
? a1n xn ? b1 , ? a2n xn ? b2 ,
? amn xn ? bm .
定义:线性方程组如果有解,就称它是相容的;如果无解, 就称它是不相容的.
问题1:方程组是否有解? 问题2:若方程组有解,则解是否唯一? 问题3:若方程组有解且不唯一,则如何掌握解的全体?
前前nr 列
后 n - r列
第二步:往证 R(A) = R(A, b) = n ? 唯一解. 若 R(A) = R(A, b) = n, 则 dr+1 = 0 且 r = n,从而 bij 都不出现. 故原线性方程组有唯一解.

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中

线性代数第一章、矩阵PPT课件

线性代数第一章、矩阵PPT课件
矩阵的秩的计算方法
可以通过初等行变换或初等列变换将矩阵转化为行阶梯形或列阶梯形,然后数非零行的个数即为矩阵的秩。
矩阵的秩的定义
矩阵的秩是其行向量组或列向量组的一个极大线性无关组中向量的个数。
矩阵的秩
通过初等行变换将增广矩阵化为行阶梯形,然后回代求解。
高斯消元法
克拉默法则
迭代法
适用于线性方程组系数行列式不为0的情况,通过解方程组求出方程的解。
n阶方阵A的行列式记为det(A),是一个n阶的方阵,其值是一个实数。
行列式与转置矩阵的行列式相等,即det(A^T) = det(A);行列式的乘法性质,即det(kA) = k^n * det(A);行列式的初等变换性质,即行列式在初等变换下保持不变。
行列式的定义与性质
行列式的性质
行列式的定义
线性代数第一章、矩阵ppt课件
目录
CONTENTS
矩阵的定义与性质 矩阵的逆与行列式 矩阵的秩与线性方程组 矩阵的特征值与特征向量 矩阵的分解与正交矩阵 矩阵在实际问题中的应用
01
矩阵的定义与性质
CHAPTER
矩阵的定义与性质
about the subject matter here refers to the subject matter here.
相似法
如果存在可逆矩阵P,使得P^(-1)AP=B,则矩阵A的特征值和特征向量可以通过矩阵B的特征值和特征向量来求解。
特征值与特征向量的计算方法
如果矩阵A的所有特征值都是实数且没有重复,则矩阵A可以对角化。
判断矩阵是否可对角化
求解线性方程组
判断矩阵是否相似
优化问题
通过将线性方程组Ax=b转化为特征值问题,可以求解线性方程组。

《线性代数》课件第3章

《线性代数》课件第3章
2.加法交换律 : A + B = B + A; 3. A + 0m×n = A; 4. A + (−A) = 0m×n; 5. a(A + B) = aA + bB; 6. (a + b)A = aA + bA; 7. (ab)A = a(bA).
定义1.4对于一组m × n矩阵A1,..., At和数c1,...,ct , 矩阵 c1A1 + + ctAt
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a 21
am1
a12 a 22
am 2
a 1n a 2n
amn
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
称为S
上一个m
×
n矩阵,通常简记为
(aij
) m
×n

(aij
).
一个n × n矩阵称为n阶矩阵或n阶方阵.在一个n阶矩阵中,从
左上角至右下角的一串元素a11, a22 ,..., ann称为矩阵的对角线.
+
a2
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 1 0
0
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
+
+
an
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 0
0 1
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
= a 1ε1 + a 2ε2 +
+ anen .
§3.2 矩阵的乘法
( ) ( ) 定义2.1(矩阵的乘法)设A = aij 是一个m×n矩阵, B = bij 是一个
1. 把A整个分成一块,此时A就是一个1×1的分快矩阵;
2. 把A的每一行(列)或若干行(列)看成一块.比如,把A按列分

线性代数ppt课件同济

线性代数ppt课件同济

05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。

线性代数矩阵课件

线性代数矩阵课件

线性代数矩阵课件
线性代数矩阵课件
线性代数矩阵课件已经为大家准备好啦,老师们,大家可以参考以下内容,整理好教学思路哦!
矩阵及其运算
一.数学概念
定义1.1由
个数
排成m行n列的数表
称为m行n列的矩阵,简称
矩阵,记作
二.原理,公式和法则
1.矩阵的加法
(1)公式
(2)运算律
2.数乘矩阵
(1)公式
(2)运算律
3.矩阵与矩阵相乘
(1)设
,

其中
,且。

(2) 运算符(假设运算都是可行的):
(3) 方阵的运算
注意:①矩阵乘法一般不满换律。

②一般
4.矩阵的转置
(1) 公式
这里
为A的转置矩阵。

(2) 运算律
5.方阵的行列式
(1) 公式
设A为n阶方阵,
为A的.行列式。

(2) 运算律
6.共轭矩阵
(1)公式设
为复矩阵,
表示为
的共轭复数,则
为方阵的共轭矩阵。

(2)运算律(设A,B为复矩阵,
为复数,且运算都是可行的):
三. 重点,难点分析
本节的重点就是矩阵的各运算及其运算律。

它是矩阵运算的基础,其难点是矩阵的乘法,着重掌握矩阵的运算规律。

四. 典型例题
例1. 已知
解:将(1),(2)等式两边相加得
所以
例2.设
解:由于
而。

线性代数总复习讲义PPT课件

线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。

线性代数-课件ppt

线性代数-课件ppt

a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2、数乘矩阵的运算规律
(设 A、B为 m n 矩阵, ,为数)
1 A A; 2 A A A;
3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
3 2 7 5
例1:已知
A
1 6
线性代数
• 矩阵的概念 • 矩阵的基本运算 • 矩阵的初等变换与矩阵的秩 • 逆矩阵 • 线性方程组解的判定
矩阵的概念
• 一、矩阵概念的引入 • 二、矩阵的定义 • 三、几种特殊的矩阵 • 四、同型矩阵和矩阵相等
一、矩阵概念的引入
B
某航空公司在A,B,C,D四城市之间
开辟了若干航线 ,如图所示表示了 四城市间的航班图,如果从A到B有
13 6 19 7
7 10
2 28
2 2
21 24
三、矩阵的乘法
引例:某校明后两年计划建筑教学楼和宿舍楼。建筑面积及材料耗用量如表:
建筑面积(单位:100平方米)
教学楼 宿舍楼
材料(每100平方米耗用量,单位:吨)
钢材 水泥 铝材
明年 20
10
教学楼
2
18
0.4
后年 30
20
宿舍楼 1.5
1 2 3 4
解:设A
4 3 2
1 4 3
2 1 4
123 ,
x1
X
x x x
2 3 4
,
1
B
2 2 1
,
所以方程组可表示为 :
1 2 3 4 x1 1

线性代数ppt课件

线性代数ppt课件

VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03

行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。

线性代数课件PPT 第3章.线性方程组

线性代数课件PPT 第3章.线性方程组

2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT


a2

M
an

3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
AA
a21
a22
an1 an2
| A| 0
0
| A|
0
0
a1n A11 A21
a2n
A12
A22
ann A1n A2n
0
0
| A | E
| A |
An1
An2
Ann
逆矩阵公式
定理 n 阶矩阵A为可逆阵的充分必要条件是 |A|≠0 ,
此时有 A1 1 adj A,或记为 A1 1 A*
2 2 1

求3阶方阵
A
3
1的5逆 矩阵.
3 2 3
解 | A | = 1, M11 7, M12 6, M13 3, M21 4, M22 3, M23 2, M31 9, M32 7, M33 4,

A1
|
1 A|
A*
A*
A11 A12 A13
A21 A22 A23
A31
A32
A33
M11 M21 M31 7 4 9
M12
M 22
M
32
6
3
7
M13 M23 M33 3 2 4 6
例 设n阶方阵A可逆, (1)证明其伴随矩阵A*可逆, 并求其逆; (2)求|A*|.
证 (1) 因为A可逆,故 A 0
而AA* A E
( 1 A)A* E A
2
1 a22 : a11a22 x1 a12a22 x2 b1a22 ,
2 a12 : a12a21x1
两式相减消去 x2,得
a12a22 x2
b2a12 , x1
b1a22 a11a22
a12b2 a12a21
(a11a22 a12a21)x1 b1a22 a12b2;
类似地,消去 (a11a22
x1,得 a12a21)x2
a11b2
x2 b1a21 ,
a11b2 a11a22
b1a21 a12a21
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
若令
D a11 a12 (方程组的系数行列式)
a21 a22
D1
b1 b2
a12 a22
D2
a11 a21
b1 b2
请关闭手机 或调至静音状态
1
§3.3 应用举例
1、转置伴随阵 逆矩阵公式 2、克拉默法则
2
1、转置伴随阵 逆矩阵公式
转置伴随阵
对任一 n 阶矩阵 A,可用其元之代数余子式构成一个被 称为 A 的转置伴随阵 (adjugate matrix)的 n 阶矩阵.
定义 对任一n 阶矩阵 A= [ aij ] ,用 adjA 记与之同阶的
ann xn Anj bn Anj
再把n个方程依次相加, 得
n
n
n
n
ak1 Akj x1
k1
akj Akj x j
k1
akn Akj xn
k1
bk Akj ,
k 1
11
n
ak1 Akj x1
k1
0
n
akj Akj x j
k1
D
n
Dn D
12
克拉默法则
a11 x1 a12 x2
如果线性方程组
a21
x1
a22 x2
an1 x1 an2 x2
a1n xn b1 a2n xn b2
ann xn bn
的系数行列式不等于零,即
a11 a12
a1n
D a21 a22
a2n 0
a11
a1, j1 b1 a1, j1
A*可逆, 且 ( A* )1 1 A A
(2) 因为( A)1 1 A* , 故 A* A A1 A
A* A A1 A n A1 A n 1 A n1
A
7
2、克拉默法则
先讨论二元线性方程组的解:用消元法解二元线性方程组
a11x1 a12 x2 b1,
1
a21x1 a22 x2 b2 .
n
akn Akj xn
k1
bk Akj ,
k 1
0
Dj
a11 a1, j1 b1 a1, j1 a1n Dj
an1 an, j1 bn an, j1 ann
于是
Dx j Dj j 1,2, ,n
当D≠0时, 方程组有唯一的一个解为
x1
D1 D
,
x2
D2 D
,
x3
D3 D
,
, xn
an1 an2
ann
Dj an1
an, j1 bn an, j1
则线性方程组有解并且解是唯一的,解可以表示成
x1
D1 D
,
x2
D2 D
,
x3
D2 D
,
,
xn
Dn D
.
a1n ann
13
定理中包含着三个结论: •方程组有解;(解的存在性) •解是唯一的;(解的唯一性) •解可以由公式给出.
det A
| A|
证明 必要性 因 A 可逆,故有 A-1 使成立
AA-1 = I
利用行列式乘法定理,得 AA1 A A1 1
故必 detA≠0,且由此可知 | A1 | 1 | A|
充分性 当 |A|≠0时,可得
1 det
A
adj
A
A
A
1 det
A
adj
A
I
由逆矩阵的惟一性,即知 A1 1 A* 结论成立. | A|
上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2 a11a22
b1a21 a12a21
D2 D
9
问题:以上规律对n阶线性方程组是否成立?
a11x1 a12 x2
如果线性方程组
a21
x1
a22
x2
an1x1 an2 x2
a1n xn b1 a2n xn b2
D3 D
,
,
xn
Dn D
证 用D中第j列元素的代数余子式A1 j , A2 j , , Anj 依次乘方程组的n个方程, 得
a11 x1 a12 x2
a21 x1 a22 x2
an1 x1 an2 x2
a1n xn A1 j b1 A1 j a2n xn A2 j b2 A2 j
转置伴随阵,有
adj A def [ Aij ]T
其中 Aij 是元 aij 在 A 中的代数余子式的值.
A11

A
A12
A1n
A21 A22
An1 An2
A2n Ann
定理 设A是n 阶矩阵, adjA 为其转置伴随矩阵,则有
A adj A adj A A A I 或记作 AA* A* A A I
ann xn bn
b a11 a1, j1 b11 a1, j1 a1n Dj的系数行列式不等于零,即 D
a11 a12 a1n a21 a22 a2n
0
b a a b a a n1
n, j1 nn
n, j1
nn an1 an2 ann
则其解是否可以表示为:
x1
D1 D
,
x2
D2 D
,
x3
相关文档
最新文档