2020最新人教版八年级数学上册第十一、十二章综合测试

合集下载

2020年人教版数学八年级上册单元测试题及答案(全册)

2020年人教版数学八年级上册单元测试题及答案(全册)

人教版数学八年级上册第十一章达标测试卷3分,共30 分)(每题一、选择题1.下列长度的三条线段,能组成三角形的是( )A.3,7,2 B.4,9,6C.21,13,6 D.9,15,52.下列说法正确的是( )A.等腰三角形都是锐角三角形B.等腰三角形是等边三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.三角形中至少有一个角不小于60°3.下面的图中能表示△ABC 的BC 边上的高的是( )4.如图,在△ABC 中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=( ) A.145°B.150°C.155°D.160°(第4题)(第6题)(第7题)5.等腰三角形的一边长等于4,另一边长等于10,则它的周长是( ) A.18 B.24 C.18或24 D.14 6.如图,在△ABC 中,∠C=90°,D,E 是AC 上两点,且AE=DE,BD 平分∠EBC,那么下列说法中不正确的是( )A.BE 是△ABD 的中线B.BD 是△BCE 的角平分线C.∠1=∠2=∠3 D.BC 是△ABE 的高7.小明把一副三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为( ) A.4 B.5 C.6 D.7(第9题)(第10题)9.如图,在△ABC 中,以点B 为圆心,以BA长为半径画弧交边BC 于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的度数是( )A.70°B.44°C.34°D.24°10.如图,过正五边形ABCDE 的顶点A 作直线l∥BE,则∠1 的度数为( ) A.30°B.36°C.38°D.45°3分,共30 分)二、填空题(每题11.在△ABC 中,∠A :∠B :∠C=2 :3 :4,则∠A 的度数为________.12.起重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做是利用了__________________.13.在△ABC 中,若AB=4,BC=5,则△ABC 的周长l 的取值范围是________________.14.如图,在Rt△ABC 中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD 是AC 边上的高,则BD 的长为________cm.(第14题)(第15题)(第17题)15.如图,AD 是△ABC 的角平分线,BE 是△ABC 的高,∠BAC=40°,且∠ABC 与∠ACB 的度数之比为,则∠ADC=________,∠CBE=________.16.如果一个多边形的内角和为其外角和的 4 倍,那么从这个多边形的一个顶点________条对角线.出发共有17.如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=135°,则∠3=________°.(第18 题) (第20 题)18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.已知a,b,c为△ABC 的三边长,则|a+b+c|-|a-b-c|-|a-b+c|-|a+b -c|=________.20.如图,D,E,F 分别是△ABC 的边AB,BC,AC 的中点,连接A E,BF,CD△BDG 的面积为S1,△CGF为6,设交于点G,AG GE=,△ABC 的面积S1+S2=________.为S2,则的面积题6分,23,24 题每题8 分,25,26题每题10分,27 三、解答题(21,22题每题12 分,共60 分)21.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD,若∠A=60°,∠B=40°,求∠ECD 的度数.(第21 题)22.如图,B 处在A处的南偏西45°方向,C 处在A处的南偏东30°方向,C 处在B 处的北偏东60°方向,求∠ACB 的度数.(第22 题)23.如图.(1)在△ABC 中,BC 边上的高是________;(2)在△AEC 中,AE 边上的高是________;(3)若AB=CD=2 cm,AE=3 cm,求△AEC 的面积及C E 的长.(第23题)24.如图,六边形A BCDEF 的内角都相等,CF∥AB.(1)求∠FCD 的度数;(2)求证:A F∥CD.(第24题)25.如图,在△ABC 中,BD 是AC 边上的高,∠A=70°.(1)求∠ABD 的度数;(2)若CE 平分∠ACB 交BD 于点E,∠BEC=118°,求∠ABC 的度数.(第25题)26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE 平分∠MON,点A,B,C 分别是射线O M,OE,ONO E 于点D.设∠OAC=x°.上的动点(A,B,C 不与点O 重合),连接A C 交射线(1)如图①,若AB∥ON,则①∠ABO 的度数是________;②当∠BAD=∠ABD 时,x=________;当∠BAD=∠BDA 时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的.角?若存在,求出x 的值;若不存在,说明理由(第27题)答案一、1.B 2.D 3.D4.B 点拨:在△ABC 中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,解得x=30°.∵∠BAD=∠B+∠C=5x,∴∠BAD=150°.故选B.5.B 6.C7.B 点拨:如图,∵∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1 +∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°.故选B.(第7 题)8.C 点拨:由题意得这个多边形的内角和是360°×2=720°.设这个多边形的边数为n,根据题意得(n-2)×180°=720°,解得n=6.故选C.9.C 点拨:∵AB=BD,∠B=40°,∴∠ADB=70°.又∵∠C=36°,∴∠DAC =∠ADB-∠C=34°.故选C.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE=(5-2) ×180°÷5=108°,AB=AE.∴∠AEB=(180 °-108°) ÷2=36°.又∵l∥BE,∴∠1=∠AEB=36°.故选B.二、11.40°12.三角形的稳定性13.10<l<18 点拨:设△ABC 的AC边的长为x,则1<x<9,故△ABC 的周长l的取值范围是4+5+1<l<4+5+9,即10<l<18.60 14.13AB·BC点拨:由等面积法可知A B·BC=BD·AC,所以BD==AC12×5=136013(cm).15.80°;10°16.7 17.1518.360°点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7 +∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.0 点拨:∵a,b,c 为△ABC 的三边长,∴a+b+c>0,a<b+c,a+c >b,a+b>c,∴|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|=(a+b+c)-(-a+b+c)-(a-b+c)-(a+b-c)=a+b+c+a-b-c-a+b-c-a-b+c=0.120.2 点拨:∵E 为BC 的中点,∴S△ABE=S△ACE=△ABC=3.∵A E=2S,△BGA 与△BEG 为同高三角形,∴S△BGA S△BEG=,∴S△BGA =2.又∵D 为AB 的中点,∴S1=12S△BG A=1.同理得S2=1.∴S1+S2=2.三、21.解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°.∵CE 平分∠ACD,∴∠ECD=1∠ACD=50°. 222.解:∵AE∥BD,∴∠EAB=45°=∠DBA.∵∠DBC=60°,∴∠ABC=15°,∴∠ACB=180°-∠ABC-∠BAC=180°-15°-45°-30°=90°.23.解:(1)AB (2)CD (3)∵AE=3 cm,CD=2 cm,∴S△AEC=1 1 2AE·C D=×3×2212).∴S 2,又∵AB=2 cm,∴CE=3 cm.=3(cm 2CE·A B=3 cm△AEC=24.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2) ×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.25.解:(1)在△ABC 中,∵BD 是AC 边上的高,∴∠ADB=∠BDC=90°.又∵∠A=70°,∴∠ABD=180°-∠ADB-∠A=20°.(2)∵∠BEC=∠BDC+∠DCE,∠BEC=118°,∠BDC=90°,∴∠DCE=28°.又∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.2 2 1 1 26.解:当底边长为a 时,2a-1=5a-3,即a=,则三边长为,,,3 3 3 3不满足三角形三边关系,不能构成三角形;3 1 当底边长为2a-1 时,a=5a-3,即a=,则三边长为,4 2 3 3,,4 41 3 3满足三角形三边关系,能构成三角形,此时三角形的周长为++2 4 4=2;当底边长为5a-3 时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D 在线段O B 上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x=35.若∠ADB=∠ABD,则x=50.②当点 D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20,35,50 或125.卷试第十二章达标测3分,共30 分)(每题一、选择题1.在下列每组图形中,是全等形的是( )2.如图所示,△ACE≌△DBF,AD=8,BC=2,则AC=( ) A.2 B.8 C.5 D.3(第2题)(第3题)(第4题)(第5题)3.如图,已知AC=DB,AB=DC,你认为证明△ABC≌△DCB 应该用() A.“边边边”B.“边角边”C.“角边角”D.“角角边”4.如图,在△ABC 中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF 的度数是( )A.40°B.50°C.60°D.30°5.如图,在△ABC 中,AB=AC,点E,F 是中线AD 上的两点,则图中可证明为全等三角形的有( )A.3 对B.4 对C.5 对D.6 对6.如图,点P 是∠AOB 平分线OC 上一点,PD⊥OB,垂足为D,若PD=2,则点P 到边OA 的距离是( )A.1 B.2 C. 3 D.4(第6题)(第8题)(第9题)(第10题)7.在△ABC 中,∠B=∠C,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B 或∠C8.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为27 和16,则△EDF 的面积为()A.11 B.5.5 C.7 D.3.59.如图,直线a,b,c 表示三条公路,现要建一个货物中转站,要求它到三条公有( )路的距离相等,则可供选择的地址A.一处B.两处C.三处D.四处10.如图所示,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC (每题3分,共30 分)二、填空题11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.(第11题)(第12题)(第13题)(第16题) 12.如图,CE⊥AB,DF⊥AB,垂足分别为E,F,若CE=DF ,AE=BF,则△ADF≌△BCE,根据是________.13.如图,点O 在△ABC 内,且到三边的距离相等.若∠A=60°,则∠BOC=________°.14.在△ABC 中,AB=4,AC=3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________.15.已知AD 是△ABC 中BC 边上的中线,若A B=4,AC=6,则AD 的取值范围是________.16.如图,在Rt△ABC 中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,QA P=________两点分别在AC 和过点 A 且垂直于AC 的射线AO 上运动,当时,△ABC 和△PQA 全等.17.如图,AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是________.(第17 题) (第18 题) (第19 题) (第20 题) 18.如图,在△ABC 中,AB=AC,D 是BC 的中点,DE⊥AB 于点E,DF⊥AC 于点F,则图中的全等三角形共有________对.19.如图,在平面直角坐标系中,点 B 的坐标为(3,1),AB=OB,∠ABO=90°,则点A 的坐标是________.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.题8 分,25~27 题每题10 分,共三、解答题(21,22 题每题7 分,23,24 题每60 分)21.如图,AB∥CD.(1)用直尺和圆规作∠C 的平分线CP,CP 交AB于点E;(保留作图痕迹,不写作法)(2)在(1)中作出的线段CE 上取一点F,连接A F,要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件.(只要给出一种情况即可;图中不再增加字母和线段;不要求证明)(第21题)22.如图,点A,B,C 在同一条直线上,△ABD≌△EBC,AB=2 cm,BC=5 cm.(1)求DE 的长;(2)DB 与AC 垂直吗?为什么?(第22题)23.如图,点C 是AE 的中点,∠A=∠ECD,AB=CD,ED=4,求CB 的长度.(第23题)24.如图,四边形ABCD,BEFG 均为正方形,连接AG,CE.求证:(1) AG=CE;(2) AG⊥CE.(第24题)25.如图,A,B 两建筑物位于河的两岸,要测它们之间的距离,可以从 B 点出D作DE∥AB,使E,C,发在河岸上画一条射线BF,在BF 上截取BC=CD,过A 在同一直线上,则D E 的长就是A,B 之间的距离,请你说明道理.(第25题)26.如图,在△A BC 中,∠ACB=90°,AC=7 cm,BC=3 cm,CD 为斜边AB 上的高,点 E 从点B 出发沿直线BC 以2 cm/s 的速度运动,过点 E 作BC 的垂线交直线CD 于点F.(1)求证:∠A=∠BCD;(2)点E 运动多长时间,CF=AB?并说明理由.(第26题)27.在△ABC 中,AB=AC,点D 是线段C B 上的一动点(不与点B,C 重合),以AD 为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,当点D 在线段C B 上,∠BAC=90°时,那么∠DCE=________°;(2)设∠BAC=α,∠DCE=β.C B 上,∠BAC≠90°时,请你探究α与β之间的数量关①如图②,当点 D 在线段;系,并证明你的结论,完整C B 的延长线上,∠BAC≠90°时,请将图③补充②如图③,当点 D 在线段并直接写出此时α与β之间的数量关系(不需证明).(第27题)。

人教版2020-2021学年八年级数学上册第12章《全等三角形》单元测试卷(含答案)

人教版2020-2021学年八年级数学上册第12章《全等三角形》单元测试卷(含答案)

人教版八年级上册第12章《全等三角形》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,则∠C 的度数为()A.70°B.50°C.120°D.60°2.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.403.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC ≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”4.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等5.如图,AB平分∠DAC,增加下列一个条件,不能判定△ABC≌△ABD的是()A.AC=AD B.BC=BD C.∠CBA=∠DBA D.∠C=∠D6.如图,点O在△ABC内,且到三边的距离相等.若∠A=40°,则∠BOC等于()A.110°B.115°C.125°D.130°7.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cm B.5cm C.6cm D.7cm8.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)9.如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1)△AOD≌△COB;(2)AD=CB;(3)AB=CD.其中正确的个数为()A.0个B.1个C.2个D.3个10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB 于点E,交AC于点F,过点O作OD⊥AC于点D,某班学生在一次数学活动课中,探索出如下结论,其中错误的是()A.EF=BE+CF B.点O到△ABC各边的距离相等C.∠BOC=90°+∠A D.设OD=m,AE+AF=n,则S△AEF=mn二.填空题(共6小题,满分18分,每小题3分)11.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,∠B=∠C=90°,AB=AC,∠ADB=65°,则∠DAC的度数为°.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.14.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.15.(多选)如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为cm/s.A.;B.1;C.1.5;D.2.16.如图,△ABC的三边AB、BC、CA长分别为30,40,50.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.三.解答题(共7小题,满分52分)17.(6分)已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)18.(6分)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)说明△ACD与△BEC全等的理由;(2)说明AB=AD+BE的理由.19.(7分)已知:如图,△ABC,BD⊥AC,CE⊥AB,BD=CE,BD与CE交于点F.(1)说明AB=AC的理由;(2)联结AF并延长交BC于G,说明AG⊥BC的理由.20.(7分)已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.21.(8分)已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.22.(9分)阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB ≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.23.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,∴∠B=∠B1=50°,则∠C的度数为:180°﹣50°﹣70°=60°.故选:D.2.解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.3.解:∵∠ACB=∠DCE,CD=BC,∠ABC=∠EDC,∴△EDC≌△ABC(ASA),故选:B.4.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.5.解:∵AB平分∠DAC,∴∠CAB=∠DAB,∵AB=AB,∴若AC=AD,则△ABC≌△ABD(SAS),故选项A中的条件,可以判定△ABC≌△ABD;若BC=BD,则无法判断△ABC≌△ABD,故选项B中的条件,不可以判定△ABC≌△ABD;若∠CBA=∠DBA,则△ABC≌△ABD(ASA),故选项C中的条件,可以判定△ABC≌△ABD;若∠C=∠D,则△ABC≌△ABD(AAS),故选项D中的条件,可以判定△ABC≌△ABD;故选:B.6.解:∵O到三角形三边距离相等,∴O是△ABC的内心,即三条角平分线交点,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∵∠ABC+∠ACB=180°﹣40°=140°,∴∠OBC+∠OCB=70°,∴∠BOC=180°﹣70°=110°,故选:A.7.解:∵DE⊥AB于D,∴∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴ED=CE,∴AE+ED=AE+CE=AC=6cm,故选:C.8.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.9.解:∵OA=OC,∠A=∠C,而∠AOD=∠BOC,∴△AOD≌△COB(ASA),所以(1)正确;∴AD=BC,OD=OB,所以(2)正确;∵OA+OB=OC+OD,∴AB=CD,所以(3)正确.故选:D.10.解:A、∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=EO+FO=BE+CF,正确,故本选项不符合题意;B、过O作OM⊥AB于M,ON⊥BC于N,∵∠ABC和∠ACB的平分线相交于点O,OD⊥AC,∴OM=ON,OD=ON,∴OM=ON=OD,即点O到△ABC各边的距离相等,正确,故本选项不符合题意;C、∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+A,错误,故本选项符合题意;D、连接AO,∵OD=m=OM,AE+AF=n,∴S△AEF=S△AOE+S△AOF=+=×AE×m+m=m(AE+AF)=mn,正确,故本选项不符合题意;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED答案不唯一.12.解:∵∠B=∠C=90°,AB=AC,在Rt△ABD与Rt△ACD中,∴Rt△ABD≌Rt△ACD(HL),∴∠ADC=∠ADB=65°,∴∠DAC=90°﹣65°=25°,故答案为:25.13.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.14.解:过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,∴点P到边OA的距离是2.故答案为2.15.解:当△ACP≌△BPQ时,则AC=BP,AP=BQ,∵AC=3cm,∴BP=3cm,∵AB=4cm,∴AP=1cm,∴BQ=1cm,∴点Q的速度为:1÷(1÷1)=1(cm/s);当△ACP≌△BQP时,则AC=BQ,AP=BP,∵AB=4cm,AC=BD=3cm,∴AP=BP=2cm,BQ=3cm,∴点Q的速度为:3÷(2÷1)=1.5(cm/s);故选:B、C.16.解:作OD⊥AB于D,OE⊥AC于E,OF⊥BC于F,∵三条角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,∴OD=OE=OF,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=3:4:5,故答案为:3:4:5.三.解答题(共7小题,满分52分)17.证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).18.解:(1)∵∠DCE=∠A,∴∠D+∠ACD=∠ACD+∠BCE,∴∠D=∠BCE,在△ACD和△BEC中,,∴△ACD≌△BEC(AAS);(2)∵△ACD≌△BEC,∴AD=BC,AC=BE,∴AC+BC=AD+BE,即AB=AD+BE.19.解:(1)∵BD⊥AC,CE⊥AB,∵BD=CE,∠A=∠A,∴△ABD≌△ACE(AAS)∴AB=AC;(2)∵AB=AC,∴∠ABC=∠ACB,∵△ABD≌△ACE,∴∠ABD=∠ACE,∴∠FBC=∠FCB,∴FB=FC,在△ABF和△ACF中,,∴△ABF≌△ACF(SSS)∴∠BAF=∠CAF,∵AB=AC,∴AG⊥BC.20.(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE.∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.21.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.22.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.23.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.1、生活不相信眼泪,眼泪并不代表软弱。

2020年人教版八年级数学上学期第十二章《全等三角形》单元检测卷及答案

2020年人教版八年级数学上学期第十二章《全等三角形》单元检测卷及答案

第十二章《全等三角形》测试卷时间:90分钟总分:120分班级________________座号________________姓名________________ 成绩________________一、选择题(本大题共3小题,每小题10分,共30分)1.全等图形是指两个图形( )A.大小相同 B.形状相同 C.能够完全重合 D.相等2.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASA B.SAS C.AAS D.SSS3.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC4.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有( )A.2对 B.3对 C.4对 D.5对5.如图,已知△ABC≌△DFE,则∠DEF的对应角是( )A.∠A B.∠B C.∠ACB D.∠DFE6.如图,AC=DF,∠1=∠2,如果根据“ASA”判定△ABC≌△DEF,那么需要补充的条件是( )A.∠A=∠D B.AB=DE C.BF=CE D.∠B=∠E7.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.已知如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10 cm,BC=8 cm,CA=6 cm,则点O到三边AB、AC和BC 的距离分别等于( )A.2 cm、2 cm、2 cm B.3 cm、3 cm、3 cm C.4 cm、4 cm、4 cm D.2 cm、3 cm、5 cm9. 在△ABC和△DEF中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( )A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F10. 如图,为了促进当地旅游发展,某地要在三条公路AB、AC、BC两两相交围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,则度假村应该修在何处?可供选择的位置是( )A.△ABC内角平分线的交点 B.△ABC中线的交点C.△ABC高的交点 D.顶点A处二、填空题(本大题共6小题,每小题4分,共24分)11.将△ABC沿BC方向平移3 cm得到△DEF,则CF=________;若∠A=80°,∠B=60°,则∠F=________.12.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为__________.13.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是________________.(只需写一个,不添加辅助线)14.如图所示,A、B在一水池放入两侧,若BE=DE,∠B=∠D=90°,CD=10 m,则水池宽AB=________m.15.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN=________.16.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO∶S△BCO∶S△ACO等于________.三、解答题(共66分)17.(7分)如图,AB=AD,CB=CD,求证:△ABC≌△ADC.18.(7分)如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD.19.(8分)如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.20.(8分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且BC∥EF,∠A=∠D,AF=DC.求证:AB=DE.21.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.22.(9分)某校八年级(1)班学生参加社会实践活动,为测量一池塘两端A、B的距离,设计了如下方案:先过B点作AB的垂线BM,再在BM上取O、C两点,使BO=CO,接着过点C作BC的垂线CD,交AO 的延长线于D,则测出CD的长即为A、B的距离.此方案是否切实可行?理由是什么?23.(9分)如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE和CF交于点D.求证:AD平分∠BAC.24.(10分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G 点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.《全等三角形》达标测试---参考答案一、填空题1.C 2.A 3.D 4.C 5.C 6.A7.D 8.A9.C10.A二、填空题11.3 cm40°12. 413.∠ABD=∠CBD或AD=CD 14.1015. 216. 2∶3∶4三、解答题17.证明:∵在△ABC和△ADC中,⎩⎨⎧AB=AD,BC=CD,AC=AC,∴△ABC≌△ADC(SSS).18.证明:∵AC∥DB,∴∠A=∠B.在△AOC与△BOD中,∵⎩⎨⎧∠A=∠B,AO=BO,∠AOC=∠BOD,∴△AOC≌△BOD(ASA). ∴AC=BD.19.证明:∵AB∥ED,∴∠A=∠D. 又∵AF=DC,∴AC=DF.在△ABC与△DEF中,⎩⎨⎧AB=DE,∠A=∠D,AC=DF.∴△ABC≌△DEF(SAS). ∴BC=EF. 20.证明:∵AF=DC,∴AF+FC=DC+CF,即AC=DF.又∵BC∥EF,∴∠BCA=∠EFD.在△ABC和△DEF中,⎩⎨⎧∠A=∠D,AC=DF,∠ACB=∠EFD.∴△ABC≌△DEF(ASA),∴AB=DE.21.证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE.在△ABC和△DEC中,⎩⎨⎧AC=DC,∠ACB=∠DCE,BC=EC.∴△ABC≌△DEC(SAS),∴∠A=∠D.22.解:方案可行. 理由:∵AB ⊥BC ,DC ⊥CB , ∴∠ABO =∠DCO =90°. 在△ABO 和△DCO 中,⎩⎨⎧∠ABO =∠DCO ,BO =CO ,∠AOB =∠DOC ,∴△ABO ≌△DCO(ASA), ∴AB =CD , ∴测出DC 的长即为A 、B 的距离. 故方案可行. 23.证明:连接BC ,∵BE ⊥AC 于E ,CF ⊥AB 于F , ∴∠CFB =∠BEC =90°.∵AB =AC , ∴∠ABC =∠ACB. 在△BCF 和△CBE 中,⎩⎨⎧∠BFC =∠CEB ,∠FBC =∠ECB ,BC =BC.∴△BCF ≌△CBE(AAS). ∴BF =CE. 在△BFD 和△CED 中,⎩⎨⎧∠BFD =∠CED ,∠FDB =∠EDC ,BF =CE.∴△BFD ≌△CED(AAS). ∴DF =DE. ∴AD 平分∠BAC. 24.(1)证明:∵BG ∥AC , ∴∠DBG =∠DCF.又∵BD =CD ,∠BDG =∠CDF , ∴△BGD ≌△CFD(ASA), ∴BG =CF. (2)解:BE +CF>EF.证明如下:由△BGD ≌△CFD 可得,=FD ,BG =CF.GD∵DE ⊥FG ,∴EG =在△EBG 中,∵BE +EF.BG>EG ,∴BE +CF>EF.1、老吾老以及人之老,幼吾幼以及人之幼。

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB=  .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。

人教版八年级上册数学第十一章(三角形)单元测试卷及答案

人教版八年级上册数学第十一章(三角形)单元测试卷及答案

人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案第11章《三角形》单元测试时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,3 2.在△ABC中,∠A=21°,∠B=34°,则△ABC()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形3.已知三角形两边长为5和8,则第三边长a的取值范围是()A.3<a<13 B.3≤a≤13 C.a>3 D.a<11 4.下列四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个5.若n边形的内角和等于外角和的4倍,则边数n为()A.10 B.8 C.7 D.56.如图,在△ABC中,∠A=35°,∠DCA=100°,则∠B的度数为()A.45°B.55°C.65°D.75°7.下列说法中正确的是()A.三角形的角平分线是一条射线B.三角形的一个外角大于任何一个内角C.任意三角形的外角和都是180°D.内角和是1080°的多边形是八边形8.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D=30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°9.如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°10.如图,平面上有两个全等的正八边形ABCDEFGH、A′B′C′D′E′F′G′H′,若点B与点B′重合,点H与点H′重合,则∠ABA′的度数为()A.15°B.30°C.45°D.60°二.填空题(每题4分,共20分)11.在△ABC中∠A:∠B=2:1,其中∠C的外角等于120°,则∠B=.12.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上根木条.13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=.14.三角形一边长为4cm,另一边长为3cm,且第三边长为偶数,则第三边的长为cm.15.如图,在一个三角形的纸片(△ABC)中,∠C=90°,将这个纸片沿直线DE剪去一个角后变成一个四边形ABED,则图中∠1+∠2的度数为°.三.解答题(每题10分,共50分)16.如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF 的度数.17.如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.(1)求∠B的度数;(2)求∠ACD的度数.18.(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(),∵EG平分∠BEF,FG平分∠DFE(已知),∴,(),∴∠GEF+∠GFE=(∠BEF+∠DFE)(),∴∠GEF+∠GFE=×180°=90°(),在△EGF中,∠GEF+∠GFE+∠G=180°(),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG().(2)请用文字语言写出(1)所证命题:.19.如图,在△ABC中,AD平分∠BAC(1)若P为线段AD上的一个点,过点P作PE⊥AD交线段BC 的延长线于点E①若∠B=34°,∠ACB=86°,则∠E=°;②猜想∠E与∠B、∠A CB之间的数量关系,并给出证明.(2)若P在线段AD的延长线上,过点P作PE⊥AD交直线BC 于点E.请你直接写出∠PED与∠ABC、∠ACB的数量关系.20.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在△ABC中,BD、CD分别平分∠ABC和∠ACB,请直接写出∠A和∠D的关系;②如图4,∠A+∠B+∠C+∠D+∠E+∠F=.(4)如图5,∠BAC与∠BDC的角平分线相交于点F,∠GDC与∠CAF的角平分线相交于点E,已知∠B=26°,∠C=54°,求∠F和∠E 的度数.参考答案一.选择1.解:A、3+3=6,不能构成三角形;B、4+5<10,不能构成三角形;C、3+4>5,能够组成三角形;D、2+3=5,不能组成三角形.故选:C.2.解:由题意∠C=180°﹣∠A﹣∠B=180°﹣21°﹣34°=125°,∴△ABC是钝角三角形,故选:C.3.解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是5、8,则第三边长a的取值范围是3<a <13.故选:A.4.解:第一个图形为个三角形,具有稳定性,第二个图形是四边形,不具有稳定性;第三个图形中左侧含有一个四边形,不具有稳定性;第四个图形被分成了三个三角形,具有稳定性,所以具有稳定性的有2个.故选:B.5.解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°×4,解得n=10.故选:A.6.解:∵∠DCA=∠A+∠B,∠DCA=100°,∠A=35°,∴∠B=100°﹣35°=65°,故选:C.7.解:A、三角形的角平分线是一条线段,故本选项错误;B、三角形的一个外角大于任何一个和它不相邻的内角,故本选项错误;C、任意多边形的外角和都是360°,故本选项错误;D、1080°÷180°+2=8,即内角和是1080°的多边形是八边形,故本选项正确.故选:D.8.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.9.解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.10.解:∵两个图形为全等的正八边形,∴ABA′H为菱形,∵∠HAB=∠HA′B==135°∴∠ABA′=180°﹣135°=45°.故选:C.二.填空题(共5小题)11.解:设∠A=2x,则∠B=x,∵∠C的外角等于120°,∴∠A+∠B=120°,即2x+x=120°,解得,x=40°,即∠B=40°,故答案为:40°.12.解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故答案为:3.13.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.14.解:设第三边长为x,则4﹣3<x<4+3,即1<x<7.又x为偶数,因此x=2或4或6.故答案为:2或4或6.15.解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠A+∠B+∠2=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.三.解答题(共5小题)16.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.17.解:(1)∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°∴∠B=90°﹣∠D=90°﹣40°=50°;(2)∠ACD=∠A+∠B=40°+50°=90°.18.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),∵EG平分∠BEF,FG平分∠DFE(已知),∴∠BEG=∠FEG,∠DFG=∠EFG,(角平分线的定义),∴∠GEF+∠GFE=(∠BEF+∠DFE)(等量代换),∴∠GEF+∠GFE=×180°=90°(等式的性质),在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG(垂直的定义);(2)请用文字语言写出(1)所证命题:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.故答案为:两直线平行,同旁内角互补,∠BEG=∠FEG,∠DFG =∠EFG,角平分线定义,等量代换,三角形的内角和,垂直的定义,两条平行线被第三条直线所截,同旁内角的平分线互相垂直19.解:(1)①∵∠B=34°,∠ACB=86°,∴∠BAC=180°﹣∠B﹣∠ACB=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠PDE=∠B+∠BAD=64°,∵PE⊥AD,∴∠E=90°﹣∠PDE=26°;故答案为:26;②数量关系:∠E=(∠ACB﹣∠B);理由如下:设∠B=x,∠ACB=y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=180°﹣x﹣y.∴∠BAD=(180°﹣x﹣y).∴∠PDE=∠B+∠BAD=x+(180°﹣x﹣y)=90°+(x﹣y).∵PE⊥AD,∴∠PDE+∠E=90°,∴∠E=90°﹣[90°+(x﹣y)]=(y﹣x)=(∠ACB﹣∠B).(2)∠PED=(∠ACB﹣∠ABC),理由如下:①当点E在线段BC上时,如图1所示:设∠ABC=n°,∠ACB=m°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),②当点E在CB的延长线时,如图2所示:同(2)①可得:∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n ﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),综上所述,∠PED=(∠ACB﹣∠ABC).20.解:(1)∴∠D=∠A+∠B+∠C;理由如下:如图1,∠BDE=∠B+∠BAD,∠CDE=∠C+∠CAD,∴∠BDC=∠B+∠BAD+∠C+∠CAD=∠B+∠BAC+∠C,∴∠D=∠A+∠B+∠C;(2)∠A+∠D=∠B+∠C;理由如下:如图2,在△ADE中,∠AED=180°﹣∠A﹣∠D,在△BCE中,∠BEC=180°﹣∠B﹣∠C,∵∠AED=∠BEC,∴∠A+∠D=∠B+∠C;(3)①∠A=180°﹣∠ABC﹣∠ACB,∠D=180°﹣∠DBC﹣∠DCB,∵BD、CD分别平分∠ABC和∠ACB,∴∠ABC+∠ACB=∠DBC+∠DCB,∴∠D=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,故答案为∠D=90°+∠A,②连结BE,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠ABE+∠F+∠BEF=360°;故答案为360°;(4)由(1)知,∠BDC=∠B+∠C+∠BAC,∵∠B=26°,∠C=54°,∴∠BDC=80°+∠BAC,∴∠CDF=40°+2∠CAE,∵∠BAC=4∠CAE,∠BDC=2∠CDF,∴∠GDE=90°﹣∠CDF,∠AGD=∠B+∠GDB=26°+180°﹣∠CDF,∠GAE=3∠CAE,∴∠E=360°﹣∠GAE﹣∠AGD﹣∠GDE=64°﹣(2∠CAE﹣∠CDF)=64°+×40°=124°;∠F=180°﹣∠AGF﹣∠GAF=180°﹣(206°﹣∠CDF)﹣2∠CAE =﹣26°+∠CDF﹣2∠CAE=﹣26°+40°=14°;。

2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析

2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析

2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.37.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.68.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′,再求出∠C′+∠AHC′即可解决问题.【解答】解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故选:B.【点评】本题考查了全等三角形的性质,平行线的性质,三角形的外角的性质等知识,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应边相等,对应角相等.3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据两直线平行内错角相等,再根据SAS即可证明△ABC≌△DEF.【解答】解:∵AC∥FD,∴∠CAD=∠ADF,∵AE=DB,∴ED=AB,∵AC=DF,∴△ABC≌△DEF(SAS),故选:B.【点评】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等【分析】A、根据三角形全等的判定进行判断;B、根据三角形的外角与内角和关系及三角形的内角和定理可做判断;C、根据三角形全等的判定进行判断;D、根据平行线的性质进行判断.【解答】解:A、两边及夹角分别相等的两个三角形全等,错误;B、三角形的外角等于与它不相邻的两个内角的和,错误;C、边和一条直角边相等的两个直角三角形全等,正确;D、两条平行线被第三条直线所截,内错角相等,错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题可分为真命题和假命题.5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.3【分析】先证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC,利用全等三角形对应边相等就可得到结论.【解答】证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.7.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.6【分析】在三角形内部到三边距离相等的点是三条内角平分线的交点,只有一个;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,有三个【解答】解:∵在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.∴到三角形三边所在直线距离相等的点有4个.故选:B.【点评】此题是考查角平分线的性质的灵活应用.注意三角形的外角平分线不要漏掉,有3个交点.8.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.【点评】此题主要考查了作图﹣尺规作图的定义:用没有刻度的直尺和圆规作图,正确把握定义是解题关键.二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.【点评】本题考查全等图形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.【点评】本题考查全等三角形的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.。

2020年人教版八年级数学上册《第11章三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第11章三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第11章三角形》单元测试卷一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.52.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..65.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.47.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°二.填空题(共8小题)11.在图中共有个三角形.12.直角三角形中,两锐角的角平分线所夹的锐角是度.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.16.在下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③直角三角形④平行四边形17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=(含x的代数式表示)②求∠F的度数.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?22.已知△ABC中,AB=6,BC=4,求AC的取值范围.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?2020年人教版八年级数学上册《第11章三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.5【分析】先找出以A为顶点的锐角三角形的个数,再找出以E为顶点的锐角三角形的个数,然后将两种锐角三角形相加即可.【解答】解:①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个;所以图中锐角三角形的个数有2+1=3(个);故选:B.【点评】本题考查了三角形.数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.【点评】本题考查的是三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.【分析】利用三角形的稳定性进行解答.【解答】解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性.故选:C.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..6【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可.【解答】解:设第三边长为x,由题意可得9﹣2<x<9+2,解得7<x<11,故x为8、9、10,这样的三角形个数为3.故选:A.【点评】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系是解答的关键.5.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,作出图形更形象直观.7.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,平行四边形,锐角三角形中只有锐角三角形具有稳定性.故选:D.【点评】本题考查了三角形的稳定性,是基础题,需熟记.8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据多边形内角和公式(n﹣2)×180°即可求出结果.【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C.【点评】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠F,∠1+∠2+∠D+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.二.填空题(共8小题)11.在图中共有8个三角形.【分析】按照从左到右的顺序,分单个的三角形和复合的三角形找出所有的三角形,然后再计算个数.【解答】解:三角形有:△ACE、△CDE、△DEF、△BCD,△CDF、△ACD、△BCE、△ACB,共8个.故答案为:8.【点评】考查了三角形,本题难点在于找出复合三角形的个数,按照一定的顺序找即可做到不重不漏.12.直角三角形中,两锐角的角平分线所夹的锐角是45度.【分析】根据△ACB为Rt△,利用三角形内角和定理求出∠CAB+∠ABC=90°,再利用角平分线的性质即可求出两锐角的角平分线所夹的锐角的度数.【解答】解:如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=∠CAB+∠ABC=45°.故答案为:45.【点评】此题主要考查学生对三角形内角和定理和角平分线的性质等知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【解答】解:桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.故答案为:三角形具有稳定性.【点评】本题考查三角形的稳定性在实际生活中的应用问题,是基础题型.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为5,7,9.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于11,又第三边长为奇数,故第三边的长为5,7,9.故答案为:5,7,9.【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.还要注意第三边长为奇数这一条件.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉1根木条.【分析】根据三角形的稳定性可得答案.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:1【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.16.在下列四个图形中,具有稳定性的是③(填序号)①正方形②长方形③直角三角形④平行四边形【分析】根据三角形具有稳定性对各图形分析后解答.【解答】解:在下列四个图形中,具有稳定性的是三角形.故答案为:③【点评】本题主要考查了三角形具有稳定性的性质,是基础题,但容易出错.17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=100°.【分析】首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.【解答】解:正五边形的内角和为(5﹣2)×180°=540°,∵∠A+∠B+∠C+∠D=440°,∴∠E=540°﹣440°=100°,故答案为:100°.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.【解答】解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.【分析】用6根火柴能组成四个一样大的三角形,把六根火柴棒组合成一个正三棱锥即可.【解答】解:首先用3根火柴棒拼成一个等边三角形,然后用3根火柴棒与原来的3根火柴棒组合成三棱锥,因为三棱锥有4个面,每个面都是一样大小的三角形,所以用6根火柴能组成四个一样大的三角形.【点评】此题主要考查了空间想象能力的应用,以及正三棱锥的特征和应用,要熟练掌握.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=72°﹣x°(含x的代数式表示)②求∠F的度数.【分析】(1)先根据三角形内角和得到∠CAB=180°﹣∠B﹣∠C=100°,再根据角平分线与高线的定义得到∠CAE=∠CAB=50°,∠ADC=90°,则∠CAD=90°﹣∠C =40°,然后利用∠DAE=∠CAE﹣∠CAD计算即可;(2)根据题意可知∠B=x°,∠C=(x+36)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FD⊥BC,可得出∠F的度数.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠CAB=180°﹣∠B﹣∠C=100°,∵AD是△ABC角平分线,∴∠CAE=∠CAB=50°,∵AE分别是△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=40°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)①∵∠B=x°,∠C=(x+36)°,AF平分∠BAC,∴∠EAC=∠BAF,∴∠CAE=[180°﹣x°﹣(x+36)°]=72°﹣x°,②∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°.【点评】本题考查的是三角形的角平分线、中线和高以及三角形内角和定理,掌握三角形的角平分线、中线和高的概念,正确运用数形结合思想是解题的关键.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?【分析】根据三角形的稳定性解答.【解答】解:如图,根据三角形的稳定性可知,要使四边形木架不变形,至少要再钉上1根木条,要使五边形木架不变形,至少要再钉上2根木条,要使六边形木架不变形,至少要再钉上3根木条.【点评】本题考查的是三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.22.已知△ABC中,AB=6,BC=4,求AC的取值范围.【分析】根据三角形的第三边应大于两边之差,而小于两边之和进行分析求解.【解答】解:根据三角形的三边关系,得6﹣4<AC<6+4,∴2<AC<10.AC的取值范围是:2<AC<10.【点评】本题考查了求三角形第三边的范围,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【分析】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把三角形分成(n﹣2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n﹣3)根木条.【点评】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n﹣3.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.【分析】(1)先根据四边形内角和等于360°求出∠B+∠C的度数,再除以2即可求解;(2)先根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,再根据四边形内角和等于360°求出∠BEC的度数;(3)①先根据四边形内角和等于360°求出∠ABC+∠BCD的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数;②先根据三角形内角和等于180°求出∠FBC+∠BCF的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数【解答】解:(1)∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠B=∠C,∴∠C=70°;(2)∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣145°=35°,∵∠ABC的角平分线BE交DC于点E,∴∠ABC=70°,∴∠C=360°﹣(145°+75°+70°)=70°;(3)①∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°;②不变.∵∠F=40°,∴∠FBC+∠BCF=180°﹣40°=140°,∵∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°.【点评】本题考查了多边形内角与外角,解决的关键是综合运用四边形的内角和以及三角形的内角和、熟练运用平行线的性质和角平分线的定义.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36°,得出内错角相等,可得两直线平行.【解答】答:AC∥DE,理由:∵五边形ABCDE的内角和=540°,且每个内角都相等.∴∠B=∠BAE=∠E=108°.∵∠1=∠2=∠3=∠4.∴∠1=∠2=∠3=∠4==36°,∴∠CAD=108°﹣36°×2=36°,∴∠CAD=∠4,∴AC∥DE.【点评】本题主要考查了平行线的判定、正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108°.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=180°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为70°;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【分析】(1)根据三角形内角和解答即可;(2)①由四边形的内角和为360°以及角平分线的定义可得∠AOB+∠COD=180°,据此解答即可;②由①得∠AOB+∠COD=180°,从而得出∴∠ADO+∠BOD=180°,可得∠AOD=∠BOC=90°,进而得出∠DAB+∠ADC=180°,可得AB∥CD.【解答】解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,,∴,∴∠DAB+∠ADC=180°,∴AB∥CD.【点评】此题考查了三角形内角和定理、三角形外角的性质、平行线的性质以及角平分线的定义,掌握角平分线的性质和等量代换是解决问题的关键.。

人教版2020-2021学年八年级数学上册第11-12章综合检测(含答案)

人教版2020-2021学年八年级数学上册第11-12章综合检测(含答案)

人教版2020—2021 学年八年级数学上册第11----12 章《三角形》与《全等三角形》综合检测一.选择题(10 小题,每小题3 分,共30 分)1.有两条高在三角形外部的三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定2.已知n是正整数,若一个三角形的三边长分别是n2、n4、n8 ,则n的取值范围是( ) A.n 1 B.n0 C.n 2 D.n 33.如图,直线m/ /n,在Rt ABC 中,B90,点A落在直线m上,BC与直线n交于点D,若1 ( )2 130 ,则的度数为第3题图第4题图A.30B.40C.50D.654.如图,在ABC中,ACB90,沿CD折叠CBD,使点B恰好落在边AC上点E处,若A25,则ADE的大小为( )A.40B.50C.65D.7525.一个多边形的外角和是内角和的,这个多边形的边数是( )7A.7 B.8 C.9 D.106.根据下列已知条件,能唯一画出ABC的是( )A.AB3cm,BC4cm,AC8cm B.AB4cm,BC3cm,A30C.A60,B45,AB40cm D.C90,AB6cm7.下列判定直角三角形全等的方法,不正确的是( )A.两条直角边对应相等B.两个锐角对应相等C.斜边和一直角边对应相等D.斜边和一锐角对应相等8.如图,CA CB,AD BD,M、N分别为CA、CB的中点,ADN80,BDN30,则CDN( )的度数为第8题图第9题图A.40B.15C.25D.309.点P在AOB的角平分线上,点P到OA边的距离等于10,点Q是OB边上的任意一点,下列选项正确的是( )A.PQ10 B.PQ10 C.PQ...10 D.PQ (10)10.在平面直角坐标系xOy中,点A(3, 0) ,B(2,0) ,C(1, 2) ,E(4, 2) ,如果ABC与EFB全等,那么点F的坐标可以是( )A.(6,0) B.(4,0) C.(4,2) D.(4,3)二.填空题(共8 小题,每小题3 分,共24 分)11.在ABC中,三边长的比是3: 4:5,其周长为48cm,那么它的三边长为.x y912.若ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围x y 3是.13.如图,在ABC中,ACB90,AD平分CAB,交边BC于点D,过点D作DE AB,垂足为E.若CAD20,则EDB的度数是.第13题图第14题图第15题图14.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到DEF的位置,AB 10 ,DO 4 ,平移距离为6,则阴影部分面积为15.如图所示,AB AC,AD AE,BAC DAE,120, 2 25,则 3 .16.一个三角形的两边长分别为2 和4,则第三边上面的中线a 的范围是.17.如图,AC BC ,AD BD ,垂足分别是C,D ,(若要用“HL ”得到Rt ABC Rt BAD ,则应添加的条件是.(写一种即可)第17题图第18题图18.如图,点P在AOB的平分线上,AOB60,PD OA于D,点M在OP上,且DM MP 6 ,若C是OB上的动点,则PC的最小值是.三.解答题(共6小题,满分46分,其中19题5分,20、21、22每小题7分,23题8分,24题12分)19.如图,已知点B,E在线段CF上,CE BF,C F,ABC DEF.试说明:ABC DEF.解:因为CE BF(已知)所以CE BF BE( )即在ABC和DEF中,C F已知BC EF已证ABC DEF()所以ABC DEF( ) .20.如图,ABC中,D为BC上一点,C BAD,ABC的角平分线BE交AD于点F.(1)求证:AEF AFE;(2)G为BC上一点,当FE平分AFG且C30时,求CGF的度数.21.如图,四边形ABCD中,BAD106,BCD64,点M,N分别在AB,BC上,得FMN,若MF/ /AD,FN/ /DC.求(1)F的度数;(2)D的度数.22.如图,在ABC中,B25,BAC31,过点A作BC边上的高,交BC的延长线于点D,CE平分ACD,交AD于点E.求:(1)ACD的度数;(2)AEC的度数.23.如图,在ABC中,C90,AD是BAC的平分线,DE AB于E,F在AC上,且BD DF.(1)求证:CF EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.24.如图,在ABC中,AB AC18cm,BC10cm,AD2BD.(1)如果点P在线段BC上以2cm/ s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,BPD与CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原米的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?人教版2020—2021学年八年级数学上册第11----12章《三角形》与《全等三角形》综合检测参考简答一.选择题(共10小题)1.C.2.C.3.B.4.A.5.C.6.C.7.B.8.C.9.C.10.D.二.填空题(共8小题)11.12cm,16cm,20cm.12. 3 m9 .13.40.14.48 15.45.16.1a3.17.AC BD或BC AD.18.6.三.解答题(共6小题)19.如图,已知点B,E在线段CF上,CE BF,C F,ABC DEF.试说明:ABC DEF.解:因为CE BF(已知)所以CE BF BE( )即在ABC和DEF中,C F已知BC EF已证ABC DEF()所以ABC DEF( ) .【解】:因为CE BF(已知),所以CE BE BF BE(等式的性质),即BC EF,在ABC和DEF中C F已知BC EF已证,ABC DEF已知所以ABC DEF(ASA) .故答案为:BE;等式的性质;BC EF;ASA.20.如图,ABC中,D为BC上一点,C BAD,ABC的角平分线BE交AD于点F.(1)求证:AEF AFE;(2)G为BC上一点,当FE平分AFG且C30时,求CGF的度数.【解】:(1)证明:BE平分ABC,ABE CBE,ABF BAD CBE C,AEF CBE CAFE ABF BAD,,AEF AFE;(2)FE平分AFG,AFE GFE,,AEF AFEAEF GFE,FG/ /AC,C30,CGF180C150.21.如图,四边形ABCD中,BAD106,BCD64,点M,N分别在AB,BC上,得FMN,若MF/ /AD,FN/ /DC.求(1)F的度数;(2)D的度数.晨鸟教育【解】:(1)MF/ /AD,FN/ /DC,BAD106,BCD64,BMF FNB64106 ,,BMN MN FMN将沿翻折,得,FMN BMN53,FNM MNB32,F B180533295;(2)F B95,D360106649595.22.如图,在ABC中,B25,BAC31,过点A作BC边上的高,交BC的延长线于点D,CE平分ACD,交AD于点E.求:(1)ACD的度数;(2)AEC的度数.【解】:(1)ACD B BAC,B25,BAC31,ACD253156.(2)AD BD,D90,CE ACDACD56,平分,1ECD ACD28,2AEC ECD D2890118.23.如图,在ABC中,C90,AD是BAC的平分线,DE AB于E,F在AC上,且BD DF.晨鸟教育(1)求证:CF EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解】:(1)证明:AD是BAC的平分线,DE AB,C 90,DC DE,在Rt FCD 和Rt BED 中,,DC DEDF DBRt FCD Rt BED(HL),CF EB;(2)在Rt ACD 和Rt AED 中,,DC DEAD ADRt ACD Rt AED(HL),AC AE,AB AE BE AF FC BE AF 2BE.24.如图,在ABC中,AB AC 18cm,BC 10cm,AD 2BD.(1)如果点P在线段BC上以2cm/ s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,BPD与CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原米的运动速度从点B同时出发,都逆时针沿晨鸟教育ABC P Q ABC三边运动,求经过多长时间点与点第一次在的哪条边上相遇?【解】:(1)①BPD与CQP全等,理由如下:AB AC 18cm,AD 2BD,AD cm BD 6cm B C12 ,,,2s BP 4cm CQ 4cm经过后,,,BP CQ CP 6cm BD,,在BPD和CQP中,,BD CPB CBP CQBPD CQP(SAS),②点Q的运动速度与点P的运动速度不相等,BP CQ,CQP B CBPD与全等,,1BP PC BC cm BD CQ 6cm5 ,,2t5,26 12点的运动速度cm/ s,5 5Q2晨鸟教育12Q当点的运动速度为cm/ s时,能够使BPD与CQP全等;5(2)设经过x秒,点P与点Q第一次相遇,12由题意可得:x2x36 ,5解得:x90 ,18 18 1090 ( ) 3 21(s) ,2经过90s点P与点Q第一次相遇在线段AB上相遇.。

2020年秋人教版八年级数学上册第11章三角形综合应用(讲义、随堂练习、习题及答案)

2020年秋人教版八年级数学上册第11章三角形综合应用(讲义、随堂练习、习题及答案)

人教版八年级数学上册第11章 三角形综合应用(讲义)➢ 知识点睛在三角形背景下处理问题的思考方向: 1. 三角形中的隐含条件是:边:_______________________________________________. 角:①______________________________________________;②_____________________________________________.2. 角平分线出现时,为了计算方便,通常采用__________解决问题.3. 高线出现时考虑__________或__________.➢ 精讲精练1. 现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A .5 B .6 C .7 D .10 3. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 4. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.C 21AABCDE第4题图第5题图5. 如图,一个五角星的五个角的和是________.6. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第2题图FEBA7. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA8. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FPA PP A CE图1 图2 图39. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DA第9题图第10题图10. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.11. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C EAF 12. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D PCEFA【参考答案】➢ 知识点睛1. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 2. 设元 3. 互余,面积➢精讲精练1. B2. C3.①③⑤4.130°5.180°6.360°7.(1)∠A+∠D=∠B+∠C;(2)3;(3)35°;(4)12(α+β)8.(1)∠P=90°+12∠A;(2)∠P=12∠A;(3)∠P=90° 12∠A9.(1)90°(2)∠BOD=∠COE10.(1)245(2)3:211.3:4:612.(1)72(2)证明略三角形综合应用(讲义)➢知识点睛在三角形背景下处理问题的思考方向:4.三角形中的隐含条件是:边:_______________________________________________.角:①______________________________________________;②_____________________________________________.5.角平分线出现时,为了计算方便,通常采用__________解决问题.6.高线出现时考虑__________或__________.➢精讲精练13.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个14.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,中相邻两螺丝的距离依次为2,3,4,6A.5 B.6 C.7 D.10第2题图15. 下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有__________________(填序号). 16. 如图,在三角形纸片ABC 中,∠A =60°,∠B =55°.将纸片一角折叠使点C 落在△ABC 内,则∠1+∠2=_________.BC 21AABCDE第4题图第5题图17. 如图,一个五角星的五个角的和是________. 18. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.FEBA19. 如图1,线段AB ,CD 相交于点O ,连接AD ,BC ,我们把形如图1的图形称之为“X 型”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N ,试解答下列问题: (1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系:_____________________________; (2)在图2中,共有______个“X 型”;(3)在图2中,若∠D =40°,∠B =30°,则∠APC =_______; (4)在图2中,若∠D =α,∠B =β,则∠APC =__________.图2图1P NMABCDOO DCBA20. 探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,猜想∠P 和∠A 有何数量关系?(2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE ,猜想∠P 和∠A 有何数量关系?(3)如图3,BP 平分∠CBF ,CP 平分∠BCE ,猜想∠P 和∠A 有何数量关系?E C AB FA PP A CE图1 图2 图321. 如图,在△ABC 中,三个内角的角平分线交于点O ,OE ⊥BC 于点E .(1)∠ABO +∠BCO +∠CAO =____________;(2)∠BOD 和∠COE 的数量关系是________________.O D ECM ANB DC B A第9题图第10题图22. 如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D .(1)若AB =6,AC =8,BC =10,则AD =____________;(2)若AB =2,BC =3,则AC :AD =____________.23. 如图,在△ABC 中,若AB =2cm ,AC =3cm ,BC =4cm ,AD ,BF ,CE为△ABC 的三条高,则这三条高的比AD :BF :CE =____________________.C DEAF B 24. 如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC 于点F ,求证:PD +PE =BF .D BPCEFA【参考答案】➢ 知识点睛4. 三角形两边之和大于第三边,两边之差小于第三边;三角形内角和等于180°;三角形的一个外角等于和它不相邻的两个内角的和. 5. 设元 6. 互余,面积➢ 精讲精练 13. B 14. C15. ①③⑤ 16. 130° 17. 180° 18. 360°19. (1)∠A +∠D =∠B +∠C ;(2)3; (3)35°;(4)12(α+β)20. (1)∠P =90°+12∠A ; (2)∠P =12∠A ;(3)∠P =90° 12∠A21. (1)90° (2)∠BOD =∠COE22. (1)245(2)3:223. 3:4:624. (1)72(2)证明略三角形综合应用(随堂测试)1. 现有2cm ,3cm ,4cm ,5cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是() A .1个B .2个C .3个D .4个2. 如图,∠A +∠B +∠C +∠D +∠E =___________.3. 如图,点E ,D 分别在△ABC 的边BA ,CA 的延长线上,CF ,EF 分别平分∠ACB 和∠AED ,若∠B =65°,∠D =45°,则∠F 的度数为________.【参考答案】1. C2. 180°3. 55°E DCBAE DCBA三角形综合应用(习题)➢ 例题示范例1:如图,BD ,CD 分别平分∠ABC ,∠ACB ,CE ⊥BD 交BD 的延长线于点E . 求证:∠DCE =∠CAD .【思路分析】①看到条件BD ,CD 平分∠ABC ,可知AD 也平分∠BAC ,得到:,,;②根据CE ⊥BD ,得,所以;③题目所求为∠DCE =∠CAD ,若能够说明即可; ④根据三角形的内角和定理得:,所以,再根据三角形的外角定理可知,所以,证明成立. 【过程书写】 证明:如图,∵BD ,CD 分别平分∠ABC ,∠ACB∴,,在△ABC 中,∴ ∵∠EDC 是△BCD 的一个外角 ∴ ∴ ∵CE ⊥BE ∴ ∴ ∴∠DCE =∠CAD➢ 巩固练习1. 现有2cm ,4cm ,6cm ,8cm 长的四根木棒,任意选取三根组成一个三角形,DECBA12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠90DEC ∠=︒90DCE EDC ∠+∠=︒90CAD EDC ∠+∠=︒180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒12DAC BAC ∠=∠12DBC ABC ∠=∠12DCB ACB ∠=∠180BAC ABC ACB ∠+∠+∠=︒90CAD DBC DCB ∠+∠+∠=︒EDC DBC DCB ∠=∠+∠90CAD EDC ∠+∠=︒90DEC ∠=︒90DCE EDC ∠+∠=︒DECBA那么可以组成三角形的个数为() A .1个B .2个C .3个D .4个2. 满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠C B .∠A :∠B :∠C =2:3:5 C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角3. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___________.4. 如图,∠A +∠B +∠C +∠D +∠E +∠F =________.第4题图第5题图5. 如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.6. 如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线交于点D ,若∠A =30°,则∠D =________.7. 如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC 于E ,若∠B =40°,∠C =70°,则∠D F E =________.第2题图12F ECBAOC FECBA第7题图第8题图8. 如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E ,且满足BE ⊥AC ,F 为AB 上一点,且CF ⊥AD 于点H .下列结论:①线段AG 是△ABE 的角平分线;②BE 是△ABC 的中线;③线段AE 是△ABG 的边BG 上的高;④△ABG 与△DBG 的面积相等.其中正确的结论有________(填序号). 9. 如图,在△ABC 中,若AB =2cm ,BC =4cm ,则△ABC 的高AD 与CE 的比是__________. 10. 如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =60°,求∠CAD 及∠AOB 的度数.➢ 思考小结F E CAG H FE DCA 21OFE D CAE D C B A(1)“X 型”:(2)“角平分线模型”1902P A ∠=︒+∠12P A ∠=∠1902P A∠=︒-∠【参考答案】➢ 巩固练习 1. A 2. C 3. 270° 4. 360° 5. 135° 6.15°E7.15°8.①③④9.1:210.∠CAD=30°,∠AOB=120°➢思考小结1.大于,小于,180°,和它不相邻的两个内角的和2.略。

2020年人教版数学八年级上册第12章全等三角形单元同步试题 (有答案)

2020年人教版数学八年级上册第12章全等三角形单元同步试题 (有答案)

人教版八年级数学上册第12章全等三角形单元同步试卷一.选择题(共10小题)1.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可2.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形3.图中的两个三角形全等,则∠α等于()A.65°B.60°C.55°D.50°4.如图,已知AB=DC,需添加下列()条件后,就一定能判定△ABC≌△DCB.A.AO=BO B.∠ACB=∠DBC C.AC=DB D.BO=CO5.如图,用∠B=∠C,∠1=∠2直接判定ABD≌ACD的理由是()A.AAS B.SSS C.ASA D.SAS6.如图∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠EAC=∠FAB;②CM=BN;③CD =DN;④△ACN≌△ABM;其中正确的有()A.4个B.3个C.2个D.1个7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.28.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4B.3C.2D.19.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA10.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S=()△ABDA.28B.21C.14D.7二.填空题(共8小题)11.一个三角形的三边为6、10、x,另一个三角形的三边为y、6、12,如果这两个三角形全等,则x+y=.12.如图,已知△ABC的六个元素,其中a、b、c表示三角形三边的长,则下面甲、乙、丙三个三角形中和△ABC一定全等的图形是.13.如图点C,D在AB同侧,AD=BC,添加一个条件就能使△ABD≌△BAC.14.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.15.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知∠B=∠C,请再添加一个条件,使得△BOD≌△COE,这个条件是(仅写出一个).16.如图,在△ABC中,E为边AC的中点,CN∥AB,过点E作直线交AB于点M,交CN于点N.若BM=6cm,CN=5cm,则AB=cm.17.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.18.如图,点O在△ABC内部,且到三边的距离相等.若∠BOC=130°,则∠A=.三.解答题(共7小题)19.如图,AB∥DC,AB=DC,AF=DE,求证:△ABE≌△DCF.20.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.21.如图,四边形ABCD中,AD∥BC,DE=EC,连结AE并延长交BC的延长线于F,连结BE.(1)求证:AD=CF;(2)若AB=BC+AD,求证:BE⊥AF.22.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B向点B运动,设运动时间为t秒.(1)点P在AC上运动时,使得PA=PB,相应t的值为.(2)若点P运动至BC边上恰好AP平分∠BAC,请求出此时t的值,说明理由.23.如图,△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,连接BE、CD,F为BE的中点,连接AF.求证:CD=2AF.24.如图,在△ABD中,∠ABC=45°,AC,BF为△ABD的两条高.(1)求证:BE=AD;(2)若过点C作CM∥AB,交AD于点M,求证:BE=AM+EM.25.如图,AC=AB,AE=AD,B、E、D共线,∠1=∠2,求证:AE平分∠CED.参考答案与试题解析一.选择题(共10小题)1.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.2.解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.3.解:由图形可得:第一个图形中,边a,c的夹角=180°﹣60°﹣60°=60°,∵两个三角形全等,∴α=60°,故选:B.4.解:A、添加AO=BO不能判定△ABC≌△DCB,故此选项不合题意;B、添加∠ACB=∠DBC不能判定△ABC≌△DCB,故此选项不合题意;C、添加AC=DB可利用SSS判定△ABC≌△DCB,故此选项符合题意;D、添加BO=CO不能判定△ABC≌△DCB,故此选项不合题意;故选:C.5.解:在△ABD≌ACD中,,∴△ABD≌ACD(AAS).故选:A.6.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠FAC=∠EAB,AC=AB,∴∠EAC=∠FAB,故①正确;又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴AM=AN;∴CM=BN,故②正确,而∠MAN公共,∠B=∠C,∴△ACN≌△ABM,故④正确;∵MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,故③错误;故选:B.7.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.8.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.9.解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90°,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:D.10.解:作DH⊥BA于H.∵BD平分∠ABC,BC⊥DE,DH⊥AB,∴DH=DE=4,∴S=×7×4=14,△ABD故选:C.二.填空题(共8小题)11.解:∵两个三角形全等,∴x=12,y=10,∴x+y=10+12=22.故答案为:2212.解:由SAS可知,图乙与△ABC全等,由AAS可知,图丙与△ABC全等,故答案为:乙和丙.13.解:添加一个条件:∠BAD=∠ABC,理由:在△ABD与△BAC中,,∴△ABD≌△BAC(SAS).14.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.15.解:∵∠B=∠C,∠BOD=∠COE,∵OB=OC,∴△BOD≌△COE(ASA)∵OD=OE,∴△BOD≌△COE(AAS),∵BD=CE,∴△BOD≌△COE(AAS),故答案为:OB=OC.16.解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,在△CNE和△AME中,,∴△CNE≌△AME(ASA),∴AM=CN,∴AB=AM+BM=CN+BM=5+6=11,故答案为:1117.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.故答案是:20.18.解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×(180°﹣∠BOC)=180°﹣2×(180°﹣130°)=80°,故答案为:80°.三.解答题(共7小题)19.证明:∵AB∥DC,∴∠D=∠A,又AF=DE,∴AF+FE=DE+EF,即AE=DF,在△CDF和△BAE中,∴△ABE≌△DCF(SAS)20.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=521.解:(1)证明:∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.∵点E是DC的中点,∴DE=CE.在△ADE和△FCE中,∴△ADE≌△FCE(AAS),∴CF=AD.(2)∵CF=AD,AB=BC+AD,∴AB=BF,∵△ADE≌△FCE,∴AE=EF,∴BE⊥AF.22.解:(1)在Rt△ABC中,AC===4,由题意得,AP=2t,则CP=4﹣2t,∵PA=PB,∴PB=2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,故答案为:;(2)作PH⊥AB于H,∵AP平分∠BAC,∠ACB=90°,PH⊥AB,∴PH=PC,AH=AC=4,则BH=AB﹣AH=1,由题意得,CP=2t﹣4,则PB=3﹣(2t﹣4)=7﹣2t,在Rt△BPH中,PH2+HB2=PB2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,点P运动至BC边上恰好AP平分∠BAC.23.证明:延长AF至G,使得FG=AF,连接BG,如图所示:∵F为BE的中点,∴EF=BF,在△AFE和△GFB中,,∴△AFE≌△GFB(SAS),∴∠EAF=∠G,AE=BG,∴AE∥BG,∴∠GBA+∠BAE=180°,∵∠BAC+∠EAD=180°,∴∠DAC+∠BAE=180°,∵AD=AE,∴BG=AD,在△GBA和△DAC中,,∴△GBA≌△DAC(SAS),∴AG=CD,∵AG=2AF,∴CD=2AF.24.证明:(1)∵AC、BF是高,∴∠BCE=∠ACD=∠AFE=90°,∵∠AEF=∠BEC,∠CAD+∠D+∠ACD=180°,∠EBC+∠BCE+∠BEC=180°,∴∠DAC=∠EBC,∵∠ACB=90°,∠ABC=45°,∴∠BAC=45°=∠ABC,∴BC=AC,在△BCE和△ACD中∴△BCE≌△ACD(ASA),∴BE=AD.(2)∵CM∥AB,∴∠MCE=∠BAC=45°,∴∠MCD=45°=∠MCE,∵△BCE≌△ACD,∴CE=CD,在△CEM和△CDM中∴△CEM≌△CDM(SAS),∴ME=MD,∴BE=AD=AM+DM=AM+ME,即BE=AM+EM.25.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠AEC=∠D,∵AE=AD,B、E、D共线,∴∠AED=∠D,∴∠AEC=∠AED,即AE平分∠CED.1、学而不思则罔,思而不学则殆。

2022年秋季人教版八年级上册数学第十二章综合测试试卷及答案

2022年秋季人教版八年级上册数学第十二章综合测试试卷及答案

第十二章综合素质评价一、选择题(每题3分,共30分)1.在下列每组图形中,是全等形的是()2.【教材P32练习T2变式】如图,△AOC≌△BOD,点A与点B是对应顶点,则下列结论中错误..的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD(第2题)(第3题)(第4题)(第5题)3.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.2.5 C.3 D.54.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA5.【教材P42例5变式】如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=() A.40°B.50°C.60°D.75°6.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是() A.点M B.点N C.点P D.点Q(第6题)(第7题)(第9题)(第10题)7.【教材P45习题T12改编】如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE =EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1 B.3 C.5 D.78.在△ABC和△A′B′C′中,有下列条件:①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则以下各组条件中不能..保证△ABC≌△A′B′C′的一组是()A.①②③B.①②⑤C.①③⑤D.②⑤⑥9.如图,在△ABC中,AB=AC,AD是角平分线,BE=CF.下列说法正确的个数是()①DA平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A.1个B.2个C.3个D.4个10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和25,则△EDF的面积为()A.25 B.35 C.15 D.12.5二、填空题(每题3分,共24分)11.【教材P33习题T3变式】如图,两个三角形全等,根据图中所给的条件可知∠α=________.(第11题)(第12题)(第13题)12.【教材P38例2改编】如图,要测量池塘的宽度AB,在池塘外选取一点P,连接AP,BP 并各自延长,使PC=P A,PD=PB,连接CD,测得CD长为25 m,则池塘宽AB为________m. 13.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=1.6,则△ABD的面积是________.14.如图,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件:______________,使△ABC ≌△DBE(只需添加一个即可).(第14题)(第15题)(第16题)(第17题)15.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为________.16.【教材P56复习题T9拓展】如图,在Rt△ABC中,∠ACB=90°,BC=3 cm,CD⊥AB,在AC上取一点E使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________.17.如图,点B,C,D在同一条直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为__________________________________.18.在△ABC中,点A的坐标为(0,1),点B的坐标为(4,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等(C与D不重合),那么点D的坐标是________.三、解答题(19~22题每题10分,其余每题13分,共66分)19.【教材P44习题T11变式】已知:如图,点B,F,C,E在一条直线上,AB=DE,AC=DF,BF=EC.求证:△ABC≌△DEF.20.如图,点B,E,C,F在同一条直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF. 21.如图,已知∠1=∠2,∠3=∠4,EC=AD.求证:AB=BE.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.猜想BE与AC的位置关系,并说明理由.23.如图,在△ABC中,D为BC边上一点,E为△ABC外部一点,DE交AC于点O,且AC =AE,AD=AB,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)若∠BAD=20°,求∠CDE的度数.24.如图①,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.答案一、1.C 2.C 3.C 4.D 5.B 6.A7.D 8.C 9.D 10.D二、11.51° 12.25 13.414.∠C =∠E (答案不唯一)15.4 16.2 cm 17.等腰直角三角形18.(4,-1)或(0,3)或(0,-1)三、19.证明:∵BF =EC ,∴BF +FC =EC +FC ,即BC =EF .在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF (SSS).20.证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .∵AB ∥DE ,∴∠B =∠DEF .在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠DEF ,BC =EF ,∴△ABC ≌△DEF (SAS).∴∠ACB =∠F .∴AC ∥DF .21.证明:∵∠1=∠2,∴∠1+∠EBD =∠EBD +∠2,即∠ABD =∠EBC .在△ABD 和△EBC 中,⎩⎨⎧∠ABD =∠EBC ,∠3=∠4,AD =EC ,∴△ABD ≌△EBC (AAS).∴AB =BE .22.解:BE ⊥AC .理由如下:∵AD 为△ABC 的高,∴∠BDF =∠ADC =90°.在Rt △BDF 和Rt △ADC 中,⎩⎨⎧BF =AC ,FD =CD , ∴Rt △BDF ≌Rt △ADC (HL).∴∠BFD =∠C .∵∠BFD =∠AFE ,∠C +∠DAC =90°,∴∠AFE +∠DAC =90°.∴∠AEF =90°,即BE ⊥AC .23.(1)证明:在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).(2)解:由(1)知△ABC ≌△ADE ,∴∠E =∠C .∵∠BAC =∠DAE ,∠BAC =∠BAD +∠DAC ,∠DAE =∠DAC +∠CAE ,∠BAD =20°,∴∠CAE =∠BAD =20°.∵∠E =∠C ,∠AOE =∠DOC ,∴∠CAE =∠CDE .∴∠CDE =20°.24. 点方法:解答探索结论问题的方法:在同一道题中,当前面的问题获得解答后,图形运动变化后要探索新的结论,常常根据已经解决问题的思路使相关探索问题得到解决. 解:(1)FE =FD .(2)成立.证明:如图,在AC 上截取AG =AE ,连接FG .∵∠B =60°,AD ,CE 分别平分∠BAC ,∠BCA ,∴∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=120°.∴∠2+∠3=60°.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠1=∠2,AF =AF ,∴△AEF ≌△AGF (SAS).∴∠AFE =∠AFG ,FE =FG .∵∠AFE =∠CFD =∠2+∠3=60°,∴∠AFG =∠AFE =60°.∴∠CFG =60°.在△CFG 和△CFD 中,⎩⎨⎧∠CFG =∠CFD =60°,CF =CF ,∠3=∠4,∴△CFG ≌△CFD (ASA).∴FG =FD .∴FE =FD .。

2020年秋人教版八年级数学上册第11---13章综合考试测试卷

2020年秋人教版八年级数学上册第11---13章综合考试测试卷

八年级数学上册11—13章综合检测一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是()A B C D2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是() A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°(第2题图)(第4题图)(第6题图)(第7题图)3.一个多边形的每个内角相等,每个内角与相邻外角的差为100°,那么这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形4.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点5.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定6.如图,在四边形ABCD中,AB∥CD,AD⊥AB,点P是AD上的一个动点,要使PC+PB 最小,则点P应满足()A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC7.如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上 B.点B在点A的北偏东30°方向上C.点A在点B的北偏东60°方向上 D.点B在点O的北偏东30°方向上8.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC—CD—DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.1 B.1或3 C.1或7 D.3或7(第8题图)(第9题图)(第10题图)(第11题图)(第12题图)9.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为() A.2个 B.3个 C.4个 D.5个10.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,在D点的运动过程中DE+CF的值() A.逐渐变大 B.逐渐变小 C.不变 D.不确定二、填空题(每题3分,共24分)11.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,要添加一个条件是_________________.(只需写一个条件)12.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3).则点B的坐标为___________.13.一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为____________.(第13题图)(第15题图)(第16题图)(第18题图)14.若A(x,3)关于y轴的对称点是B(-2,y),则x=____,y=____,点A关于x轴的对称点的坐标是_______________.15.如图所示,△ABC中,AD是角平分线,AD的垂直平分线交BC的延长线于E,已知∠B=50°,则∠CAE的度数为____.16.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE=_____________.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”,若等腰△ABC中,∠A=80°,则它的特征值k=__或__.18.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE.其中正确的结论有____________.(填序号)三、解答题(共66分)19.(8分)如图,已知B,E,F,C四个点在同一条直线上,AB=CD,BE=CF,∠B=∠C.求证:△ABF≌△DCE.20.(8分)如图所示,在五边形ABCDE中,∠A=∠C=90°.求证:∠B=∠DEF+∠EDG.21.(8分)如图所示,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.22.(8分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(-3,-1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出C2的坐标.23.(10分)如图,在Rt△ADE中,∠E=90°,∠A=30°,AD=4,点B是AE上一点,连接BD,将△ADB沿着BD翻折得到△CDB,恰好BC⊥AE,求BE的长.24.(12分)如图,在Rt △ABC 中,∠ABC =∠A,∠ACB =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕着点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于点E ,F ,当∠EDF 绕着点D 旋转到DE⊥AC 于E 时(如图①),易证S △DEF +S △CEF =12 S △ABC ;当∠EDF 绕点D 旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否仍成立?若成立,请给予证明;若不成立,S △DEF ,S △CEF ,S △ABC 又有怎样的关系?请说明你的猜想,不需证明.25.(12分)如图,AB =AC ,AD =AE ,∠BAC =∠DAE=90°. (1)求证:△ABD≌△ACE; (2)求证:CE⊥BD; (3)求∠AFB 的度数.参考答案一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是(A)A B C D2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(C) A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°(第2题图)(第4题图)(第6题图)(第7题图)3.一个多边形的每个内角相等,每个内角与相邻外角的差为100°,那么这个多边形是(C)A.七边形 B.八边形 C.九边形 D.十边形4.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是(D)A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点5.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是(C)A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定6.如图,在四边形ABCD中,AB∥CD,AD⊥AB,点P是AD上的一个动点,要使PC+PB 最小,则点P应满足(D)A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC7.如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是(D)A.点O在点A的南偏东60°方向上 B.点B在点A的北偏东30°方向上C.点A在点B的北偏东60°方向上 D.点B在点O的北偏东30°方向上8.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC—CD—DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为(C)A.1 B.1或3 C.1或7 D.3或7(第8题图)(第9题图)(第10题图)(第11题图)(第12题图)9.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为(C)A.2个 B.3个 C.4个 D.5个10.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,在D点的运动过程中DE+CF的值(B) A.逐渐变大 B.逐渐变小 C.不变 D.不确定二、填空题(每题3分,共24分)11.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,要添加一个条件是__∠B=∠C(答案不唯一)__.(只需写一个条件)12.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3).则点B的坐标为__(1,4)__.13.一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为__15°__.(第13题图)(第15题图)(第16题图)(第18题图)14.若A(x,3)关于y轴的对称点是B(-2,y),则x=__2__,y=__3__,点A关于x 轴的对称点的坐标是__(2,-3)__.15.如图所示,△ABC中,AD是角平分线,AD的垂直平分线交BC的延长线于E,已知∠B=50°,则∠CAE的度数为__50°__.16.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE=__110°__.17.定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”,若等腰△ABC 中,∠A =80°,则它的特征值k =__85 或14__.18.如图,AC =BC ,∠ACB =90°,AE 平分∠BAC,BF ⊥AE ,交AC 延长线于F ,且垂足为E ,则下列结论:①AD=BF ;②BF=AF ;③AC+CD =AB ;④AB=BF ;⑤AD =2BE.其中正确的结论有__①③⑤__.(填序号)三、解答题(共66分)19.(8分)如图,已知B ,E ,F ,C 四个点在同一条直线上,AB =CD ,BE =CF ,∠B =∠C.求证:△ABF≌△DCE.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,在△ABF 和△DCE 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE (SAS ).20.(8分)如图所示,在五边形ABCDE 中,∠A =∠C=90°.求证:∠B=∠DEF+∠EDG.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠CDE +∠DEA =540°.∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°,∴∠B =360°-∠AED -∠EDC.∵∠DEF +∠EDG =360°-∠AED -∠EDC ,∴∠B =∠DEF +∠EDG.21.(8分)如图所示,已知△ABC 为等边三角形,点D ,E 分别在BC ,AC 边上,且AE =CD ,AD 与BE 相交于点F.(1)求证:△ABE≌△CAD; (2)求∠BFD 的度数.(1)证明:∵△ABC 为等边三角形,∴CA =AB ,∠C =∠BAE =60°,在△ABE 和△CAD 中,⎩⎪⎨⎪⎧AE =CD ,∠BAE =∠C ,AB =CA.∴△ABE≌△CAD (SAS ); (2)解:∵△ABE≌△CAD ,∴∠ABE =∠CAD ,∴∠ABE +∠BAF =∠CAD +∠BAF =∠BAE =60°,∵∠ABE +∠BAF =∠BFD ,∴∠BFD =60°.22.(8分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出C 2的坐标.解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,-1); (2)如图所示,△A 2B 2C 2即为所求,点C 2的坐标为(1,1).23.(10分)如图,在Rt △ADE 中,∠E =90°,∠A =30°,AD =4,点B 是AE 上一点,连接BD ,将△ADB 沿着BD 翻折得到△CDB,恰好BC⊥AE,求BE 的长.解:由折叠可知CD =AD =4,∠C =∠A =30°.∵∠E =90°,BC ⊥AE ,∴BC ∥DE ,∴∠EDF =∠C =30°,∴BF =12 CF ,EF =12 DF ,∴BE =BF +EF =12 (CF +DF )=12 CD =12×4=2.24.(12分)如图,在Rt △ABC 中,∠ABC =∠A,∠ACB =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕着点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于点E ,F ,当∠EDF 绕着点D 旋转到DE⊥AC 于E 时(如图①),易证S △DEF +S △CEF =12 S △ABC ;当∠EDF 绕点D 旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否仍成立?若成立,请给予证明;若不成立,S △DEF ,S △CEF ,S △ABC 又有怎样的关系?请说明你的猜想,不需证明.解:在图②中结论仍成立;在图③ 中不成立.对于图② 证明如下:过点D 作DM ⊥AC ,DN ⊥BC ,垂足分别为M ,N ,则∠DME =∠DNF =∠MDN =90°,∵∠A =∠ABC ,∠AMD =∠BND =90°,且易知DA =DB ,∴△ADM ≌△BDN (AAS ),∴DM =DN ,∵∠MDE +∠EDN =∠MDN =90°,∠EDN +∠NDF =∠EDF =90°,∴∠MDE =∠NDF ,∴△DME ≌△DNF (ASA ).∴S四边形DMCN=S四边形DECF=S △DEF +S △CEF ,由图①可知S四边形DMCN=12 S △ABC ,∴S △DEF +S △CEF =12S △ABC.在图③中,S △DEF ,S △CEF ,S △ABC 之间的关系是S △DEF -S △CEF =12 S △ABC .25.(12分)如图,AB =AC ,AD =AE ,∠BAC =∠DAE=90°. (1)求证:△ABD≌△ACE; (2)求证:CE⊥BD; (3)求∠AFB 的度数.(1)证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS );(2)证明:∵△ABD≌△ACE ,∴∠ABD =∠ACE ,∵∠BAC =90°,∴∠ABD +∠AGB =90°.∵∠AGB =∠CGF ,∴∠ACE +∠CGF =90°,∴∠BFC =90°,∴CE ⊥BD ;(3)解:过点A 作AM ⊥BD 于点M ,AN ⊥EC 于点N ,∵△ABD ≌△ACE ,则AM =AN ,∴AF 是∠BFE 的平分线,又由(2)知CE ⊥BD ,∴∠BFE =90°,∴∠AFB =45°.。

2020-2021学年人教版八年级上册数学 第十二章 全等三角形 章末综合测试(含答案)

2020-2021学年人教版八年级上册数学 第十二章 全等三角形 章末综合测试(含答案)

2020-2021学年人教版八年级上册数学第十二章全等三角形章末综合测试(含答案)一.选择题1.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2B.3C.5D.72.如图,已知AC=AD,再添加一个条件仍不能判定△ABC≌△ABD的是()A.∠C=∠D=90°B.∠BAC=∠BAD C.BC=BD D.∠ABC=∠ABD 3.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 4.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA5.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)6.如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC 于D和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为()A.4B.5C.9D.107.如图,在△ABC中,∠B=45°,∠C=75°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为E,若DE=2,则AB的长为()A.6B.+4C.+2D.2+28.如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c9.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cm B.5cm C.6cm D.7cm10.如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是()A.1个B.2个C.3个D.4个11.如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°12.如图,等腰直角△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,NE.下列结论:①AE=AF;②AM⊥EF;③△AEF是等边三角形;④DF=DN,⑤AD∥NE.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题13.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.14.若△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则△ABC的面积为.15.如图,在四边形ABCD中,AB=2,BC=12,CD=18,E为BC边中点,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,则AD的长为.16.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.17.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.18.如图,在△ABC中,BD平分∠ABC,DF⊥BC于点F,DE⊥AB于点E,若DF=5,则点D到边AB的距离为.19.如图,已知△ABC的周长是10cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,△ABC的面积为cm2.20.如图,四边形ABCD中,AB⊥AD,CD=CB,∠ACB=∠ACD,AE⊥BC于点E,AE 交BD于点F,AC=DF,CE=5,BE=12,则AE=.三.解答题21.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE =AB,∠BAE=∠CAD.求证:DE=CB.22.如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.23.如图,已知在△ABC中,AD是BC边上的中线,F是AD上一点,延长BF交AC于E,且AE=EF,求证:BF=AC.24.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.25.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).参考答案1.B2.D3.B4.D5.D6.B7.D8.D9.C10.C11.A12.D13.114.615.2616.317.218.519.420.2021.证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),22.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.23.解:如图,延长FD到G,使DG=DF,连结CG.∵AD是BC边的中线,∴BD=CD.在△BDF和△CDG中,∴△BDF≌△CDG(SAS),∴BF=CG,∠BFD=∠G.∵AE=EF,∴∠EAF=∠EF A=∠BFD,∴∠G=∠CAG,∴BF=AC.24.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)25.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.。

人教版八年级数学上册检测题 第十一章单元检测题

人教版八年级数学上册检测题 第十一章单元检测题

第十一章单元检测题时间:100分钟满分:12022一、选择题(每小题3分,共30分)1.(徐州中考)下列长度的三条线段,能组成三角形的是(D)A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,102.下列事例应用了三角形稳定性的有(B)①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度地支撑起来防止倒斜;③四边形模具.A.1个B.2个C.3个D.0个3.(杭州中考)在△ABC中,若一个内角等于另外两个内角的差,则(D)A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°4.(赤峰中考)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为(B)A.65°B.70°C.75°D.85°第4题图第5题图第8题图第9题图第10题图5.(2020·广安)如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为(A)A.210°B.110°C.150°D.100°6.(2020·黄冈)已知一个正多边形的一个外角为36°,则这个正多边形的边数是(D) A.7 B.8 C.9 D.107.多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为(C)A.7条B.8条C.9条D.10条8.(2020·湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF ∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是(A) A.15°B.20°C.25°D.30°9.(2020·宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是(A)A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.如图,把一把直尺放置在一个三角形纸片上,则下列结论正确的是(D)A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°二、填空题(每小题3分,共24分)11.一个起重架的结构如图所示,如果∠1=155°,那么∠2=__65°__.第11题图第14题图第16题图第18题图12.(2020·长春)正五边形的一个外角的大小为__72__度.13.已知△ABC的两条边的长度分别为3 cm,6 cm,若△ABC的周长为偶数,则第三边的长度是__5或7__cm.14.(2020·巴中)如图,是中国象棋残局图的一部分,请用线段将图中棋子所在的格点按指定方向顺次连接,组成一个多边形.连接顺序为:将→象→炮→兵→马→車→将,则组成的多边形的内角和为__720__度.15.在活动课上,小红有两根长为4 cm,8 cm的小棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒的长度是__8__cm.16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE 的度数为__70°__.17.(哈尔滨中考)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为__60°或10°__.18.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=__540°__.三、解答题(共66分)19.(6分)在△ABC中,已知∠A=105°,∠B比∠C大15°,求∠B,∠C的度数.解:∠B=45°,∠C=30°20.(6分)如图,已知AC⊥BC,CD⊥AD,∠B=30°,∠ACD=40°,求图中能用字母表示出来的四边形ABCD的外角的度数.解:图中四边形ABCD的外角有∠CDF,∠BAE,∠CDF=90°,∠BAE=70°21.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°22.(8分)已知a ,b ,c 分别为△ABC 的三边,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.解:(1)联立⎩⎪⎨⎪⎧a +b =3c -2,a -b =2c -6, 解得⎩⎨⎧a =52c -4,b =12c +2. ∵a ,b ,c 分别为△ABC 的三边,∴⎩⎪⎨⎪⎧a +b >c ,a +c >b ,b +c >a .解得2<c <6.故c 的取值范围为2<c <6 (2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18,解得c =5.故c 的值是523.(8分)如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上一个动点,PE ⊥AD 交直线BC 于点E .(1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B ,∠ACB 的数量关系,并说明理由.解:(1)在△ABC 中,∵∠B =35°,∠ACB =85°,∴∠BAC =60°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =30°,∴∠ADC =∠B +∠BAD =65°,∵EP ⊥AD ,∴∠E =90°-∠ADC =25° (2)∠E =12 (∠ACB -∠B ).理由:∵∠ADE =∠B +12∠BAC ,而∠E +∠ADE =90°,∴∠B +12∠BAC +∠E =90°,∠BAC =180°-(∠ACB +∠B ),∴∠B +12 [180°-(∠ACB +∠B )]+∠E =90°,∴∠E =12(∠ACB -∠B ) 24.(10分)在四边形ABCD 中,∠A =∠C =90°.(1)求证:∠ABC +∠ADC =180°;(2)如图①,若DE 平分∠ADC, BF 平分∠CBM ,写出DE 与BF 的位置关系,并证明;(3)如图②,若BF ,DE 分别平分∠ABC ,∠ADC 的外角,写出BF 与DE 的位置关系,并证明.解:(1)∵∠A +∠C +∠ABC +∠ADC =360°,而∠A =∠C =90°,∴∠ABC +∠ADC =180° (2)DE ⊥BF .证明:延长DE 交BF 于点G ,易证∠ADC =∠CBM ,∴∠CDE =∠EBF ,∴∠EGB =∠C =90°,∴DE ⊥BF (3)DE ∥BF .证明:连接BD ,易证∠NDC +∠MBC =180°,∴∠EDC +∠CBF =90°,∴∠EDC +∠CDB +∠CBD +∠FBC =180°,∴DE ∥BF25.(10分)取一副三角板按图①拼接,固定三角板ADC ,将三角板ABC 绕点A 按顺时针方向旋转得到△ABC ′(如图②),设∠CAC ′=α(0°<α<45°).(1)当α=15°时,求证:AB ∥CD ;(2)连接BD ,当0°<α≤45°时,∠DBC ′+∠CAC ′+∠BDC 的度数是否变化?若变化,求出变化范围;若不变,求出其度数.解:(1)∵∠CAC ′=15°,∴∠BAC =∠BAC ′-∠CAC ′=45°-15°=30°,又∠C =30°,∴∠BAC =∠C ,∴AB ∥CD (2)∠DBC ′+∠CAC ′+∠BDC 的度数不变.由图可知A ,B ,C ,C ′,D 构成一个不规则的五角星,易证五角星的内角和等于180°,那么∠DBC ′+∠CAC′+∠BDC+∠C′+∠C=180°,又∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=180°-45°-30°=105°26.(12分)已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是__20°__;②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__;(2)如图②,若AB⊥OM,则是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的若不存在,说明理由.解:(2)分两种情况讨论:①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD.则x=50.②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=35°.∴x=125.综上可知,当x=20,35,50或125时,△ADB中有两个相等的角。

人教版八年级数学上册单元测试题含答案第11章三角形

人教版八年级数学上册单元测试题含答案第11章三角形
22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径 为R的扇形草坪(图中阴影部分).
(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________; (4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.
10.三角形的稳定性 不稳定性 11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边, 所以a-b+c>0,a-b-c<0, 所以原式=a-b+c-[-(a-b-c)]=2a-2b. 12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成 三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以 底边长是8 cm或6 cm. 13.250° 点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC +∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出. 14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别 是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1. 15.八 点拨:由题意可知内角和是360°×3=1 080°,所以是八边形. 16.360° 点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F, ∠1,∠2,∠3的 和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+ ∠E+∠F=360°.
A.钝角三角形
B.锐角三角形
C.直角三角形
D.以上都不对
8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之

2020年人教版八年级上册第11章《三角形》单元测试卷 解析版

2020年人教版八年级上册第11章《三角形》单元测试卷   解析版

2020年人教版八年级上册第11章《三角形》单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.3cm,5cm,7cm B.7cm,7cm,14cmC.4cm,5cm,9cm D.2cm,1cm,3cm2.下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部3.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在如图所示的图形中,三角形有()A.4个B.5个C.6个D.7个5.如图,正六边形ABCDEF的一个内角的度数是()A.60°B.120°C.135°D.150°6.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个7.如图,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A’的位置,若∠A=35°,则∠1﹣∠2的度数为()A.35°B.70°C.55°D.40°8.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°9.如图,CD、BD分别平分∠ACE、∠ABC,∠A=70°,则∠BDC=()A.35°B.25°C.70°D.60°10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题(共7小题,满分28分,每小题4分)11.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的.12.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP 为直角三角形.13.已知一个多边形,少算一个的内角的度数,其余内角和为2100°,求这个多边形的边数.14.如图,在△ABC中,∠C=90°,∠B=∠BAD=∠CAD,BD=1cm,那么CD的长是cm.15.已知a、b、c是三角形的三边,化简|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=.16.AD是△ABC的高,∠ABC=40°,∠ACD=60°,BE,CE分别平分∠ABC和∠ACB,则∠BEC=度.17.光线以如图所示的角度α照射到平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,∠γ=度.三.解答题(共8小题,满分62分)18.(6分)如图,在△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于点E,∠A =60°,∠BDC=95°,求∠BED的度数.19.(6分)如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数.20.(6分)如图,在△ABC中,BD⊥AC于点D,CE平分∠ACB交AB于点E.∠A=65°,∠CBD=36°,求∠BEC的度数.21.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)22.(8分)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.23.(8分)按要求,画出图形并回答问题:(1)在下列三角形中,分别画出AB边上的高.(2)在方格纸中,过点C画线段AB的垂线,垂足为D,并量出C点到线段AB所在的直线的距离.(3)过△ABC的顶点C,画MN∥AB,再过△ABC的边AB的中点D,画平行于AC的直线,交BC于点E.24.(10分)如图,P是△ABC内一点,连结PB、PC.当∠1=∠ABC,∠2=∠ACB 时,∠P与∠A的之间的关系式是:∠P=90°+∠A探究一:当∠1=∠ABC,∠2=∠ACB时,∠P与∠A的关系式是什么?请说明理由.探究二:当∠1=∠ABC,∠2=∠ACB时,请直接写出∠P与∠A的关系式.25.(10分)已知,在四边形ABCD中.∠A=∠C=90゜.(1)求证:∠ABC+∠ADC=180゜;(2)如图1,若DE平分∠ADC,BF平分∠ABC外角,写出DE与BF的位置关系,并证明;(3)如图2,若BF、DE分别平分∠ABC、∠ADC的外角,写出BF与DE的位置关系,并证明.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据三角形任意两边的和大于第三边,得A中,3+5>7,能组成三角形;B中,7+7=14,不能组成三角形;C中,4+5=9,不能够组成三角形;D中,2+1=3,不能组成三角形.故选:A.2.解:A、三角形三条角平分线都在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.D、三角形三条高至少有一条在三角形的内部,故正确.故选:C.3.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°(三角形内角和定义).∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°.故选:C.4.解:三角形有△ABD、△BCD、△BCE、△ABC,△DCE,共5个,故选:B.5.解:设这个正六边形的每一个内角的度数为x,则6x=(6﹣2)•180°,解得x=120°.故这个正六边形的每一个内角的度数为120°.故选:B.6.解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.7.解:如下图所示,∵△ABC纸片沿DE进行折叠,点A落在四边形BCED的外部点A’的位置,∴∠4=∠5,∠3=∠2+∠DEC,∵∠1+∠4+∠5=180°,∴∠1+2∠4=180°,∴∠1=180°﹣2∠4,∵∠3+∠DEC=180°,∴∠2=∠3﹣∠DEC=2∠3﹣180°,∴∠1﹣∠2=180°﹣2∠4﹣2∠3+180°=360°﹣2∠4﹣2∠3=2∠A,∴∠1﹣∠2=2×35°=70°,故选:B.8.解:∴∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°,∴∠BDC=180°﹣(∠DBC+∠DCB)=120°,故选:B.9.解:∵CD、BD分别平分∠ACE、∠ABC,∴∠CBD=∠ABC,∠DCE=∠ACE,由三角形的外角性质得,∠DCE=∠D+∠CBD,∠ACE=∠A+∠ABC,∴∠D+∠CBD=(∠A+∠ABC)∴∠D=∠A,∵∠A=80°,∴∠D=×70°=35°.故选:A.10.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.二.填空题(共7小题,满分28分,每小题4分)11.解:为使一个四边形木架不变形我们会从中钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故答案为:稳定性.12.解:∵∠AOB=40°,∴若△AOP为直角三角形,则∠A=90°或∠APO=90°.当∠APO=90°,∠A=180°﹣∠AOB﹣∠APO=50°.故答案为:50°或90°.13.解:2100÷180=11,则正多边形的边数是11+1+2=14边形.故答案为:1414.解:∵在△ABC中,∠C=90°,∴∠B+∠BAC=90°,∵∠B=∠BAD=∠CAD,∴∠B=∠BAD=∠CAD=30°,∴AD=BD=1,∴CD=AD=cm,故答案为:.15.解:根据三角形的三边关系,两边之和大于第三边,得a﹣b﹣c<0,b+c﹣a>0,c﹣a﹣b<0.则|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=b+c﹣a+b+c﹣a+c﹣a﹣b,=3c+b﹣3a.故答案为:3c+b﹣3a.16.解:如图,当高在△ABC内部时,∵∠ABC=40°,∠ACD=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣40°﹣60°=80°,∵BE平分∠ABC,∴∠ABE=∠ABC=20°,∴∠BEC=∠ABE+∠BAE=100°,如图,当高AD在△ABC外部时,∵∠ACD=∠ABC+∠BAC,∴∠ABC=20°,∴∠BEC=∠ABE+∠BAC=20°+20°=40°,综上所述,∠BEC的值为100°或40°.故答案为100或40.17.解:如答图所示,过A作MA⊥AC,垂足为A,则∠1=90°﹣α=90°﹣60°=30°,∴∠2=∠1=30°,∴∠7=90°﹣30°=60°,过B作BN⊥m,垂足为B,∴∠3=90°﹣β=90°﹣50°=40°,∴∠ABC=∠3+∠4=2∠3=2×40°=80°,过C作CE⊥AC,垂足为C,则∠5=∠6,∠BCD=2∠5+γ=∠7+∠ABC=60°+80°=140°,∵∠5+γ=90°,∴∠6=∠5=50°,∴∠γ=90°﹣50°=40°.故答案为:40.三.解答题(共8小题,满分62分)18.解:∵∠A+∠ABD=∠BDC,∠A=60°,∠BDC=95°∴∠ABD=35°∵BD平分∠ABC∴∠ABD=∠CBD又∵DE∥BC∴∠CBD=∠BDE∴∠BDE=∠ABD=35°∴∠BED=180°﹣∠ABD﹣∠BDE=110°.19.解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,∴∠DAB+∠ABC=360°﹣220°=140°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°,∴∠AOB=180°﹣70°=110°.20.解:∵BD⊥AC,∠CBD=36°,∴∠BCD=90°﹣∠CBD=90°﹣36°=54°,∵CE平分∠ACB,∴∠ACE=∠ACB=×54°=27°,∵∠A=65°,∠A+∠AEC+∠ACE=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣65°﹣27°=88°,∵∠AEC+∠BEC=180°,∴∠BEC=180°﹣∠AEC=180°﹣88°=92°.21.解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.22.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CF A=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.23.解:(1)首先找到AB边对的顶点C,以C为圆心,以CA长为半径画弧,交AB于点N,再以点N和A为圆心,以任意长为半径,画弧,两弧交于点Q,连接CQ交AB于点M,CM即是要画的AB边上的高.同理可画出余下的两个三角形的高CM.(2)连接CA和CB,以点C为圆心,以AB长为半径画弧,角AB于点M,以点M和B 为圆心,以任意长为半径画弧,两弧交点为N,连接CN交AB于点D,CD即要画的垂线.C点到线段AB所在的直线的距离,即线段CD的长度.(3)分别画∠1=∠2,∠3=∠2.如图所示.24.解:(1)成立,理由如下:∠1+∠2=(180°﹣∠A)=90°﹣∠A,∠P=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+∠A;(2)∠P=120°+∠A,理由如下:∠1=ABC,∠2=∠ACB,∠1+∠2=(180°﹣∠A)=60°﹣∠A,∠P=180°﹣(∠1+∠2)=180°﹣(60°﹣∠A)=120°+∠A,(3)∠P=180°﹣+∠A,理由如下:∠1=ABC,∠2=∠ACB,∠1+∠2=(180°﹣∠A),∠P=180°﹣(∠1+∠2)=180°﹣+∠A.25.证明:(1)∵∠A=∠C=90゜,∴在四边形ABCD中,∠ABC+∠ADC=360°﹣∠A﹣∠C=180゜;(2)DE⊥BF.延长DE交BF于G,∵∠ABC+∠ADC=180°,∠ABC+∠CBM=180°,∴∠ADC=∠CBM,∵DE平分∠ADC,BF平分∠ABC外角,∴∠CDE=∠ADC,∠EBF=∠CBM,∴∠CDE=∠EBF.∵∠DEC=∠BEG,∴∠EGB=∠C=90゜,∴DE⊥BF.(3)DE∥BF,连接BD,∵∠ABC+∠ADC=180°,∴∠NDC+∠MBC=180゜,∵BF、DE分别平分∠ABC、∠ADC的外角,∴∠EDC+∠CBF=90゜,∴∠EDC+∠CDB+∠CBD+∠FBC=180゜,∴DE∥BF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B
D E
A P 八年级数学试卷
班级: 姓名:
一、选择题(本题共8道小题,每小题2分,共16分)
1.如图,已知∠ACD=60°,∠B=20°,那么∠A 的度数是
A .40°
B .60°
C .80°
D .120°
2. 若一个三角形的三边长是三个连续的自然数,其周长m 满足
10<m <22,则这样的三角形有
A.2个
B.3个
C.4个
D. 5个
3.如图,∠1+∠2+∠3+∠4等于
A.180°
B. 360°
C.270°
D.450°
4.从长度分别为5cm, 10cm,15cm,20cm 的四根木条中,任取三根
可组成三角形的个数是
A. 1个
B. 2个
C. 3个
D. 4个
5.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为
A .6
B .7
C .8
D . 9
6.△ABC 中BC 边上的高作法正确的是
A .
B .
C .
D .
7. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是
A .3
B .4
C .6
D .无法确定
8.如图,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是
A.AB=DE
B.DF ∥AC
C.∠E=∠ABC
D.AB ∥DE
二、填空题(本题共8道小题,每小题2分,共16分)
9.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________
10.已知等腰三角形的两边长是5和8,则这个等腰三角形的周长是 .
11.如图所示,延长△ABC 的中线AD 到点E ,使DE =AD ,连接BE ,EC ,那么在四边形ABEC 中共有__________对全等的三角形.
12.如图,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =__________.
C
F B E
A D
B A
E B E E E
C B A
13.如图,要测量河岸相对的两点A ,B 之间的距离,先从B 处出发与AB 成90°角方向,向前走50 m 到C 处立一标杆,然后方向不变继续向前走50 m 到D 处,在D 处转90°沿DE 方向再走20 m ,到达E 处,使A ,C 与E 在同一条直线上,那么测得AB 的距离为__________m.
14.如图,在中,平分且与BC 相交于点,
∠B = 40°,∠BAD = 30°,则C ∠
的度数为

15.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使 △ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可).
16.如图(1)在△ABC 中,BC 边上的高是 ;(2)在△AEC 中,AE 边上的高是 .
三、解答题(第17-25题,每小题6分,第26、27题,每小题7分,共68分)
17.如图,在△ABC 中,∠A =70°,∠B =50°,CD 平分∠ACB .求∠ACD 的度数.
18.如图所示,∠BAC=90°,BF 平分∠ABC 交AC 于点F ,∠BFC=100°,求∠C 的度数.
19.如图所示,已知DF ⊥AB 于F ,∠A=40°,∠D=50°,求∠ACB
的度数.
ABC ∆AD BAC ∠D 第16题图
20.如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,
BC=EF ,AB//DE. 求证 △ABC ≌△DEF.
21.已知:如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE=CF .
22.已知:如图,点A ,F ,C ,D 在同一条直线上,点B 和点E 在 直线AD 的两侧,且AF =DC ,BC ∥
FE ,∠A=∠D .
求证:AB=DE .
23.已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE =BF .
求证:(1)AF =CE ;(2)AB ∥CD .
A B C D E
F A B C D E F
24.已知:如图,点B、E、C、F四点在同一条直线上,AB∥DE,AB=DE,AC、DE相交于点O,BE=CF.求证:AC = DF .
25.如图,在△ABC和△DEF中,B,C,E,F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.
①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.
已知:(填序号),求证:(填序号)
证明:
26.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,问:能否在AB上确定一点E,使△BDE得周长等于AB的长?
27.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:
①分别在BA和CA上取BE=CG;
②在BC上取BD=CF;
③量出DE的长a m,FG的长b m.
如果a=b,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?。

相关文档
最新文档